

## FCC 47 CFR PART 15 SUBPART E

## **TEST REPORT**

For

802.11a/b/g AP

Model: SS-200-AT

Trade Name: AirTight Networks

Issued to

AirTight Networks, Inc 339N. Bernardo Avenue, Suite 200 Mountain View, CA 94043

Issued by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. http://www.ccsemc.com.tw service@tw.ccsemc.com



*Note:* This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.



## **TABLE OF CONTENTS**

| 1. Tl      | EST RESULT CERTIFICATION                               | 3  |
|------------|--------------------------------------------------------|----|
| 2. EV      | UT DESCRIPTION                                         | 4  |
| 3. TI      | EST METHODOLOGY                                        | 5  |
| 3.1        | EUT CONFIGURATION                                      | 5  |
| 3.2        | EUT EXERCISE                                           | 5  |
| 3.3        | GENERAL TEST PROCEDURES                                |    |
| 3.4        | FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS         | 6  |
| 3.5        | DESCRIPTION OF TEST MODES                              | 6  |
| 4. IN      | STRUMENT CALIBRATION                                   | 7  |
| 4.1        | MEASUREMENT EQUIPMENT USED                             | 7  |
| 5. FA      | ACILITIES AND ACCREDITATIONS                           | 9  |
| 5.1        | FACILITIES                                             | 9  |
| 5.2        | EQUIPMENT                                              | 9  |
| 5.3        | LABORATORY ACCREDITATIONS AND LISTING                  |    |
| 5.4        | TABLE OF ACCREDITATIONS AND LISTINGS                   | 10 |
| 6. SI      | ETUP OF EQUIPMENT UNDER TEST                           | 11 |
| 6.1        | SETUP CONFIGURATION OF EUT                             | 11 |
| 6.2        | SUPPORT EQUIPMENT                                      | 11 |
| 7. FC      | CC PART 15 REQUIREMENTS                                | 12 |
| 7.1        | 26 DB EMISSION BANDWITH                                |    |
| 7.2        | PEAK POWER                                             |    |
| 7.3        | BAND EDGES MEASUREMENT                                 |    |
| 7.4        | PEAK POWER SPECTRAL DENSITY                            |    |
| 7.5        | PEAK EXCURSION                                         |    |
| 7.6        | RADIATED UNDESIRABLE EMISSION                          |    |
| 7.7        | CONDUCTED UNDESIRABLE EMISSION                         |    |
| 7.8<br>7.9 | POWERLINE CONDUCTED EMISSIONS                          |    |
|            | TRANSMISSION IN ABSENCE OF DATA<br>FREQUENCY STABILITY |    |
|            | •                                                      |    |
| APPE       | NDIX I PHOTOGRAPHS OF TEST SETUP                       | 91 |
| APPE       | NDIX II RADIO FREQUENCY EXPOSURE                       | 95 |



#### **TEST RESULT CERTIFICATION** 1.

| Applicant:                   | icant: AirTight Networks, Inc<br>339N. Bernardo Avenue, Suite 200 Mountain View,<br>CA 94043 |                         |  |  |
|------------------------------|----------------------------------------------------------------------------------------------|-------------------------|--|--|
| <b>Equipment Under Test:</b> | 802.11a/b/g AP                                                                               |                         |  |  |
| Trade Name:                  | AirTight Networks                                                                            |                         |  |  |
| Model:                       | SS-200-AT                                                                                    |                         |  |  |
| Date of Test:                | September 14 ~ October 7, 2005                                                               |                         |  |  |
|                              | APPLICABLE ST                                                                                | TANDARDS                |  |  |
| STANDA                       | RD                                                                                           | TEST RESULT             |  |  |
| FCC 47 CFR Part              | 15 Subpart E                                                                                 | No non-compliance noted |  |  |

#### We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

sair, lim

Gavin Lim Section Manager Compliance Certification Services Inc.

Reviewed by:

Amanda Wu Section Manager Compliance Certification Services Inc.



## 2. EUT DESCRIPTION

| Product                                                                                    | 802.11a/b/g AP                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trade Name                                                                                 | AirTight Networks                                                                                                                                                                                                                                             |
| Model Number                                                                               | SS-200-AT                                                                                                                                                                                                                                                     |
| Model Discrepancy                                                                          | N/A                                                                                                                                                                                                                                                           |
| DELTA / ADP-15KB       Power Supply     I/P: 100-240V, 0.5A, 50-60Hz       O/P: 5.1V, 3.0A |                                                                                                                                                                                                                                                               |
| Frequency Range                                                                            | Base mode: 5.15 ~ 5.35 GHz<br>Turbo mode: 5.210 GHz / 5.250 GHz / 5.290 GHz                                                                                                                                                                                   |
| Transmit Power                                                                             | Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz<br>Base mode: 12.88 dBm<br>Turbo mode: 12.00 dBm<br>Omnidirectional antenna / 6.0 dBi for 5 GHz<br>Base mode: 9.86 dBm<br>Turbo mode: 11.60 dBm                                                 |
| Modulation Technique                                                                       | OFDM (QPSK, BPSK, 16-QAM, 64-QAM)                                                                                                                                                                                                                             |
| Transmit Data Rate                                                                         | 108, 54, 48, 36, 24, 18, 12, 9, 6 Mbps                                                                                                                                                                                                                        |
| Number of Channels                                                                         | Base mode: 8 Channels<br>Turbo mode: 3 Channels                                                                                                                                                                                                               |
| Antenna Specification                                                                      | The EUT comes with two different antennas for 5GHz:<br>Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz<br>Omnidirectional antenna / 6.0 dBi for 5 GHz<br>For detail descriptions, please refer to antenna specification and external<br>photos. |

#### **Operation Frequency:**

| UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) |      |  |  |  |
|--------------------------------------------------------|------|--|--|--|
| CHANNEL                                                | MHz  |  |  |  |
| 1                                                      | 5180 |  |  |  |
| 2                                                      | 5200 |  |  |  |
| 3                                                      | 5220 |  |  |  |
| 4                                                      | 5240 |  |  |  |
| 5                                                      | 5260 |  |  |  |
| 6                                                      | 5280 |  |  |  |
| 7                                                      | 5300 |  |  |  |
| 8                                                      | 5320 |  |  |  |

#### Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>TORSS-200-AT</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.



## **3. TEST METHODOLOGY**

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4 Radiated testing was performed at an antenna to EUT distance 3 meters.

## **3.1 EUT CONFIGURATION**

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

## 3.2 EUT EXERCISE

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

## **3.3 GENERAL TEST PROCEDURES**

#### **Conducted Emissions**

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

#### **Radiated Emissions**

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.



## 3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                 | MHz             | GHz           |
|----------------------------|---------------------|-----------------|---------------|
| 0.090 - 0.110              | 16.42 - 16.423      | 399.9 - 410     | 4.5 - 5.15    |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614       | 5.35 - 5.46   |
| 2.1735 - 2.1905            | 16.80425 - 16.80475 | 960 - 1240      | 7.25 - 7.75   |
| 4.125 - 4.128              | 25.5 - 25.67        | 1300 - 1427     | 8.025 - 8.5   |
| 4.17725 - 4.17775          | 37.5 - 38.25        | 1435 - 1626.5   | 9.0 - 9.2     |
| 4.20725 - 4.20775          | 73 - 74.6           | 1645.5 - 1646.5 | 9.3 - 9.5     |
| 6.215 - 6.218              | 74.8 - 75.2         | 1660 - 1710     | 10.6 - 12.7   |
| 6.26775 - 6.26825          | 108 - 121.94        | 1718.8 - 1722.2 | 13.25 - 13.4  |
| 6.31175 - 6.31225          | 123 - 138           | 2200 - 2300     | 14.47 - 14.5  |
| 8.291 - 8.294              | 149.9 - 150.05      | 2310 - 2390     | 15.35 - 16.2  |
| 8.362 - 8.366              | 156.52475 -         | 2483.5 - 2500   | 17.7 - 21.4   |
| 8.37625 - 8.38675          | 156.52525           | 2655 - 2900     | 22.01 - 23.12 |
| 8.41425 - 8.41475          | 156.7 - 156.9       | 3260 - 3267     | 23.6 - 24.0   |
| 12.29 - 12.293             | 162.0125 - 167.17   | 3332 - 3339     | 31.2 - 31.8   |
| 12.51975 - 12.52025        | 167.72 - 173.2      | 3345.8 - 3358   | 36.43 - 36.5  |
| 12.57675 - 12.57725        | 240 - 285           | 3600 - 4400     | $(^{2})$      |
| 13.36 - 13.41              | 322 - 335.4         |                 |               |

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

## **3.5 DESCRIPTION OF TEST MODES**

The EUT (model: SS-200-AT) comes with two different antennas for 5 GHz.

The EUT with antenna as below had been tested under operating condition.

- 1. Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz
- 2. Omnidirectional antenna / 6.0 dBi for 5 GHz

Software used to control the EUT for staying in continuous transmitting mode was programmed. After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only. Base mode:

Channel Low (5180MHz), Channel Mid (5260MHz) and Channel High (5320MHz) with 6Mbps data rate were chosen for full testing.

Turbo mode:

Channel Low (5210MHz), Channel Mid (5250MHz) and Channel High (5290MHz) with 12Mbps data rate were chosen for full testing.



## 4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

## 4.1 MEASUREMENT EQUIPMENT USED

#### **Equipment Used for Emissions Measurement**

*Remark:* Each piece of equipment is scheduled for calibration once a year.

| Conducted Emissions Test Site                                      |         |        |            |            |  |
|--------------------------------------------------------------------|---------|--------|------------|------------|--|
| Name of Equipment Manufacturer Model Serial Number Calibration Due |         |        |            |            |  |
| Spectrum Analyzer                                                  | Agilent | E4446A | MY43360131 | 01/10/2006 |  |
| Spectrum Analyzer                                                  | R&S     | FSP30  | 100112     | 08/03/2006 |  |

| 3M Semi Anechoic Chamber |                 |                   |               |                        |  |  |
|--------------------------|-----------------|-------------------|---------------|------------------------|--|--|
| Name of Equipment        | Manufacturer    | Model             | Serial Number | <b>Calibration Due</b> |  |  |
| Spectrum Analyzer        | Agilent         | E4446A            | US42510252    | 07/25/2006             |  |  |
| Test Receiver            | Rohde&Schwarz   | ESCI              | 100064        | 06/28/2006             |  |  |
| Switch Controller        | TRC             | Switch Controller | SC94050010    | 05/05/2006             |  |  |
| 4 Port Switch            | TRC             | 4 Port Switch     | SC94050020    | 05/05/2006             |  |  |
| Horn-Antenna             | TRC             | HA-0502           | 06            | 06/02/2006             |  |  |
| Horn-Antenna             | TRC             | HA-0801           | 04            | 05/05/2006             |  |  |
| Bilog- Antenna           | Sunol Sciences  | JB3               | A030205       | 03/09/2006             |  |  |
| Turn Table               | Max-Full        | MFT-120S          | T120S940302   | N.C.R                  |  |  |
| Antenna Tower            | Max-Full        | MFA-430           | A440940302    | N.C.R                  |  |  |
| Controller               | Max-Full        | MF-CM886          | CC-C-1F-13    | N.C.R                  |  |  |
| Site NSA                 | CCS             | N/A               | 965860        | 09/26/2008             |  |  |
| Test S/W                 | LABVIEW (V 6.1) |                   |               |                        |  |  |

*Remark:* The measurement uncertainty is less than +/- 2.0065dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.



| Powerline Conducted Emissions Test Site |                                               |        |            |            |  |  |
|-----------------------------------------|-----------------------------------------------|--------|------------|------------|--|--|
| Name of Equipment                       | ManufacturerModelSerial NumberCalibration Due |        |            |            |  |  |
| EMI TEST RECEIVER<br>9kHz-30MHz         | ROHDE &<br>SCHWARZ                            | ESHS30 | 828144/003 | 09/24/2006 |  |  |
| TWO-LINE V-NETWORK<br>9kHz-30MHz        | SCHAFFNER                                     | NNB41  | 03/10013   | 06/11/2006 |  |  |
| LISN 10kHz-100MHz                       | EMCO 3825/2 9106-1809 02/17/200               |        |            |            |  |  |
| Test S/W                                | LABVIEW (V 6.1)                               |        |            |            |  |  |

*Remark:* The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.



## 5. FACILITIES AND ACCREDITATIONS

## 5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No. No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

## **5.2 EQUIPMENT**

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

## 5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

## 5.4 TABLE OF ACCREDITATIONS AND LISTINGS

| Country | Agency             | Scope of Accreditation                                                                                                                                                                                                                                                                                                                                      | Logo                                                                                               |
|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| USA     | NVLAP*             | EN 55011, EN 55014-1, AS/NZS 1044,<br>CNS 13783-1, EN 55022, CNS 13438,<br>EN 61000-3-2, EN 61000-3-3, ANSI C63.4,<br>FCC OST/MP-5, AS/NZS CISPR 22,<br>IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4,<br>IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8,<br>IEC 61000-4-11                                                                                      | NVLAD<br>200600-0                                                                                  |
| USA     | FCC                | 3/10 meter Open Area Test Sites (93105, 90471) /<br>3M Semi Anechoic Chamber (965860) to perform<br>FCC Part 15/18 measurements                                                                                                                                                                                                                             | 93105, 90471<br>965860                                                                             |
| Japan   | VCCI               | 3/10 meter Open Area Test Sites to perform conducted/radiated measurements                                                                                                                                                                                                                                                                                  | <b>VCCI</b><br>R-393/1066/725/879<br>C-402/747/912                                                 |
| Norway  | NEMKO              | EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2,<br>EN 50130-4, EN 55011, EN 55013, EN 55014-1/2,<br>EN 55015, EN 55022, EN 55024, EN 61000-3-2/3,<br>EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2,<br>EN 300 328-2, EN 300 422-2, EN 301 419-1,<br>EN 301 489-01/03/07/08/09/17, EN 301 419-2/3,<br>EN 300 454-2, EN 301 357-2             | ELA 124a<br>ELA 124b<br>ELA 124c                                                                   |
| Taiwan  | CNLA               | EN 300 328-1/2, EN 300 220-1/2/3,<br>EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3,<br>47 CFR FCC Part 15 Subpart C/D/E,<br>EN 55013, CNS 13439, EN 55014-1,<br>CNS 13783-1, EN 55022, CNS 13438,<br>CISPR 22, AS/NZS 3548,<br>EN 61000-4-2/3/4/5/6/8/11,<br>ENV 50204, IEEE Std 1528, FCC OET Bulletin,<br>65+Supplement C, EN50360, EN50361, EN50371, RSS102 | CNLA<br>0 3 6 3<br>ILAC MRA                                                                        |
| Taiwan  | BSMI               | CNS 13438, CNS 13783-1,<br>CNS 13439, CNS 14115                                                                                                                                                                                                                                                                                                             | SL2-IS-E-0014<br>SL2-IN-E-0014<br>SL2-A1-E-0014<br>SL2-R1-E-0014<br>SL2-R2-E-0014<br>SL2-R2-E-0014 |
| Canada  | Industry<br>Canada | 3/10 meter Open Area Test Sites (IC 3991-3, IC 3991-4) /<br>3M Semi Anechoic Chamber (IC 6106) to perform<br>RSS 212 Issue 1                                                                                                                                                                                                                                | <b>Canada</b><br>IC 3991-3<br>IC 3991-4<br>IC 6106                                                 |

\* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

\* Australia: MRA of NVLAP AS/NZS 4771 &AS/NZS 4268.



# 6. SETUP OF EQUIPMENT UNDER TEST6.1 SETUP CONFIGURATION OF EUT

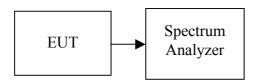
See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

## 6.2 SUPPORT EQUIPMENT

| No. | Device Type             | Brand | Model     | Series No. | FCC ID  | Data Cable | Power Cord                                                                |
|-----|-------------------------|-------|-----------|------------|---------|------------|---------------------------------------------------------------------------|
| 1.  | Notebook PC<br>(Remote) | IBM   | 2672(X31) | 99PBTKB    | FCC DoC | N/A        | AC I/P:<br>Unshielded, 1.8m<br>DC O/P:<br>Unshielded, 1.8m<br>with a core |

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.




## 7. FCC PART 15 REQUIREMENTS

## 7.1 26 DB EMISSION BANDWITH

According to §15.303(c), for purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Compliance with the emissions limits is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

#### **Test Configuration**



## **TEST PROCEDURE**

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low-loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 1%EBW, VBW = RBW, Span = 50MHz / 100MHz (Turbo Mode), and Sweep = auto.

Or Set the spectrum analyzer as RBW > 1%EBW, VBW > RBW, Span >26dB bandwidth (Base Mode) / >26dB bandwidth (Turbo Mode), and Sweep = auto.

- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat until all the rest channels were investigated.



## **TEST RESULTS**

No non-compliance noted

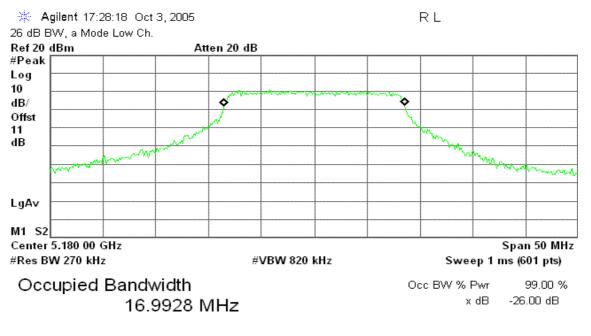
## <u>Test Data</u>

## **Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz**

| Channel | Frequency<br>(MHz) |      | Bandwidth (B)<br>(MHz) |
|---------|--------------------|------|------------------------|
| Low     |                    | 5180 | 24.226                 |
| Mid     | Base mode          | 5260 | 23.268                 |
| High    |                    | 5320 | 24.206                 |
| Low     |                    | 5210 | 49.032                 |
| Mid     | Turbo mode         | 5250 | 50.095                 |
| High    |                    | 5290 | 50.025                 |

## Omnidirectional antenna / 6.0 dBi for 5 GHz

| Channel | Frequency<br>(MHz) |      | Bandwidth (B)<br>(MHz) |
|---------|--------------------|------|------------------------|
| Low     |                    | 5180 | 23.884                 |
| Mid     | Base mode          | 5260 | 23.880                 |
| High    |                    | 5320 | 24.097                 |
| Low     |                    | 5210 | 49.032                 |
| Mid     | Turbo mode         | 5250 | 48.643                 |
| High    |                    | 5290 | 46.688                 |




#### Test Plot

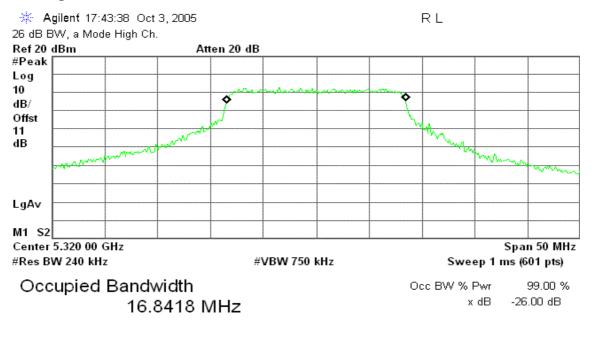
## Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz

#### IEEE 802.11a Base mode

#### CH Low



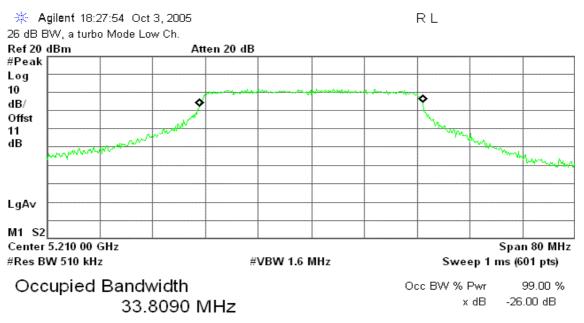
| Transmit Freq Error | 18.087 kHz |
|---------------------|------------|
| x dB Bandwidth      | 24.226 MHz |


#### CH Mid



| Transmit Freq Error | -12.368 kHz |
|---------------------|-------------|
| x dB Bandwidth      | 23.268 MHz  |

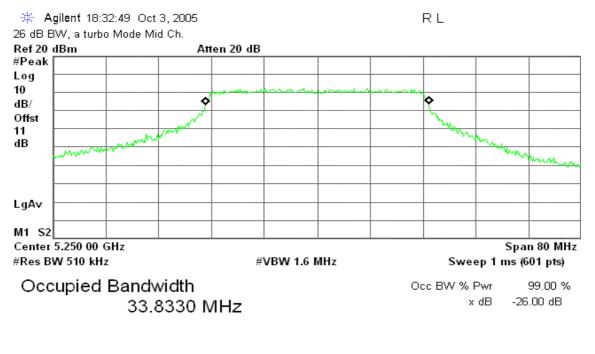



#### CH High



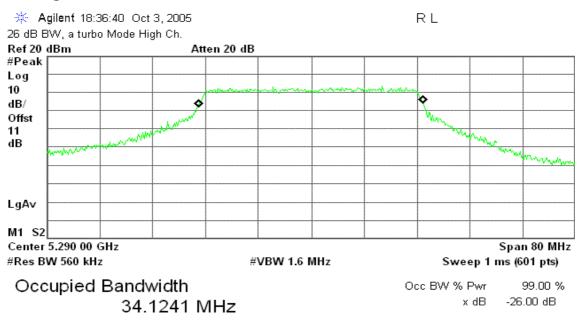
| Transmit Freq Error | -3.639 kHz |
|---------------------|------------|
| x dB Bandwidth      | 24.206 MHz |

#### IEEE 802.11a Turbo mode


#### CH Low



| Transmit Freq Error | -36.394 kHz |
|---------------------|-------------|
| x dB Bandwidth      | 49.032 MHz  |



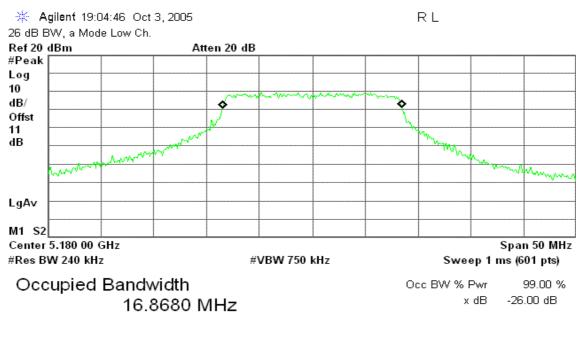

#### CH Mid



Transmit Freq Error-28.977 kHzx dB Bandwidth50.095 MHz

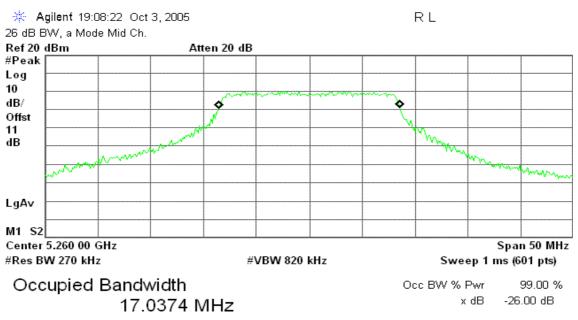
#### **CH High**




Transmit Freq Error x dB Bandwidth



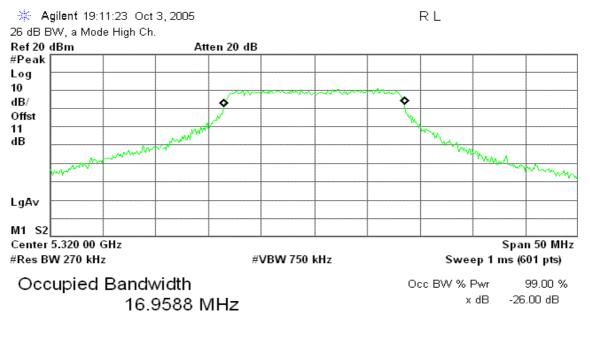
## Omnidirectional antenna / 6.0 dBi for 5 GHz


#### IEEE 802.11a Base mode

#### CH Low



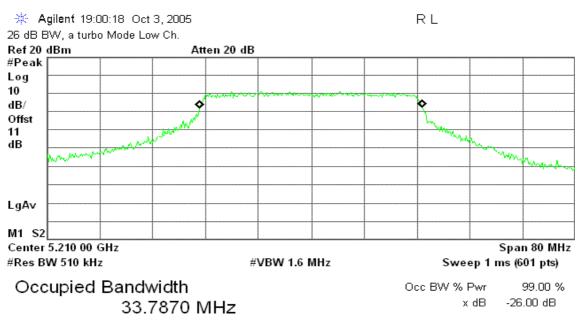
| Transmit Freq Error | 14.976 kHz |
|---------------------|------------|
| x dB Bandwidth      | 23.884 MHz |


#### CH Mid



| Transmit Freq Error | -7.705 kHz |
|---------------------|------------|
| x dB Bandwidth      | 23.880 MHz |

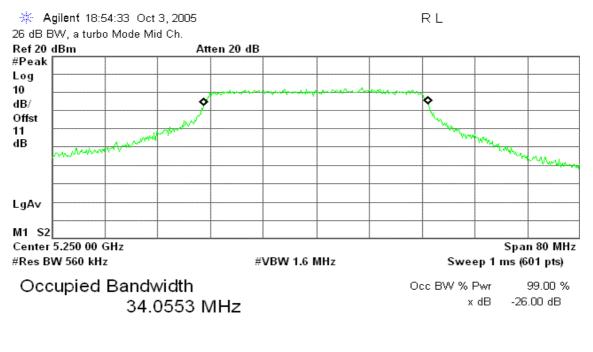



#### CH High



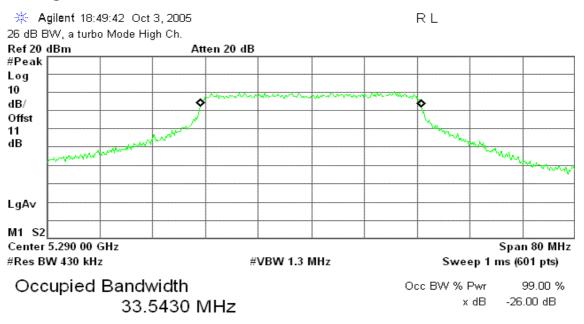
| Transmit Freq Error | -2.222 kHz |
|---------------------|------------|
| x dB Bandwidth      | 24.097 MHz |

#### IEEE 802.11a Turbo mode


#### CH Low



Transmit Freq Error x dB Bandwidth




#### CH Mid



Transmit Freq Error -29.495 kHz x dB Bandwidth 48.643 MHz

#### **CH High**



Transmit Freq Error -49.755 kHz x dB Bandwidth 46.688 MHz



## 7.2 PEAK POWER

## LIMIT

According to §15.407(a),

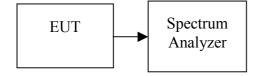
- (1) For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The peak power shall not exceed the limit as follow:

#### **Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz**

| Freque<br>(MHz | -    | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | Limit<br>4 + 10 Log B or<br>11 + 10 Log B (dBm) | Power Limit<br>(dBm) |
|----------------|------|---------------------------------|------------------|-------------------------------------------------|----------------------|
|                | 5180 | 24.226                          | 13.84            | 17.84                                           | 17                   |
| Base mode      | 5260 | 23.268                          | 13.67            | 24.67                                           | 24                   |
|                | 5320 | 24.206                          | 13.84            | 24.84                                           | 24                   |
|                | 5210 | 49.032                          | 16.90            | 20.90                                           | 17                   |
| Turbo mode     | 5250 | 50.095                          | 17.00            | 21.00                                           | 17                   |
|                | 5290 | 50.025                          | 16.99            | 27.99                                           | 24                   |


## Omnidirectional antenna / 6.0 dBi for 5 GHz

| Freque<br>(MHz |      | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | Limit<br>4 + 10 Log B or<br>11 + 10 Log B (dBm) | Power Limit<br>(dBm) |
|----------------|------|---------------------------------|------------------|-------------------------------------------------|----------------------|
|                | 5180 | 23.884                          | 13.78            | 17.78                                           | 17                   |
| Base mode      | 5260 | 23.880                          | 13.78            | 24.78                                           | 24                   |
|                | 5320 | 24.097                          | 13.82            | 24.82                                           | 24                   |
|                | 5210 | 49.032                          | 16.90            | 20.90                                           | 17                   |
| Turbo mode     | 5250 | 48.643                          | 16.87            | 20.87                                           | 17                   |
|                | 5290 | 46.688                          | 16.69            | 27.69                                           | 24                   |



#### **Test Configuration**

The EUT was connected to a spectrum analyzer through a 50  $\Omega$  RF cable.



## **TEST PROCEDURE**

Set span to encompass the entire emission bandwidth (EBW) of the signal.

Set RBW = 1 MHz / Set VBW = 3 MHz.

Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run". Trace average 100 traces in power averaging mode. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.



## **TEST RESULTS**

No non-compliance noted

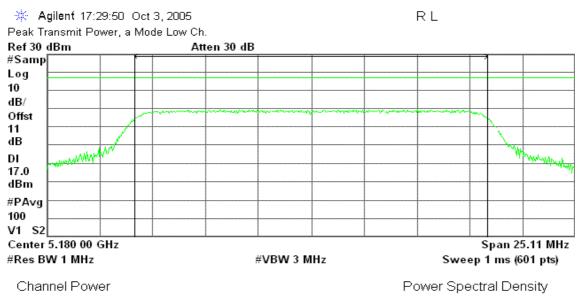
## <u>Test Data</u>

## **Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz**

| Channel | Frequency<br>(MHz) |      | Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|------|-----------------------|----------------|
| Low     |                    | 5180 | 10.28                 | 17             |
| Mid     | Base mode          | 5260 | 12.09                 | 24             |
| High    |                    | 5320 | 12.88                 | 24             |
| Low     |                    | 5210 | 11.84                 | 17             |
| Mid     | Turbo mode         | 5250 | 11.90                 | 17             |
| High    |                    | 5290 | 12.00                 | 24             |

## Omnidirectional antenna / 6.0 dBi for 5 GHz

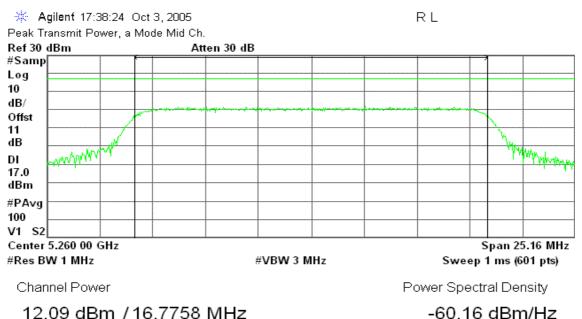
| Channel | Frequency<br>(MHz) |      | Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|------|-----------------------|----------------|
| Low     |                    | 5180 | 9.44                  | 17             |
| Mid     | Base mode          | 5260 | 9.86                  | 24             |
| High    |                    | 5320 | 9.77                  | 24             |
| Low     |                    | 5210 | 11.60                 | 17             |
| Mid     | Turbo mode         | 5250 | 10.65                 | 17             |
| High    |                    | 5290 | 11.23                 | 24             |




#### Test Plot

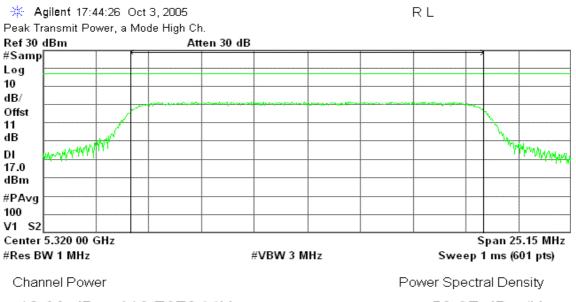
## **Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz**

#### IEEE 802.11a Base mode


#### CH Low



#### 10.28 dBm / 16.7431 MHz

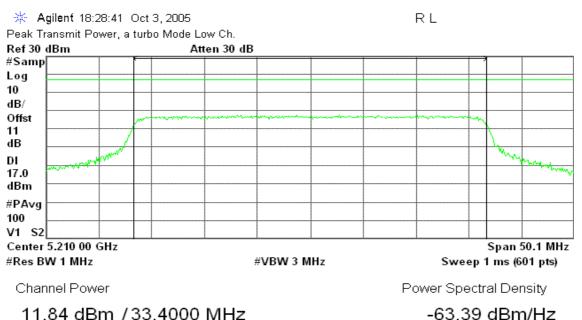

-61.96 dBm/Hz

#### CH Mid



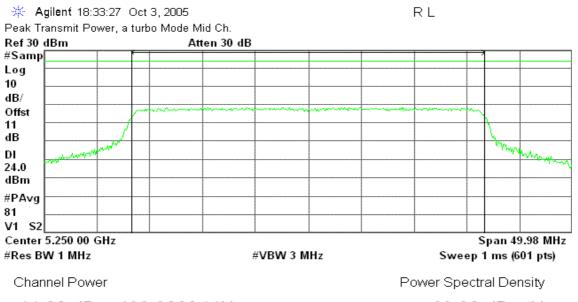


#### **CH High**




### 12.88 dBm / 16.7670 MHz

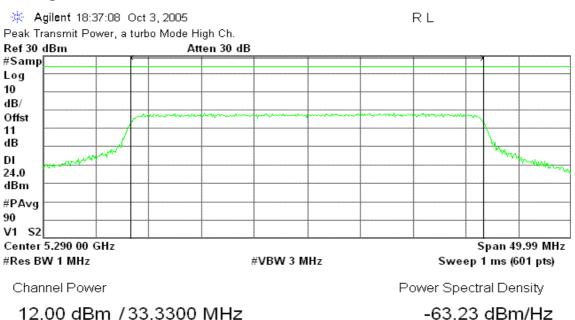
-59.37 dBm/Hz


#### IEEE 802.11a Turbo mode

#### CH Low





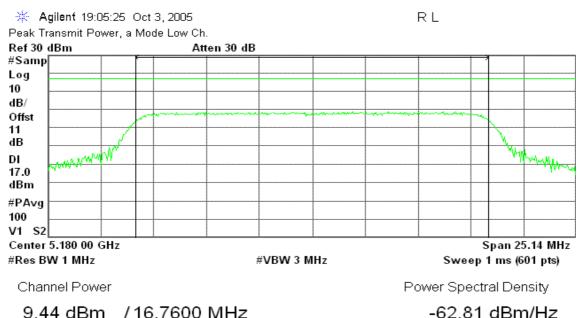

#### CH Mid



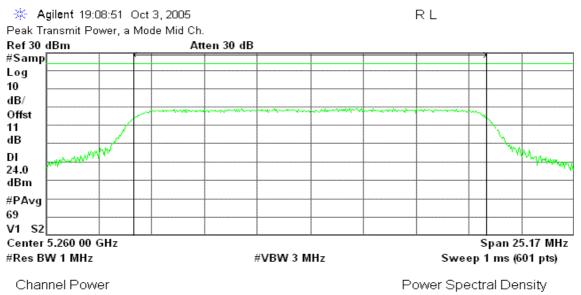
#### 11.90 dBm / 33.3200 MHz

-63.32 dBm/Hz

#### CH High





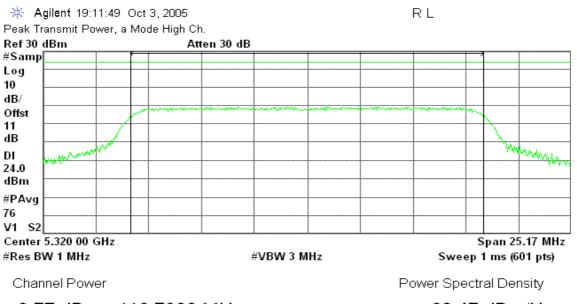


## Omnidirectional antenna / 6.0 dBi for 5 GHz

#### IEEE 802.11a Base mode

#### CH Low



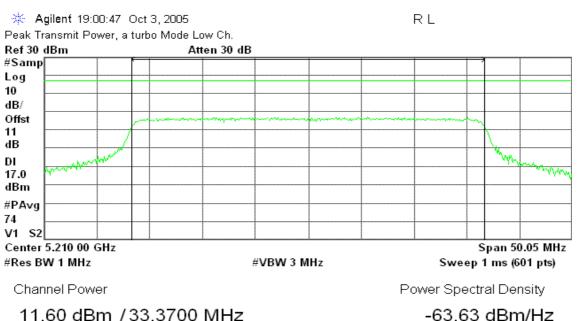
#### CH Mid




#### 9.86 dBm /16.7800 MHz

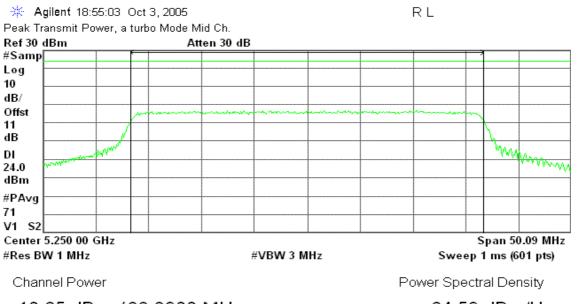
-62.39 dBm/Hz




#### **CH High**



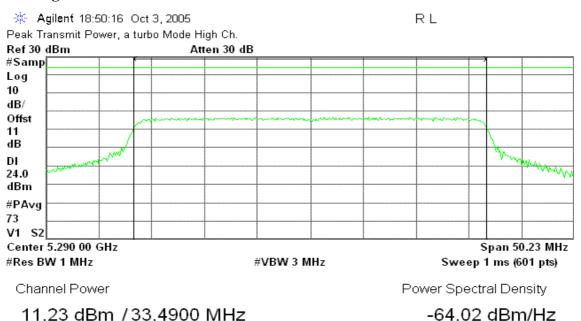
### 9.77 dBm /16.7800 MHz


#### IEEE 802.11a Turbo mode

#### CH Low






#### CH Mid

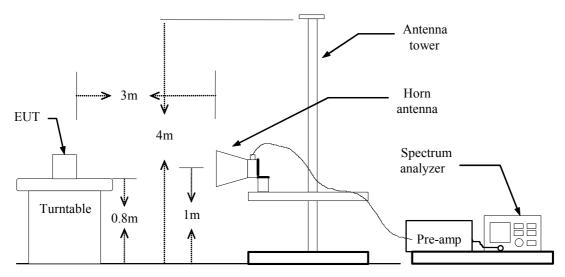


#### 10.65 dBm / 33.3900 MHz

## -64.59 dBm/Hz

#### CH High






## 7.3 BAND EDGES MEASUREMENT

## LIMIT

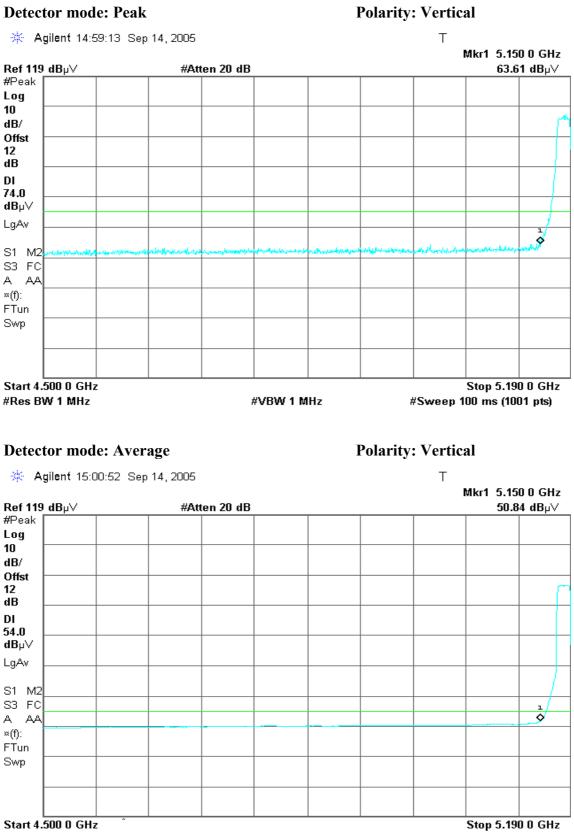
According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

### **Test Configuration**



## **TEST PROCEDURE**

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
  - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
  - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


## TEST RESULTS

Refer to attach spectrum analyzer data chart.



#### Test Plot

## Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz IEEE 802.11a Base mode / CH Low

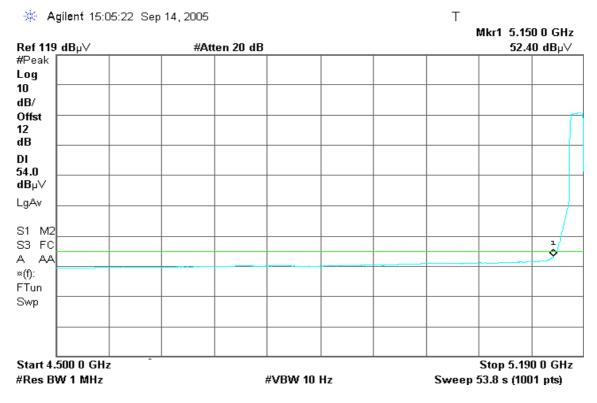


Page 30

Sweep 53.8 s (1001 pts)

## CCS

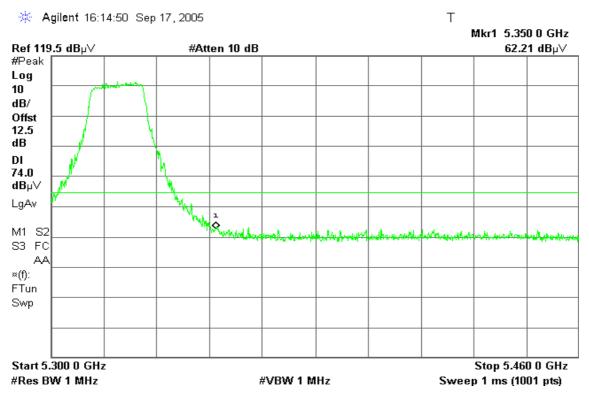
Compliance Certification Services Inc. Report No.: 50906003-RP1 FCC ID: TORSS-200-AT


#### **Detector mode: Peak**

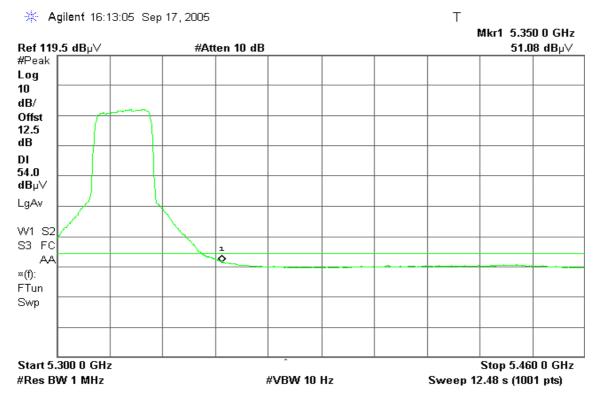
#### 🔆 Agilent 15:06:00 Sep 14, 2005 Т Mkr1 5.150 0 GHz Ref 119 dBµ∀ #Atten 20 dB 67.44 dBµ∨ #Peak Log 10 dB/ Offst 12 dB DI 74.0 dBµ∨ ı LgAv ð S1 M2 S3 FC A AA ≈(f): FTun Swp Start 4.500 0 GHz Stop 5.190 0 GHz #Res BW 1 MHz **#VBW 1 MHz** #Sweep 100 ms (1001 pts)

#### **Detector mode: Average**

#### **Polarity: Horizontal**


**Polarity: Horizontal** 





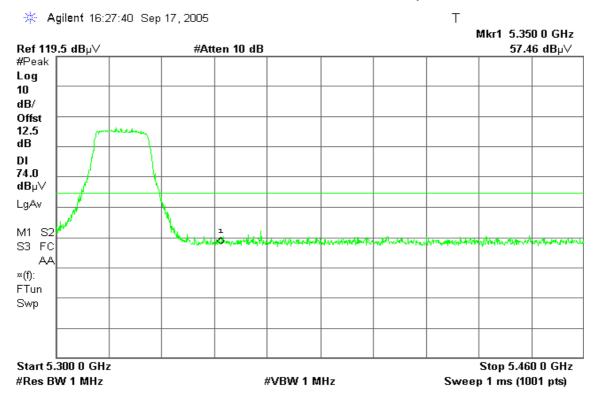

#### IEEE 802.11a Base mode / CH High

#### **Detector mode: Peak**



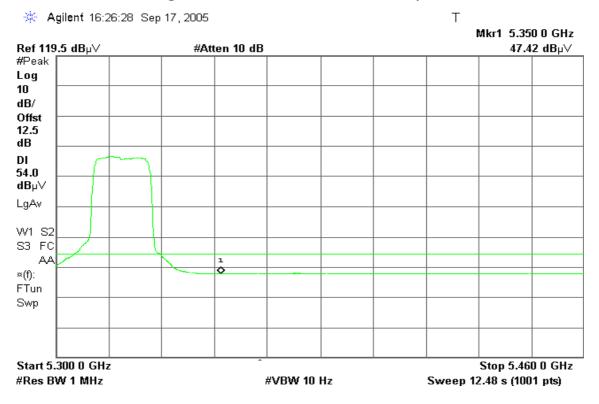
#### **Detector mode: Average**




**Polarity: Vertical** 

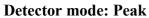
**Polarity: Vertical** 

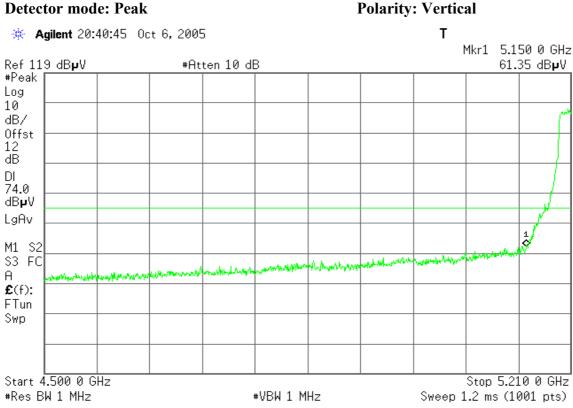
#### **Detector mode: Peak**


**((S** 

**Polarity: Horizontal** 

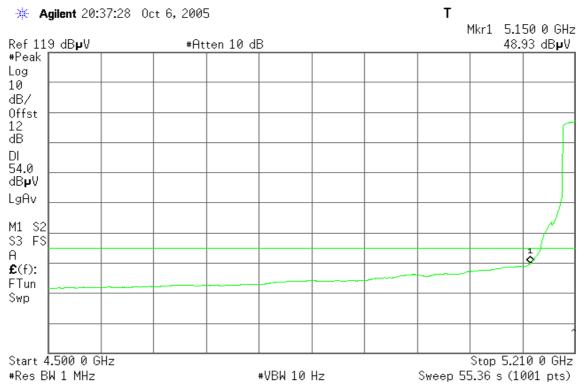



#### **Detector mode: Average**


#### **Polarity: Horizontal**






#### IEEE 802.11a Turbo mode / CH Low





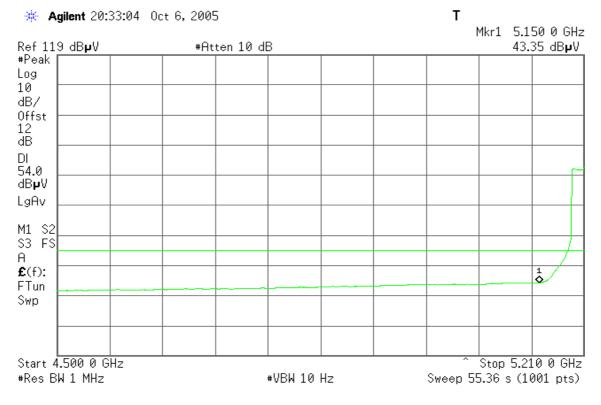
#### **Detector mode: Average**

## **Polarity: Vertical**





#### **Detector mode: Peak**


🔆 Agilent 20:10:02 Oct 6, 2005

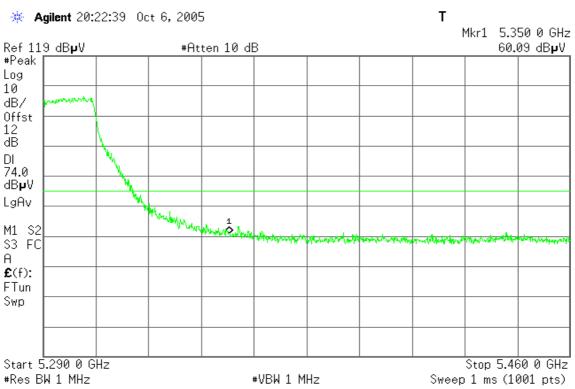
#### Mkr1 5.150 0 GHz Ref 119 dBµV #Atten 10 dB 56.25 dBµV #Peak Log 10 dB/ Offst 12 dB DL 74.0 dB**µ**V LgAv M1 S2 \$3 FC A £(f): FTun Swp Start 4.500 0 GHz Stop 5.210 0 GHz #Res BW 1 MHz #VBW 1 MHz Sweep 1.2 ms (1001 pts)

#### **Detector mode: Average**

#### **Polarity: Horizontal**

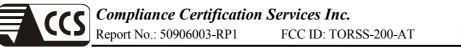
**Polarity: Horizontal** 



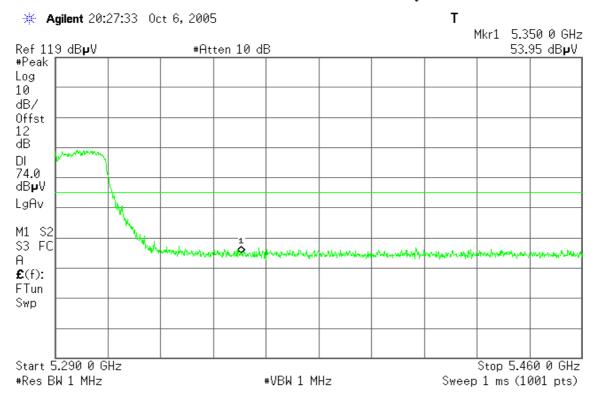



**Polarity: Vertical** 

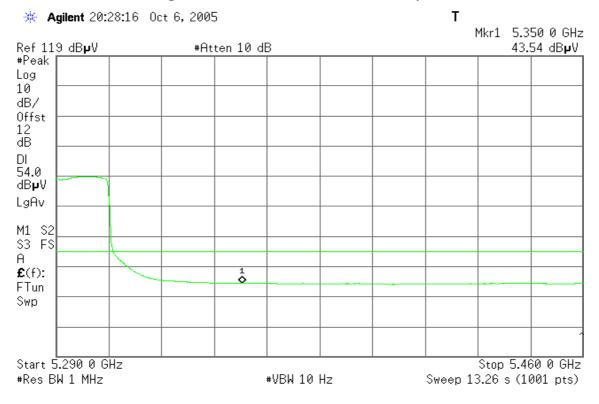
**Polarity: Vertical** 


#### IEEE 802.11a Turbo mode / CH High

#### **Detector mode: Peak**




#### **Detector mode: Average**


#### 🔆 Agilent 20:23:35 Oct 6, 2005 Т Mkr1 5.350 0 GHz 49.43 dB**µ**V Ref 119 dBµV #Atten 10 dB #Peak Log 10 dB/ Offst 12 dB DL 54.0 dB₽V LgAv M1 S2 S3 FS A ٥ **£**(f): FTun Swp Start 5.290 0 GHz Stop 5.460 0 GHz #Res BW 1 MHz #VBW 10 Hz Sweep 13.26 s (1001 pts)



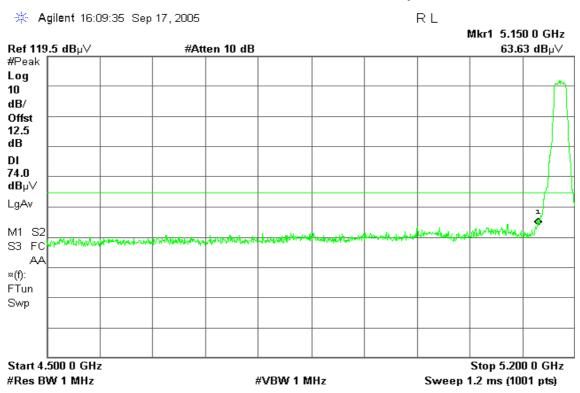
# **Polarity: Horizontal**



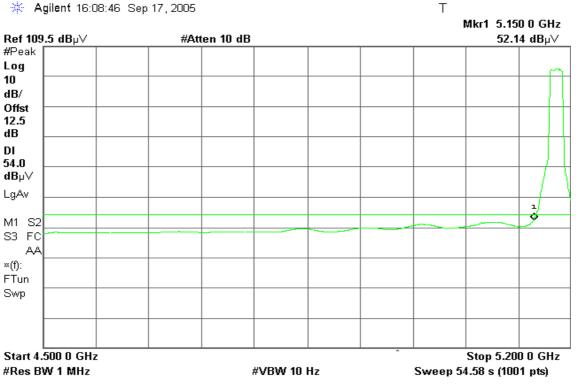
#### **Detector mode: Average**






**Polarity: Vertical** 

**Polarity: Vertical** 


# **Omnidirectional antenna / 6.0 dBi for 5 GHz**

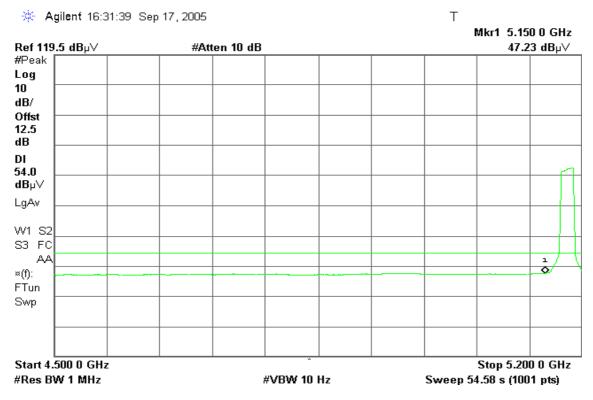
# IEEE 802.11a Base mode / CH Low

#### **Detector mode: Peak**



## **Detector mode: Average**

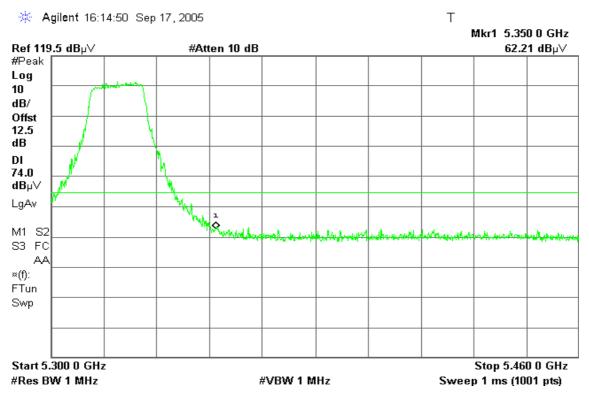



🔆 Agilent 16:08:46 Sep 17, 2005

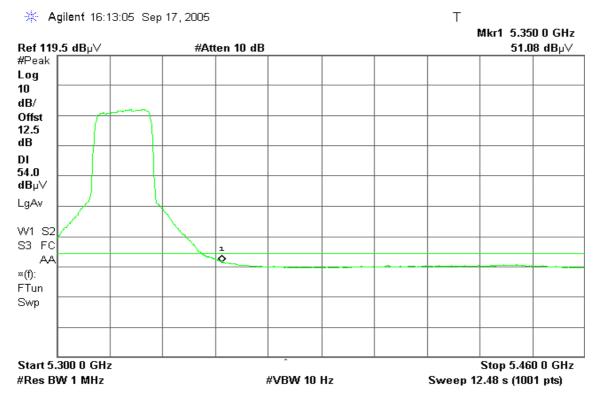


# **Polarity: Horizontal**

| 🔆 Agilent 16                                       | :32:19 Sep 17,            | 2005    |                           |                      |                  |                     | Т        | Tra | ice      |
|----------------------------------------------------|---------------------------|---------|---------------------------|----------------------|------------------|---------------------|----------|-----|----------|
| <b>Ref 119.5 dB</b> µ∖<br>#Peak                    | / #Atten                  | 10 dB   |                           |                      | Mkr1             | 5.150 (<br>57.05    |          | 1   | Trace    |
| Log<br>10<br>dB/<br>Offst                          |                           |         |                           |                      |                  |                     |          | Cle | ar Write |
| 12.5<br>dB<br>DI                                   |                           |         |                           |                      |                  |                     | - 19     | N   | 1ax Hold |
| 74.0<br>dBµ∨<br>LgAv                               |                           |         |                           |                      |                  |                     |          | I   | Min Hold |
| M1 S2 Halayhaadaa<br>S3 FC<br>AA                   | a,k-hakusiya a-Nyikikinal | da. d., | und years by the standing | 100001100p4100p-4-00 | with the second  | ull'Invenence       | 1/<br>10 |     | View     |
| ×(f):<br>FTun<br>Swp                               |                           |         |                           |                      |                  |                     |          |     | Blank    |
| Start 4.500 0 G<br>#Res BW 1 MH<br>Copyright 2000- | z                         |         | 1 MHz                     | Swee                 | Stop<br>ep 1.2 m | 5.200 (<br>is (1001 |          |     |          |


## **Detector mode: Average**



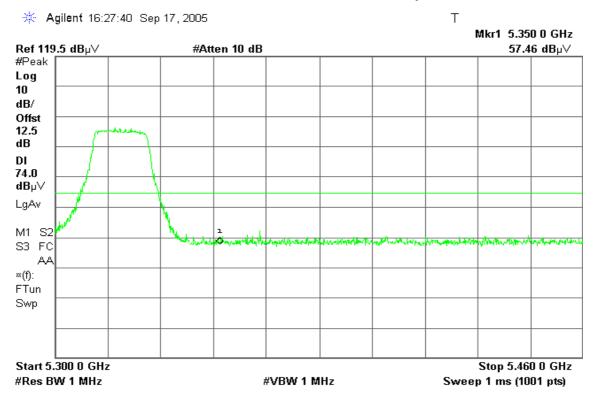



### IEEE 802.11a Base mode / CH High

#### **Detector mode: Peak**



#### **Detector mode: Average**

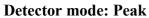


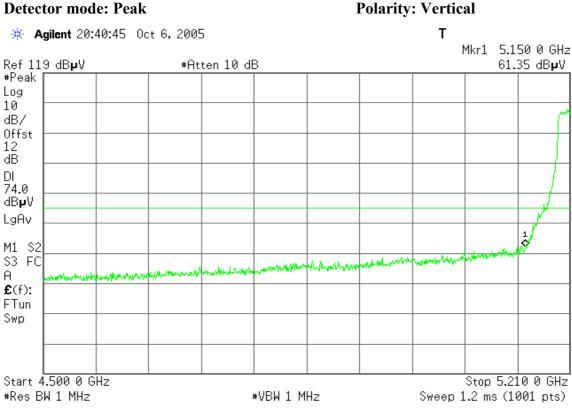

**Polarity: Vertical** 


**Polarity: Vertical** 

**((S** 

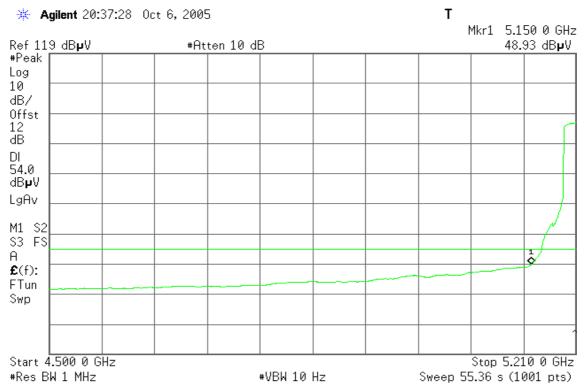
**Polarity: Horizontal** 





## **Detector mode: Average**






### IEEE 802.11a Turbo mode / CH Low

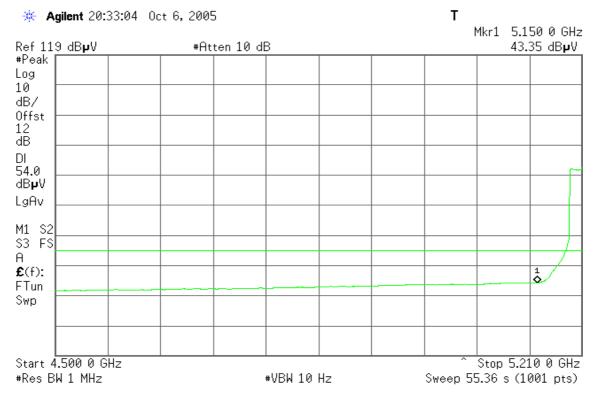




#### **Detector mode: Average**

# **Polarity: Vertical**

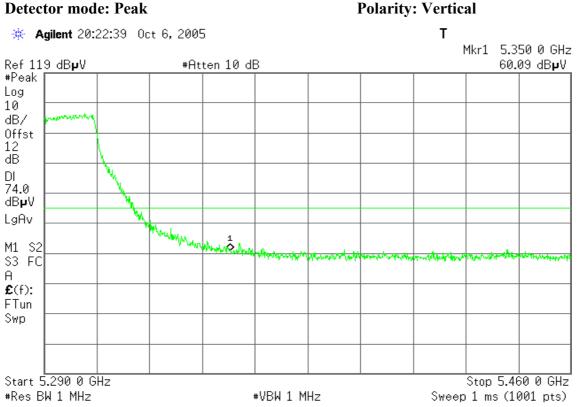




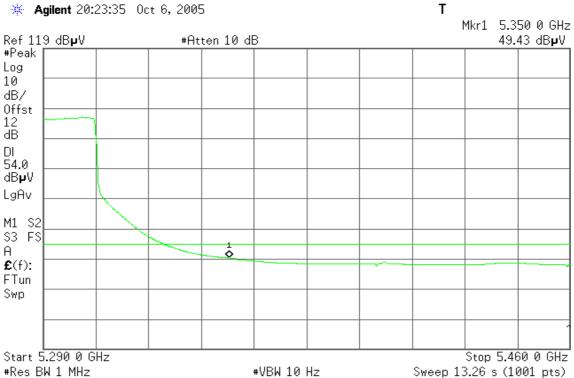

🔆 Agilent 20:10:02 Oct 6, 2005

#### Mkr1 5.150 0 GHz Ref 119 dBµV #Atten 10 dB 56.25 dBµV #Peak Log 10 dB/ Offst 12 dB DL 74.0 dB**µ**V LgAv M1 S2 \$3 FC A £(f): FTun Swp Start 4.500 0 GHz Stop 5.210 0 GHz #Res BW 1 MHz #VBW 1 MHz Sweep 1.2 ms (1001 pts)

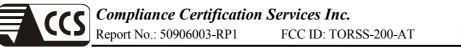
#### **Detector mode: Average**


## **Polarity: Horizontal**

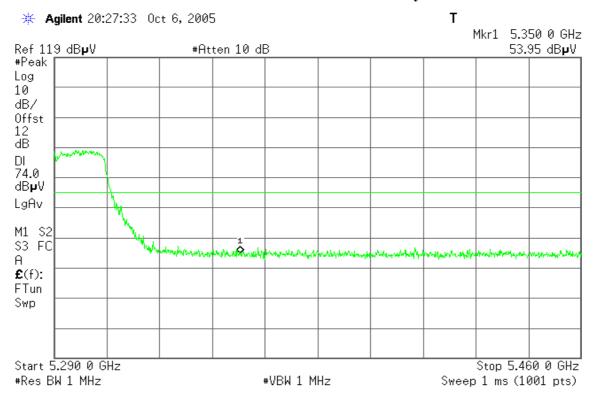




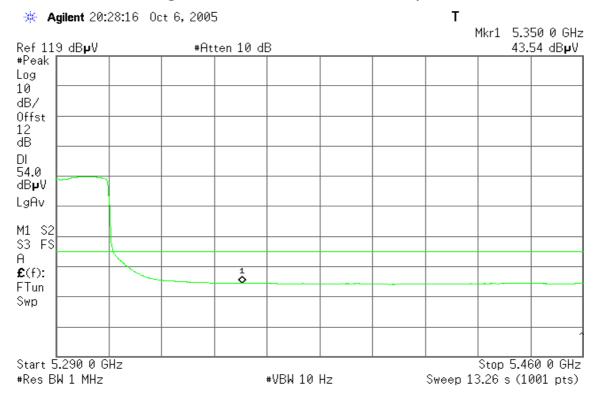

## IEEE 802.11a Turbo mode / CH High


#### **Detector mode: Peak**




#### **Detector mode: Average**




**Polarity: Vertical** 



# **Polarity: Horizontal**

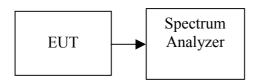


#### **Detector mode: Average**





# 7.4 PEAK POWER SPECTRAL DENSITY


# LIMIT

According to §15.407(a),

- (1) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4dBm in any 1MHz band.
- (2) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11dBm in any 1MHz band.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

# **Test Configuration**



# **TEST PROCEDURE**

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 1MHz, VBW = 3MHz, Span = Base mode25 MHz / Turbo mode50MHz, Sweep=Auto.
- 4. Record the max. reading.

Repeat the above procedure until the measurements for all frequencies are completed.



# **TEST RESULTS**

No non-compliance noted

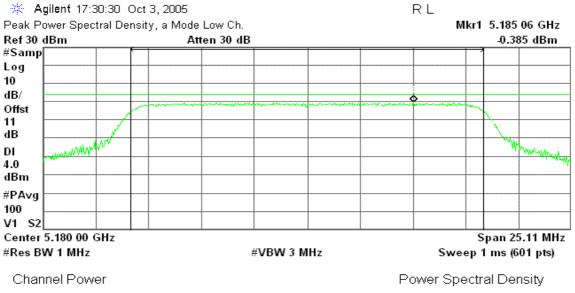
# Test Data

# **Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz**

| Channel | Frequency<br>(MHz) |      | PPSD<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result |  |
|---------|--------------------|------|---------------|----------------|----------------|--------|--|
| Low     |                    | 5180 | -0.385        | 4              | -4.385         | PASS   |  |
| Mid     | Base mode          | 5260 | 1.857         | 11             | -9.143         | PASS   |  |
| High    |                    | 5320 | 1.524         | 11             | -9.476         | PASS   |  |
| Low     |                    | 5210 | -2.263        | 4              | -6.263         | PASS   |  |
| Mid     | Turbo mode         | 5250 | -1.401        | 4              | -5.401         | PASS   |  |
| High    |                    | 5290 | -1.591        | 11             | -12.591        | PASS   |  |

# **Omnidirectional antenna / 6.0 dBi for 5 GHz**

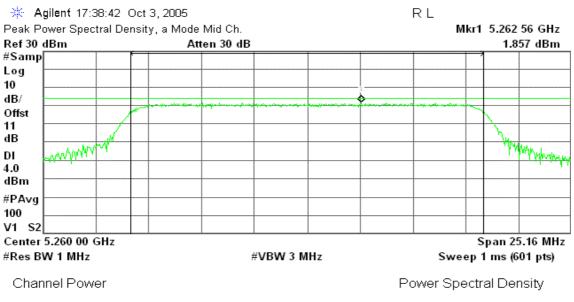
| Channel | Frequency<br>(MHz) |      | PPSD<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result |  |
|---------|--------------------|------|---------------|----------------|----------------|--------|--|
| Low     |                    | 5180 | -1.225        | 4              | -5.225         | PASS   |  |
| Mid     | Base mode          | 5260 | -0.550        | 11             | -11.550        | PASS   |  |
| High    |                    | 5320 | -0.729        | 11             | -11.729        | PASS   |  |
| Low     |                    | 5210 | -3.047        | 4              | -7.047         | PASS   |  |
| Mid     | Turbo mode         | 5250 | -3.216        | 4              | -7.216         | PASS   |  |
| High    |                    | 5290 | -3.305        | 11             | -14.305        | PASS   |  |




# Test Plot

# **Omnidirectional Panel antenna / 3.0 dBi for 2.4 GHz and 5 GHz**

# IEEE 802.11a Base mode

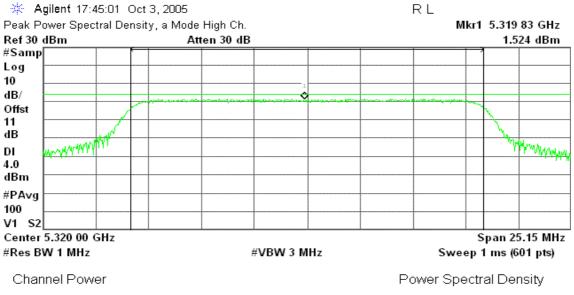

# CH Low



10.38 dBm / 16.7431 MHz

-61.86 dBm/Hz

# CH Mid

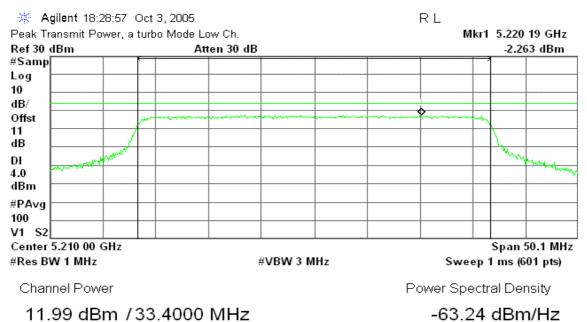



12.59 dBm / 16.7758 MHz

-59.66 dBm/Hz

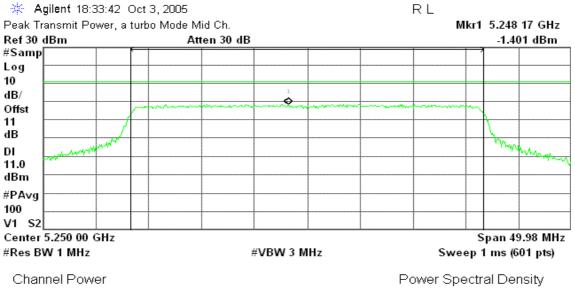


### **CH High**




# 12.71 dBm / 16.7670 MHz

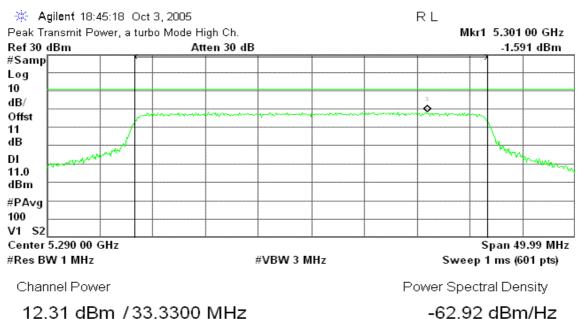
-59.53 dBm/Hz


## IEEE 802.11a Turbo mode

#### CH Low






#### CH Mid



# 12.05 dBm / 33.3200 MHz

-63.18 dBm/Hz

## **CH High**

