Product	:	Access Point/Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

Chain A

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Result	
Chaimer No.	(MHz)	(Mbps)	(dB)	(dB)	Result	
		MCS (0)	8.820	<13	Pass	
100	5500	MCS (2)	10.240	<13	Pass	
100	5500	MCS (4)	10.490	<13	Pass	
		MCS (7)	10.110	<13	Pass	

Chain B

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Result	
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesun	
		MCS (0)	9.610	<13	Pass	
100	5500	MCS (2)	9.630	<13	Pass	
100	5500	MCS (4)	9.910	<13	Pass	
		MCS (7)	10.270	<13	Pass	

🊺 Agiler	nt Spectru	ım An	alyzer - Swe	ept SA								
Cente	er Fre	RF eq 5	50 s	00000 G			NSE:INT	#Avg	ALIGN AUTO	TRA	CE 1 2 3 4 5 6	Frequency
				11	PNO: Fast FGain:Low	#Atten: 3			Mkr1	5.506 7	725 GHz 20 dBm	Auto Tune
10 dB/ Log 10.0	div		20.00	dBm		7444 / Pare / Jun	-		2	T4.	20 aBm	Center Freq 5.50000000 GHz
-20.0	and the second											Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0												Stop Freq 5.512500000 GHz
Cente #Res					#VE	BW 3.0 MHz			Sweep 1		25.00 MHz (1001 pts)	CF Step 2.500000 MHz Auto Man
MKR MO 1 N 2 N 3 4 5 6 7 8 9	1 2	SCL f		× 5.506 7 5.504 9		¥ <u>14.20 d</u> 5.38 d	Bm	NCTION	FUNCTION WIDTH	FUNCT		Freq Offset 0 Hz
10 11 •						m			STATU	s		

Channel 100: Chain A

Dilent S 🗾	Spectrum	Analyzer - S	wept SA								
XI RL Center			Ω AC 000000 GHz	7	SEN	SE:INT	#Ava	ALIGN AUTO Type: RMS		CE 1 2 3 4 5 6	Frequency
			PN0 IFGa	L D:Fast ⊂ ain:Low	➡ Trig: Free #Atten: 30				1 5.501 (Auto Tune
10 dB/di Log	v R	ef 20.00) dBm			 , _			15.	30 dBm	
10.0		www	wentermathender	and the second states	all 2 miles	horn	memoria	and and an an an an an	water and the second		Center Freq
0.00 -10.0	whatter	and the second s								Mary Caller	5.500000000 GHz
		/								Anna and a second	
-20.0											Start Freq
-40.0											5.487500000 GHz
-50.0							_				Stop Freq
-60.0											5.512500000 GHz
-70.0											
Center #Res B				#VB	W 3.0 MHz			Sweep		25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR MODE			Х		Y		NCTION	FUNCTION WIDT	H FUNCT	ION VALUE	<u>Auto</u> Man
1 N 2 N	2 f 1 f		5.501 000 5.498 175		<u>15.30 dB</u> 5.06 dB						Ener offeret
3 4											Freq Offset 0 Hz
5 6										E	
7 8											
9 10											
11										•	
MSG								STAT	us	•	

rum Analyzer - Sv					
	000000 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:26:45 PM Oct 23, 2014 TRACE 1 2 3 4 5 6	Frequency
Pef 20.00	IFGain:Lov		Mkr1	5.502 025 GHz	Auto Tune
	numero and the second	an much der hannen much an	1	and the second second	Center Freq 5.500000000 GHz
					Start Freq 5.487500000 GHz
					Stop Freq 5.512500000 GHz
0000 GHz 1.0 MHz		/BW 3.0 MHz	Sweep 1	Span 25.00 MHz .000 ms (1001 pts)	
2 SCL f 	X 5.502 025 GHz 5.504 150 GHz	Y FUN 15.39 dBm 4.90 dBm 			Freq Offset 0 Hz
	Ref 20.00	Ref 50 Ω AC eq 5.500000000 GHz PNO: Fast IFGain:Lov Ref 20.00 dBm 0000 GHz 1.0 MHz #V	RF 50 Ω AC SENSE:INT eq 5.500000000 GHz PR0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Ref 20.00 dBm	RF 50 Ω AC SENSE:INT ALIGN AUTO eq 5.500000000 GHz PR0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS Mkr1 Ref 20.00 dBm	RF 50 Ω AC SENSE:INT ALION AUTO 04:26:45PM Oct 23, 2014 eg 5.500000000 GHz PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS TRACE 1 2 3 4 5 6 Ref 20.00 dBm Mkr1 5.502 025 GHz 15.39 dBm 1 2 4 5 6 15.39 dBm 0000 GHz 0000 GHz 0000 GHz 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 000000 1 00000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 00000000000000 1 000000000000000000000000000000000000

		pectru		nalyzer																			
	nter	Fre	RF q (50 Ω 000	AC 0000) GH	z			SENS	SE:IN		#Av		ALIGN AU e: RMS			TRAC	MOct 23	3456		Frequency
								NO: Fa Gain:Lo	st ⊊ ow		ten: 30								DE	TAPI	NNN	1	Auto Tune
10 d	IB/div		Ref	i 20.	00 d	Bm										M	kr1	5.50 1		25 0 60 d			
Log 10.0					men		minute	-	<u>~</u> 2~		Lawren	Jun March	ang daga maga	more	% .\nv\/w	X 1	na mayor	survey to				ŀ	Center Freq
0.00		-	w v						<u>V</u>								ý		VII VII	W VICANA			5.500000000 GHz
-10.0	, <u> </u>	China.		/															X		Marka		
-20.0		y mage of the																		- and the	******		Start Freq
-40.0																							5.487500000 GHz
-50.0			_																			ľ	Stop Freq
-60.0 -70.0																							5.512500000 GHz
																		_					
	nter es B			0 GH VIHZ	IZ			#	VBW	/ 3.0	MHz				\$	Sweej	р 1.	Spa 000 n	n 2 1s (5.00 1001	MHZ pts)		CF Step 2.500000 MHz
MKR	MODE					Х				Y		ļ	FUN	CTION	FUN	ICTION W	/IDTH	FU	NCTIO	ON VALU	E ^	Ľ	<u>Auto</u> Man
1 2	N N	2 1	f f)5 52()6 42(<u>60 dB</u> 49 dB											F	Freq Offset
3 4 5																					=		0 Hz
6 7									-												_	ŀ	
8 9									-			-			-		-				=1		
10 11																					-		
I < □										1	11					6	TATUS				F.		
	_															0							

🂓 Ag	jilent S	pectru	um Ar	alyzer - Sw	vept SA											
LXI R			RF	50				SEI	NSE:INT			ALIGN AUTO		M Oct 23, 2014		requency
Cen	ter	Fre	eq (5.5000	000000			Trig: Fre	Dun	#Avg	Тур	e:RMS		CE 1 2 3 4 5 6 PE A M WWW		requeitcy
						PNO: Fas IFGain:Lo	st⊊ w	#Atten: 3						ETAPNNN	1	
						il Gailleo						Miland	E 404 -		r i	Auto Tune
												WIKFT		700 GHz		
10 di Log	B/div	1	Ref	20.00	dBm								15.	63 dBm		
10.0					many	no 1 meno	THURSD	mannen	manne	man	an/harrod	and the second	manne			
				North and			*****						man why			Center Freq
0.00		الد	and the second			_				_			- ~ ~ °	and the survey of a	5.50	0000000 GHz
-10.0	yersy	1 march		1										" writering		
-20.0		للجعروسية	-											Vermenne		
																Start Freq
-30.0			+							_					5.48	37500000 GHz
-40.0										_						
-50.0																
																Stop Freq
-60.0															5.51	2500000 GHz
-70.0						_				_						
				0 GHz									Span 2	25.00 MHz		CF Step
#Re	s Bl	N 1	.0 P	/Hz		#\	VBW	3.0 MHz			5	Sweep 1	.000 ms	(1001 pts)		2.500000 MHz
MKR	MODE	TRC	SCL		Х		1	Y	FU	NCTION	FUN	ICTION WIDTH	FUNCT	ON VALUE	<u>Auto</u>	Man
1	Ν	2	f			700 GHz		15.63 dl								
2	Z	1	f		5.493	925 GHz		6.02 d	Зm							Freq Offset
3																•
5							<u> </u>				-			=		0 Hz
6																
7																
9																
10																
11							<u> </u>				<u> </u>					
	_	-	-					m			_		1			
MSG												STATUS	5			

Channel 100: Chain B

jj Agilent Spectrum Analyzer - Swe	ept SA				
ଅଷ୍ଟ RL RF 50 ର Center Freq 5.50000		SENSE:INT	ALIGN AUTO #Avg Type: RMS	TRACE 1 2 3 4 5 6	
10 dB/div Ref 20.00	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB	Mkr	TYPE A MWWWW DET A P NNNN 1 5.503 650 GHz 15.31 dBm	Auto Tune
10.0 -10.0	2010	۵۳۱)ی ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	more where 1 metal moment	and want and the second s	Center Freq 5.500000000 GHz
-20.0					Start Freq 5.487500000 GHz
-50.0					Stop Freq 5.512500000 GHz
Center 5.50000 GHz #Res BW 1.0 MHz	#VE	3W 3.0 MHz	Sweep	Span 25.00 MHz 1.000 ms (1001 pts)	CF Step 2.500000 MHz <u>Auto</u> Man
1 N 2 f 2 N 1 f 3 - - - 4 - - - 6 - - -	5.503 650 GHz 5.493 675 GHz	15.31 dBm 5.68 dBm			Freq Offset 0 Hz
7 8 9 10 11 11					
MSG		m	STAT	US	

		pectru		alyzer - Swep	t SA									
Cen		Fre	RF eq (50 Ω 5.50000	AC 0000 GH			SENS	SE:INT	#Avg T	ALIGN AUTO	TRA	M Oct 23, 2014 CE 1 2 3 4 5 6 PE A M WWW	Frequency
10 di	B/div		Ref	20.00 d	IF	NO: Fast Gain:Low	÷ –	Atten: 30			Mkr	•1 5.495 1	ET A P N N N N	Auto Tune
Log 10.0 0.00 -10.0			đ	Real Property and the second s		1		hlenspinn		2044-0-TA	n	and an and a second sec	W Mary Mary	Center Freq 5.500000000 GHz
-20.0 -30.0 -40.0		- NET											NUM MARCAN COMPANY	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0														Stop Freq 5.512500000 GHz
#Re	s BV	N 1	.0 P	0 GHz /IHz		#V	'BW 3.0) MHz				1.000 ms (CF Step 2.500000 MHz Auto Man
MKR 1 2 3 4 5 6 7 8 9 10 11 √		1 1	SCL f		× 5.495 15 5.494 97		1	¥ <u>5.06 dB</u> 5.15 dB	m		FUNCTION WIDT		ON VALUE	Freq Offset 0 Hz
MSG											STAT	rus		

	ectrum Analyz	er - Swept S	A								
Center F	_R , req 5.5					NSE:INT	#Avg	ALIGN AUTO	TRAC	M Oct 23, 2014 E 1 2 3 4 5 6 E A MWWWW	Frequency
			IFG	NO:Fast (Gain:Low	#Atten: \$			Mkr	□ 1 5.504 8	75 GHz	Auto Tune
10 dB/div Log 10.0 0.00	Ref 20	0.00 dB	5 m 		12	an Defail Doubler		Ning 1 www.mm		92 dBm	Center Freq 5.50000000 GHz
-20.0 -30.0										and all all all all all all all all all al	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0											Stop Freq 5.512500000 GHz
Center 5 #Res BW	/ 1.0 MH			#VB	W 3.0 MHz				1.000 ms (<u> </u>	CF Step 2.500000 MHz Auto Man
MKR MODE 1 N 2 N 3	FRC SCL 2 f 1 f		× <u>5.504 875</u> 5.496 900		Y 14.92 d 4.65 d	Bm		FUNCTION WIDT			Freq Offset 0 Hz
MSG								STAT	US		

Product	:	Access Point/Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

Chain A

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Result
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesult
		MCS (0)	9.940	<13	Pass
100	5510	MCS (2)	10.440	<13	Pass
102	5510	MCS (4)	10.710	<13	Pass
		MCS (7)	10.740	<13	Pass

Chain B

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Result
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result
		MCS (0)	9.740	<13	Pass
102	5510	MCS (2)	10.340	<13	Pass
102	5510	MCS (4)	11.200	<13	Pass
		MCS (7)	12.800	<13	Pass

Dia Agilent	t Spectrum /	Analyzer - Swe	ept SA								
Cente	r Freq		2 AC 00000 GH	Ηz	SENS		#Avg	ALIGN AUTO	TRA	M Oct 23, 2014 DE 1 2 3 4 5 6	Frequency
10 dB/d	liv Re	ef 20.00	IF	NO: Fast ⊂ Gain:Low	Trig: Free F #Atten: 30			Mkr	□ 1 5.503	75 GHz	Auto Tune
Log					,1	, and the second	ered and to the		and the second		Center Freq 5.510000000 GHz
-20.0 pr -30.0 -40.0	The apple to the second	/								hilling and the second	Start Freq 5.485000000 GHz
-50.0 — -60.0 — -70.0 —											Stop Freq 5.535000000 GHz
Center #Res I	r 5.510 3W 1.0			#VB	W 3.0 MHz			Sweep 1	Span 5 .000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
MKR MOI 1 N 2 N 3 4 5 6 7 8 9 10 11 <	DE TRC SC 2 f 1 f		× 5.503 7 5.502 8		¥ 9.53 dBi -0.41 dBi	n		FUNCTION WIDTH		E	Freq Offset 0 Hz
MSG								STATU	s		

Channel 102: Chain A

		Spectri	um Ai	nalyzer - Sw															
	RL nter	Fre	_{RF} eq \$	50 5.5100		0 GH	z		SE	NSE:I		#Avg		ALIGN AUTO e: RMS		TRAC	E 1 2 3 4 5 0	6	Frequency
10	dB/di	v	Rei	f 20.00	dBm		IO: Fast Jain:Low		#Atten: 3					Mk	r1 5.5′	DE 17	30 GHz 50 dBm	N	Auto Tune
Log 10. 0.0 -10.	0 0 0			www.		ntth	-Arthology	worther de	an shrowing		tan tangké	2.1	1	and a state of the	or howene	MU MA	N.L.		Center Freq 5.510000000 GHz
-20. -30. -40.		and and a second	avent.	/												~	Madelandan and and and and and and and and an		Start Freq 5.485000000 GHz
-50. -60. -70.	o —																		Stop Fred 5.535000000 GHz
#R	es B	W 1	.0 F				#V	BW :	3.0 MHz	:				-	1.000 m	15 ('	0.00 MHz 1001 pts)		CF Step 5.000000 MHz Auto Man
MKi 2 3 4 5 6 7 8 9 10 11	N		SCL f f			<u>517 30</u> 515 20			Y 9.50 dl -0.94 dl		FUNG	CTION		CTION WIDTH					Freq Offset 0 Hz
MSG														STATU	JS				

		pectru		alyzer - Swep											
Cen		Fre	RF q 5	50 Ω 5.51000	AC 00000 G	Hz		ISEN	ISE:INT	#Avg	д Туре	LIGN AUTO : RMS	TRAC	M Oct 23, 2014 CE 1 2 3 4 5 6 PE A M WWW	Frequency
					II	NO: Fast Gain:Low		tten: 30				Mkr	□ 1 5.519	65 GHz 46 dBm	Auto Tune
10 dl Log 10.0 0.00	B/div	, 	Ref	20.00 c		- Her house	**************************************	-		willing May and		1	J.		Center Freq 5.51000000 GHz
-20.0 -30.0 -40.0	- All	and de const												Balance - Low and	Start Freq 5.485000000 GHz
-50.0 -60.0 -70.0															Stop Freq 5.535000000 GHz
#Re	s Bl	N 1.	A 0.	0 GHz /IHz		#V	BW 3.0	MHz				-	.000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
MKR 1 2 3 4 5 6 7 8 9 10 11 <	MODE N N	1 2 1	SCL f f			35 GHz 55 GHz		Y 9.46 dE 1.25 dE	3m	JNCTION			FUNCTI	ON VALUE	Freq Offset 0 Hz
MSG												STATUS	3		

Agilent Spectrum Analyzer - Swe					
enter Freq 5.5100	00000 GHz PNO: Fast	SENSE:INT	#Avg Type: RMS	04:43:44 PM Oct 23, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWW DET A P N N N N	Frequency
0 dB/div Ref 20.00	IFGain:Low	#Atten: 30 dB	Mkr	1 5.515 90 GHz 9.54 dBm	Auto Tur
og 10.0 0.00	hannel the service of	elentheseneres and hereben	1 min met terrester to manual to projet	munition of the second se	Center Fre 5.51000000 GF
				A Contraction	Start Fr 5.485000000 Gi
0.0					Stop Fr 5.535000000 G
enter 5.51000 GHz Res BW 1.0 MHz		W 3.0 MHz	•	Span 50.00 MHz .000 ms (1001 pts)	CF Sto 5.000000 M <u>Auto</u> M
KR MODE TRC SCL 1 N 2 f 2 N 1 f 3 - - 4 - - 5 - - 6 - -	× 5.515 90 GHz 5.502 55 GHz	Y FI 9.54 dBm -1.20 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offs 0
7 7 8 9 0 1					
G		III	STATUS	5	

🊺 Ag	ilent S	pectru	m An	alyzer - Swe	pt SA															X
LXI R			RF	- 50 Ω					SE	NSE:INT				LIGN AUTO			M Oct 23, 2		Frequency	,
Cen	ter	Fre	q 5	5.51000	00000	GH:	Z		Trig: Fre	o Dun		#Avg	Туре	RMS			E 1 2 3 4 E A M₩₩		Frequency	
						PN IEG	O: Fast ain:Low	Ģ	#Atten: 3							D	APNN	IN N		
														Mize	1 5.51	15	00 01		Auto T	une
														IVINI			64 dB			
10 di Log	B/di\	1	Ref	20.00	dBm							. —			1	5.	04 UB			
10.0											•	1							Center F	roa
				1 mm		~~~~~	restationality		Profession and the	1 al march	an a		~~r	and a second	amen					
0.00			h												-	$\overline{\mathbf{x}}$			5.51000000	GHZ
-10.0		~	7	/				-		-							ML /1	-		
-20.0	and a	ylur -	_													1	WWWW LILL	400	Otort	
-30.0			Aller													. '	m		Start F	
	are a	ul e l e l e l e l e l e l e l e l e l e															- MARK	~~~	5.485000000	GHz
-40.0			-					-		-										
-50.0			+							-								_		
-60.0																		_	Stop F	-
-70.0																			5.535000000	GHz
-70.0																				
Cen	ter	5 51	nn	0 GHz											Sna	n 5	0.00 M	HZ	CFS	ten
#Re							#V	вw	3.0 MHz	,			s	weep 1	.000 m	is í	1001 p	ts)	5.000000	
																				Man
MKR 1	N	TRC 2	f		X	515 00	CH-		9.64 d	Due	FUNCT	ION	FUNC	CTION WIDTH	FUN	NCTI	ON VALUE			
2	N	1	f			516 75			-0.10 d									- 11		
3																			Freq Of	fset
4																				0 Hz
6																				
7																				
8																		-11		
10																				
11																		-		
	_		_					_	III						-	_	· ·			
MSG														STATU	S					

Channel 102: Chain B

Agilent Spectrum Analyzer	- Swept SA				
Center Freq 5.51	50 Ω AC 0000000 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:49:06 PM Oct 23, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency
10 dB/div Ref 20 .	PNO: Fast IFGain:Low 00 dBm		Mki	r1 5.499 00 GHz 9.45 dBm	Auto Tune
				and the second s	Center Freq 5.510000000 GHz
-20.0					Start Free 5.485000000 GHz
-60.0					Stop Freq 5.535000000 GHz
Center 5.51000 GI #Res BW 1.0 MHz	#V	'BW 3.0 MHz	-	Span 50.00 MHz I.000 ms (1001 pts)	CF Step 5.000000 MHz Auto Mar
MKR MODE TRC SCL 1 N 2 f 2 N 1 f 3 - - 4 - - 5 - - 6 - -	x 5.499 00 GHz 5.499 05 GHz	9.45 dBm -0.89 dBm	FUNCTION FUNCTION WIDTH		Freq Offset 0 Hz
7 8 9 10 11					
MSG			STATU	s	

颠 Agilent Spec	trum Analyzer - S	wept SA						
Center F		000000 GHz			ALIGN AUTO	TRAC	M Oct 23, 2014 E 1 2 3 4 5 6 E A MWWWW	Frequency
	D -6 00 0	IFGair			M	r1 5.505		Auto Tune
10 dB/div 10.0 0.00	Ref 20.0			2		TU.		Center Freq 5.51000000 GHz
-20.0	None /						Month and the color	Start Freq 5.485000000 GHz
-50.0 -60.0 -70.0								Stop Freq 5.535000000 GHz
#Res BW			#VBW 3.0 MHz		-	1.000 ms (CF Step 5.000000 MHz Auto Man
MSR MODE Fit 1 N 2 N 1 3 4 - - - - 4 -<	f	X 5.505 55 G 5.516 15 G						Freq Offset 0 Hz
MSG					STAT	rus		

Agilent Spectrum Analyzer - Swe	•				
enter Freq 5.5100		Trig: Free Run #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS	04:52:14 PM Oct 23, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW DET A P N N N N	Frequency
0 dB/div Ref 20.00			Mkr	1 5.502 65 GHz 11.29 dBm	Auto Tur
og 0.00 0.00 0.00		Toran Densitive and a production		a marine tel	Center Fre 5.510000000 Gi
0.0 0.0 0.0				- Whore we want	Start Fr 5.485000000 G
0.0 0.0 0.0					Stop Fr 5.535000000 G
R MODE TRC SCL	#VE	3W 3.0 MHz	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	CF Ste 5.000000 M <u>Auto</u> M
N 2 f 1 N 2 f 2 N 1 f 3	5.502 65 GHz 5.505 15 GHz	11.29 dBm -1.51 dBm			Freq Offs 0
7 8 9 0 1					
G		III	STATU	5	

Product	:	Access Point/Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Transmit (802.11ac-80BW-65Mbps)

Chain A

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Degult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result
		MCS (0)	11.354	<13	Pass
		MCS (2)	11.224	<13	Pass
106	5530	MCS (4)	11.052	<13	Pass
		MCS (7)	11.597	<13	Pass
		MCS (9)	10.922	<13	Pass

Chain B

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Result	
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result	
		MCS (0)	11.056	<13	Pass	
		MCS (2)	10.253	<13	Pass	
106	5530	MCS (4)	10.760	<13	Pass	
		MCS (7)	11.968	<13	Pass	
		MCS (9)	11.258	<13	Pass	

			ann A	00. CI	lamic	U					
								zer - Swept SA		lent Spec	🄰 Ag
Frequency	56 PM Oct 20, 2014		ALIGN AUTO	A	SENSE:IN			50 Ω AC	RF		0
	TYPE A MWWW		old:>100/100		: Free Run	Tri		530000000	req 5	ter Fi	Cen
	DET A P N N N N		510.2 100/100	A BI	en: 30 dB		PNO: Fast IFGain:Low				
Auto Tur		Miland E Ed									
	513 5 GHz		IVII								
	.855 dBm	-5.6						7.40 dBm	Ref	3/div	10 di Log
0											7.40
Center Fre		mannananan		Lang	اسمعوا يسعه	~~~~~	man 17				7.40
5.530000000 GI	<u>\</u>	1							1		-2.60
	<u>````</u>				\sim				/		-12.6
	W. W. Barry								~~~ (,	
Start Fre	A A A A A A A A A A A A A A A A A A A								1	un and a second	-22.6
5.480000000 GI	The way of the second			_					. Market		-32.6
	mon								-	and the second second	-42.6
Stop Fre											-52.6
•											-62.6
5.580000000 GI											-72.6
											-72.0
CF Ste	n 100.0 MHz	Snan	- 1				-	GH7	53000	ter 5.	Cen
10.000000 MI	s (1001 pts)	n 1.000 ms	Sweep 1		/IHz	'BW 3.0	#VE			s BW	
Auto Ma		-	-								_
	ICTION VALUE	VIDTH FUNC	FUNCTION WIDTH	JNCTION	55 dBm	5.0	513 5 GHz	×		N 1	MKR 1
					99 dBm		.534 9 GHz			N 2	2
Freq Offs											3
01									+		4
	E								+ +		5 6
											7
											8
									+		9
									+ +		10 11
					,					- +	< _
		TATUS	OTATU								
		STATUS	STATU							_	ISG
								man Current CA		lant Cuan	
- F	06 PM Oct 20, 2014	UTO 04-32-06	ALIGN AUTO		SENSE:IN		1	zer - Swept SA 50 Ω AC	trum Ana RF	ient spec	M Ag

Channel 106: Chain A

Agilent Spectrum Analyzer - Sw							
RF 50 9		SENSE:II		ALIGN AUTO Type: Log-Pwr		HOct 20, 2014	Frequency
Center Freq 5.5300	PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB		Hold:>100/100	TYP	E A MWWWW A P N N N N	
10 dB/div Ref 17.40	dBm			Mk	r1 5.513 -5.60	36 GHz 03 dBm	Auto Tur
-og 7.40 2.60 12.6		han and have a second s	2				Center Fre 5.530000000 GR
22.6 32.6 42.6						North Maria Charger	Start Fr 5.48000000 GI
52.6 62.6 72.6							Stop Fr 5.58000000 G
enter 5.53000 GHz Res BW 1.0 MHz	#VE	3W 3.0 MHz		Sweep 1		00.0 MHz 1001 pts)	CF St 10.000000 M <u>Auto</u> M
Image: RR Mode TRC Scl 1 N 2 N 2 N	X 5.513 6 GHz 5.535 0 GHz	Y -5.603 dBm 5.621 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO	DN VALUE	<u>Auto</u> W
2 N 2 I 3 4 5 6	5.535 U GHZ	5.021 0611				E	Freq Off 0
7 8 9							
		m				+	
G				STATUS	5		

🊺 A	gilent S	pectru		alyzer - Swep											
<mark>الاا</mark> Cer	nter	Fre	RF q 5	50 Ω 5.53000	0000 GH			SENSE:			ALIG Type: Lo Hold:>10		TRA	M Oct 20, 2014 CE 1 2 3 4 5 6 PE A MWWW	
			D - 6	. 47 40 4	IF	NO: Fast Gain:Low		30 dB					r1 5.51	8 2 GHz 65 dBm	Auto Tune
10 c Log 7.40 -2.60				17.40 c		- 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	-J.s.M-200	mal hardense	᠂ᡔ᠆ᢧᡅᠬᠴᢛ᠇	-0.0		Center Freq 5.530000000 GHz
-22.6 -32.6 -42.6	JIr~													Cullen Contraction	Start Freq 5.480000000 GHz
-52.6 -62.6 -72.6	;														Stop Freq 5.580000000 GHz
	nter : es Bl			0 GHz /IHz		#VI	3W 3.0 MI	Ηz			Swe	eep 1		00.0 MHz (1001 pts)	
MKR 1 2 3 4 5 6 7 8 9 10 11	MODE N N		f			2 GHz 9 GHz	Y -5.965 5.508	dBm dBm		CTION	FUNCTIO	N WIDTH	FUNCT	ON VALUE	Freq Offset 0 Hz
 ✓ MSG 							m				1	STATUS	;	•	

🗾 Agilent Spectrum Analyzer - Swept SA				
Center Freq 5.530000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:20:09 PM Oct 20, 2014 TRACE 1 2 3 4 5 6	Frequency
PNO: Fa IFGain:L		Avg Hold:>100/100	TYPE A MWWW DET A P N N N N	Auto Tuno
10 dB/div Ref 17.40 dBm			r1 5.504 7 GHz -6.575 dBm	Auto Tune
7.40	waterwater and white and a survey and	2		Center Freq
-2.60	and the start of the set	manufacture and the set of the bound	a solution	5.530000000 GHz
-22.6 -22.6	¥			Start Fred
-32.6			You Williams	5.480000000 GHz
-52.6				Stop Fred
-62.6				5.580000000 GHz
Center 5.53000 GHz			Span 100.0 MHz	CF Step
	VBW 3.0 MHz		.000 ms (1001 pts)	10.000000 MHz Auto Mar
MKR MODE TRG SCL X 1 N 1 f 5.504 7 GH 2 N 2 f 5.541 9 GH	z -6.575 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 2 f 5.541 9 GH 3 4	z 5.022 dBm			Freq Offset 0 Hz
5			=	0112
7 8 9				
10 11				
MSG	m	STATUS	• • •	

🎉 Agilent Spectrum Analyzer - Swept SA					
₩ RF 50 Ω AC Center Freq 5.530000000	GH7	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr		Frequency
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold:>100/100	TYPE A MWWW DET A P N N N N	
10 dB/div Ref 17.40 dBm				kr1 5.512 6 GHz -6.718 dBm	
7.40	harmong 1 ~~~~	where and a second	2 Marine marine and a second	mp	Center Freq 5.530000000 GHz
-12.6	~			And the second s	
-22.6 -32.6 -42.6					Start Freq 5.480000000 GHz
-52.6					Stop Freq
-72.6					5.580000000 GHz
Center 5.53000 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	CF Step 10.000000 MHz Auto Mar
MKR MODE TRC SCL X	512 6 GHz	Y -6.718 dBm	FUNCTION FUNCTION WIDT	H FUNCTION VALUE	<u>Auto</u> mar
	536 8 GHz	4.204 dBm			Freq Offset 0 Hz
6 7 8 9					
9 10 11					
MSG			STAT	US	

			Channel			
🗾 Agilent Spe	ctrum Analyzer - Swe	ept SA				
X Center F	RF 50 Ω req 5.5300	00000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	05:09:27 PM Oct 20, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency
		PNO: Fast G IFGain:Low	Atten: 30 dB		ьет АРNNNN kr1 5.512 1 GHz	Auto Tune
10 dB/div Log	Ref 17.40				-5.155 dBm	
7.40 -2.60 -12.6	portron	producer and the second s	n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ward and a second and a second	Center Fre 5.53000000 GH
-22.6 -32.6 -42.6					1 Description	Start Fre 5.480000000 GH
-52.6 -62.6 -72.6						Stop Fre 5.58000000 G⊦
Center 5. #Res BW	53000 GHz 1.0 MHz	#VB\	V 3.0 MHz	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	CF Ste 10.000000 MH Auto Ma
MKR MODE T		X		FUNCTION FUNCTION WIDTH	H FUNCTION VALUE	Adto Ma
1 N 2 N 3 4 5	1 f 2 f	5.512 1 GHz 5.515 0 GHz	-5.155 dBm 5.901 dBm			Freq Offse 0 H
6 7 8 9						
10 11 ·			m			
MSG				STAT	s	<u> </u>
-						
J Agilent Spe	ctrum Analyzer - Swe	ept SA				

Channel 106: Chain B

🔰 Agilent Spectrum Analyzer - Swe					
⊠ RF 50 ⊆ Center Freq 5.5300	00000 GHz	SENSE:INT	ALIGN AUTO	05:08:15 PM Oct 20, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency
10 dB/div Ref 17.40	PNO: Fast G IFGain:Low	⊖ Trig: Free Run Atten: 30 dB	Avg Hoid:>100/100	r1 5.507 3 GHz -5.385 dBm	Auto Tuno
-2.60 -12.6		and a second and a	Murah walation	ellannon right	Center Fre 5.530000000 GH
-22.6 -32.6 -42.6					Start Fre 5.480000000 G⊦
-52.6					Stop Fre 5.580000000 GH
Center 5.53000 GHz #Res BW 1.0 MHz	#VBV	V 3.0 MHz	· · ·	Span 100.0 MHz .000 ms (1001 pts)	CF Ste 10.000000 MH Auto Ma
MKR MODE TRC SCL 1 N 1 f 2 N 2 f 3	X 5.507 3 GHz 5.505 6 GHz	Y FU -5.385 dBm 4.868 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offs 0 H
8 9 10 11 			STATUS	•	

	ilent Spe		Analyzer - Swe									
<mark>או</mark> Cen	ter F	req		00000 GH					ALIGN AUTO Type: Log-Pwr Hold:>100/100	TRA	M Oct 20, 2014 CE 1 2 3 4 5 6 PE A M WWW	Frequency
10 d			ef 17.40 (IF	NO: Fast Gain:Low	Atten: 3				⊳ kr1 5.53	ET A P N N N N	Auto Tune
7.40 -2.60						man and the second	warnaw warnaw	*1	******	-Ti-lun la vit		Center Freq 5.530000000 GHz
-22.6 -32.6 -42.6	المرمومي	AT A A									A HA	Start Freq 5.48000000 GHz
-52.6 -62.6 -72.6												Stop Freq 5.58000000 GHz
#Re	s BW	1.0			#VE	3W 3.0 MHz			•	1.000 ms (CF Step 10.000000 MHz Auto Man
MKR 1 2 3 4 5 6 7 8 9 10 11 <		RC SC 1 f 2 f			9 GHz 6 GHz	Y -5.820 d 4.940 d		FUNCTION	FUNCTION WIDT	FUNCT	ON VALUE	Freq Offset 0 Hz
MSG									STAT	US		

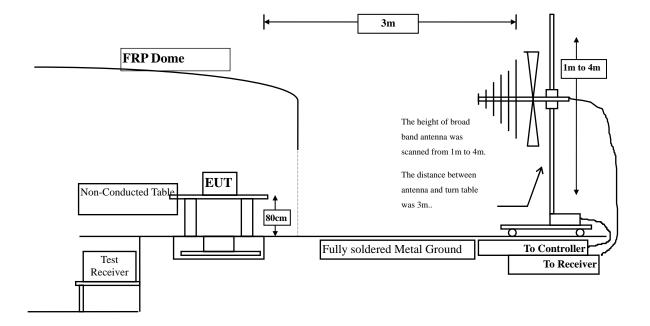
Dialection Analyzer - Swept SA					
₩ RF 50 Ω AC Center Freq 5.530000000) GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:18:59 PM Oct 20, 2014 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 17.40 dBm	PNO: Fast 😱 IFGain:Low	┘ Trig: Free Run Atten: 30 dB	Avg Hold:>100/100	r1 5.507 3 GHz -6.279 dBm	Auto Tune
2.60	ty 1 artutur		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Center Freq 5.53000000 GHz
-12.6 -22.6 -32.6 -42.6				Manager and	Start Freq 5.480000000 GHz
-52.6					Stop Freq 5.58000000 GHz
Center 5.53000 GHz #Res BW 1.0 MHz MKR MODE TRC SCL	#VBW	3.0 MHz	Sweep 1	Span 100.0 MHz .000 ms (1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
I I f 55 3 4 - - 5 - - - 6 - - - 7 - - -	.507 3 GHz .548 6 GHz	-6.279 dBm 5.689 dBm		E	Freq Offset 0 Hz
8 9 10 11 1 4 MSG			STATUS		

🎉 Agilent Spectrum Analyzer - Swept SA							
K RF 50Ω AC		SENSE:IN		ALIGN AUTO		M Oct 20, 2014	Frequency
Center Freq 5.53000000	PNO: Fast	Trig: Free Rur		d:>100/100	TYP	PEAMWWWW TAPNNNN	
	IFGain:Low	Atten: 30 dB				-	Auto Tune
				Mk		47 GHz	Auto Tulic
10 dB/div Ref 17.40 dBm					-4.9	01 dBm	
7.40	<u>\</u> 2						Center Freq
-2.60	man 1 m	when an a store the start when	~ wardene	*****	and was been and		5.530000000 GHz
-12.6	and the second sec				horse here here here here here here here h		
-22.6						hore and the second sec	
						""""""""""""""""""""""""""""""""""""""	Start Freq
-32.6						the warned	5.48000000 GHz
-42.6							
-52.6							Stop Freq
-62.6							5.580000000 GHz
-72.6							
Center 5.53000 GHz					Enon 1	00.0 MHz	05.010
#Res BW 1.0 MHz	#VBW	3.0 MHz		Sweep 1			CF Step 10.000000 MHz
MKR MODE TRC SCL X		<u> </u>	FUNCTION F			DN VALUE	<u>Auto</u> Man
	.514 7 GHz	-4.901 dBm	FUNCTION	UNCTION WIDTH	FUNCTION		
2 N 2 f 5	.515 0 GHz	6.357 dBm					Freq Offset
4							0 Hz
5 6						=	
7							
8							
10							
11							
MSG				STATUS	3		<u>[</u>]
					1		

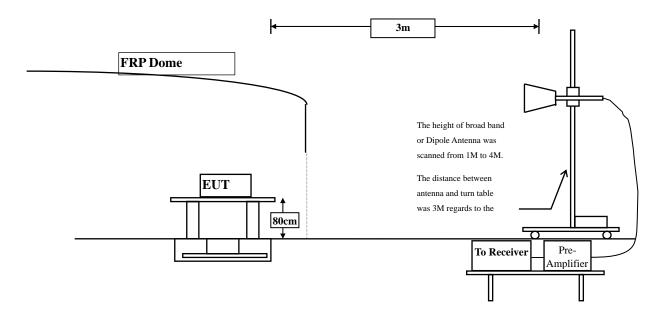
6. Radiated Emission

6.1. Test Equipment

The following test equipments are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2014
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2014
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	Field strength	Measurement distance				
	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

6.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10, 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

шеек

Product

Test Item

Test Site	: No.3 O	ATS			
Test Mode	e : Mode 1	: Transmit (802.11	la-6Mbps) (5260MHz	Z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
6230.000	7.494	49.170	56.664	-17.336	74.000
10520.000	14.015	37.350	51.365	-22.635	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
31560.000	*	*	*	*	74.000
36820.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	7.494	24.690	32.184	-21.816	54.000
Vertical					
Peak Detector:					
6230.000	9.410	53.680	63.090	-10.910	74.000
10520.000	14.818	36.980	51.798	-22.202	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
31560.000	*	*	*	*	74.000
36820.000	*	*	*	*	74.000
Average					
Detector:					
6230.000 Note:	9.410	25.790	35.200	-18.800	54.000
11010.					

6.6. **Test Result of Radiated Emission**

:

:

Access Point/Sensor

Harmonic Radiated Emission Data

All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average 1. measurements as necessary.

Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 2.

Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.

4. Measurement Level = Reading Level + Correct Factor.

5. Correct Factor = Antenna factor + Cable loss – Amplifier gain.

The average measurement was not performed when the peak measured data under the limit of average 6. detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site		Point/Sensor ic Radiated Emiss ATS	sion Data		
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5300MHz	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
6230.000	7.494	48.890	56.384	-17.616	74.000
10600.000	14.550	36.750	51.299	-22.701	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
31800.000	*	*	*	*	74.000
37100.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	7.494	24.880	32.374	-21.626	54.000
Vertical					
Peak Detector:					
6230.000	9.410	53.870	63.280	-10.720	74.000
10600.000	14.881	37.040	51.921	-22.079	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
31800.000	*	*	*	*	74.000
37100.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	9.410	25.370	34.780	-19.220	54.000

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Quielek

Product Test Item Test Site Test Mode	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5320MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	36.930	51.620	-22.380	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10640.000	15.083	36.870	51.953	-22.047	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		

10640.000	15.083	36.870	51.953	-22.047	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
31920.000	*	*	*	*	74.000
37240.000	*	*	*	*	74.000
Average					

Average

Detector: --

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Access Point/Sensor
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
6230.000	7.494	49.000	56.494	-17.506	74.000
11000.000	16.399	36.650	53.049	-20.951	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	7.494	24.390	31.884	-22.116	54.000
Vertical					
Peak Detector:					
6230.000	9.410	54.680	64.090	-9.910	74.000
11000.000	17.132	36.440	53.572	-20.428	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	9.410	26.340	35.750	-18.250	54.000
NT /					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Access	Point/Sensor				
Test Item	: Harmonic Radiated Emission Data					
Test Site	Test Site : No.3 OATS					
Test Mode	: Mode 1	: Transmit (802.11	a-6Mbps) (5580MHz	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
6230.000	7.494	48.470	55.964	-18.036	74.000	
11160.000	16.664	36.660	53.325	-20.675	74.000	
16740.000	*	*	*	*	74.000	
22320.000	*	*	*	*	74.000	
27900.000	*	*	*	*	74.000	
33480.000	*	*	*	*	74.000	
39060.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	7.494	24.350	31.844	-22.156	54.000	
Vertical						
Peak Detector:						
6230.000	9.410	54.130	63.540	-10.460	74.000	
11160.000	17.643	34.470	52.113	-21.887	74.000	
16740.000	*	*	*	*	74.000	
22320.000	*	*	*	*	74.000	
27900.000	*	*	*	*	74.000	
33480.000	*	*	*	*	74.000	
39060.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	9.410	25.680	35.090	-18.910	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

QuieTek			R	eport No.: 14A007	5R-RFUSP05V00-A	
Product Test Item Test Site Test Mode	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5700MHz) 					
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit	
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal		•	•		<u> </u>	
Peak Detector:						
11400.000	16.530	36.820	53.351	-20.649	74.000	
17100.000	*	*	*	*	74.000	
22800.000	*	*	*	*	74.000	
28500.000	*	*	*	*	74.000	
34200.000	*	*	*	*	74.000	
39900.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
11400.000	17.138	35.730	52.868	-21.132	74.000	
17100.000	*	*	*	*	74.000	
22800.000	*	*	*	*	74.000	
28500.000	*	*	*	*	74.000	
34200.000	*	*	*	*	74.000	
39900.000	*	*	*	*	74.000	
Average						
Detectory						

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product Test Item Test Site	: Harmon	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS 					
Test Mode	: Mode 2	: Transmit (802.11	n-20BW 14.4Mbps)	(5260MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
6230.000	7.494	49.340	56.834	-17.166	74.000		
10520.000	14.015	37.320	51.335	-22.665	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
6230.000	7.494	24.330	31.824	-22.176	54.000		
Vertical							
Peak Detector:							
6230.000	9.410	54.930	64.340	-9.660	74.000		
10520.000	14.818	37.170	51.988	-22.012	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
6230.000	9.410	25.430	34.840	-19.160	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	Fest Item:Harmonic Radiated Emission DataFest Site:No.3 OATS					
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit	
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector:						
6230.000	7.494	49.430	56.924	-17.076	74.000	
10600.000	14.550	36.660	51.209	-22.791	74.000	
15900.000	*	*	*	*	74.000	
21200.000	*	*	*	*	74.000	
26500000	*	*	*	*	74.000	
31800.000	*	*	*	*	74.000	
37100.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	7.494	24.590	32.084	-21.916	54.000	
Vertical						
Peak Detector:						
6230.000	9.410	54.790	64.200	-9.800	74.000	
10600.000	14.881	37.070	51.951	-22.049	74.000	
15900.000	*	*	*	*	74.000	
21200.000	*	*	*	*	74.000	
26500000	*	*	*	*	74.000	
31800.000	*	*	*	*	74.000	
37100.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	9.410	25.170	34.580	-19.420	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Эшејек

Product Test Item Test Site Test Mode	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5320MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$	
Horizontal						
Peak Detector:						
10640.000	14.690	37.150	51.840	-22.160	74.000	
15960.000	*	*	*	*	74.000	
21280.000	*	*	*	*	74.000	
26600.000	*	*	*	*	74.000	
31920.000	*	*	*	*	74.000	
37240.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10640.000	15.083	36.580	51.663	-22.337	74.000	
15960.000	*	*	*	*	74.000	
21280.000	*	*	*	*	74.000	
26600.000	*	*	*	*	74.000	
31920.000	*	*	*	*	74.000	
37240.000	*	*	*	*	74.000	

Average

Detector: --

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss – Amplifier gain.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Harmoni : No.3 OA		sion Data .n-20BW 14.4Mbps)	(5500MHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
MIL-	Factor	Level	Level	ЧĿ	dD V/
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal Peak Detector:					
6230.000	7.494	49.520	57.014	-16.986	74.000
11000.000	16.399 *	36.870 *	53.269 *	-20.731 *	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	Υ.	7	~	*	74.000
Average					
Detector:	- 404	24.500	22.054	21.026	5 4 000
6230.000	7.494	24.580	32.074	-21.926	54.000
Vertical					
Peak Detector:					
6230.000	9.410	55.180	64.590	-9.410	74.000
11000.000	17.132	36.430	53.562	-20.438	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	9.410	25.390	34.800	-19.200	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Access Point/Sensor
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5580MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
6230.000	7.494	49.010	56.504	-17.496	74.000
11160.000	16.664	35.570	52.235	-21.765	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
33480.000	*	*	*	*	74.000
39060.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	7.494	24.190	31.684	-22.316	54.000
Vertical					
Peak Detector:					
6230.000	9.410	54.440	63.850	-10.150	74.000
11160.000	17.643	34.980	52.623	-21.377	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
33480.000	*	*	*	*	74.000
39060.000	*	*	*	*	74.000
Average					
Detector:					
6230.000	9.410	25.880	35.290	-18.710	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Access Point/Sensor
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
6220.000	7.509	54.470	61.979	-12.021	74.000
11400.000	16.530	36.210	52.741	-21.259	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
34200.000	*	*	*	*	74.000
39900.000	*	*	*	*	74.000
Average					
Detector:					
6220.000	7.509	27.110	34.619	-19.381	54.000
Vertical					
Peak Detector:					
6220.000	9.486	56.370	65.856	-8.144	74.000
11400.000	17.138	35.650	52.788	-21.212	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
34200.000	*	*	*	*	74.000
39900.000	*	*	*	*	74.000
Average					
Detector:					
6220.000	9.486	27.040	36.526	-17.474	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Quielek

Product Test Item		Point/Sensor iic Radiated Emiss	sion Data			
Test Site	: No.3 OATS					
Test Mode	: Mode 3	: Transmit (802.11	n-40BW 30Mbps) (5	270MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
6200.000	7.758	51.790	59.549	-14.451	74.000	
10540.000	14.151	37.670	51.820	-22.180	74.000	
15810.000	*	*	*	*	74.000	
21080.000	*	*	*	*	74.000	
26350.000	*	*	*	*	74.000	
31620.000	*	*	*	*	74.000	
36890.000	*	*	*	*	74.000	
Average						
Detector:						
6200.000	7.758	24.770	32.529	-21.471	54.000	
Vertical						
Peak Detector:						
6200.000	9.827	53.880	63.707	-10.293	74.000	
10540.000	14.829	36.940	51.768	-22.232	74.000	
15810.000	*	*	*	*	74.000	
21080.000	*	*	*	*	74.000	
26350.000	*	*	*	*	74.000	
31620.000	*	*	*	*	74.000	
36890.000	*	*	*	*	74.000	
Average						
Detector:						
6200.000	9.827	24.690	34.517	-19.483	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product		Point/Sensor				
Test Item	 Harmonic Radiated Emission Data No.3 OATS 					
Test Site Test Mode	310MH ₇)					
Test Widde	: Mode 3:	. 11alisiliit (802.11	n-40BW 30Mbps) (5	510WI112)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
6230.000	7.494	49.800	57.294	-16.706	74.000	
10620.000	14.623	36.790	51.413	-22.587	74.000	
15930.000	*	*	*	*	74.000	
21240.000	*	*	*	*	74.000	
26550.000	*	*	*	*	74.000	
31860.000	*	*	*	*	74.000	
37170.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	7.494	24.630	32.124	-21.876	54.000	
Vertical						
Peak Detector:						
6230.000	9.410	55.570	64.980	-9.020	74.000	
10620.000	14.970	36.840	51.810	-22.190	74.000	
15930.000	*	*	*	*	74.000	
21240.000	*	*	*	*	74.000	
26550.000	*	*	*	*	74.000	
31860.000	*	*	*	*	74.000	
37170.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	9.410	24.920	34.330	-19.670	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product Test Item	: Harmon	Point/Sensor ic Radiated Emiss	sion Data			
	Test Site : No.3 OATS					
Test Mode	: Mode 3	: Transmit (802.11	In-40BW 30Mbps) (5	510MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
6230.000	7.494	49.790	57.284	-16.716	74.000	
11020.000	16.474	36.720	53.193	-20.807	74.000	
15930.000	*	*	*	*	74.000	
21240.000	*	*	*	*	74.000	
26550.000	*	*	*	*	74.000	
31860.000	*	*	*	*	74.000	
37170.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	7.494	24.370	31.864	-22.136	54.000	
Vertical						
Peak Detector:						
6230.000	9.410	55.570	64.980	-9.020	74.000	
11020.000	17.224	36.590	53.814	-20.186	74.000	
15930.000	*	*	*	*	74.000	
21240.000	*	*	*	*	74.000	
26550.000	*	*	*	*	74.000	
31860.000	*	*	*	*	74.000	
37170.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	9.410	24.790	34.200	-19.800	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product		Point/Sensor				
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 O			770) (11 .)		
Test Mode	: Mode 3	: Transmit (802.11	In-40BW 30Mbps) (5	550MHZ)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector:						
6230.000	7.494	50.380	57.874	-16.126	74.000	
11100.000	16.681	35.010	51.691	-22.309	74.000	
15930.000	*	*	*	*	74.000	
21240.000	*	*	*	*	74.000	
26550.000	*	*	*	*	74.000	
31860.000	*	*	*	*	74.000	
37170.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	7.494	24.330	31.824	-22.176	54.000	
Vertical						
Peak Detector:						
6230.000	9.410	55.530	64.940	-9.060	74.000	
11100.000	17.523	35.190	52.713	-21.287	74.000	
15930.000	*	*	*	*	74.000	
21240.000	*	*	*	*	74.000	
26550.000	*	*	*	*	74.000	
31860.000	*	*	*	*	74.000	
37170.000	*	*	*	*	74.000	
Average						
Detector:						
6230.000	9.410	25.300	34.710	-19.290	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5670MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m			
Horizontal								
Peak Detector:								
11340.000	16.408	35.620	52.027	-21.973	74.000			
15930.000	*	*	*	*	74.000			
21240.000	*	*	*	*	74.000			
26550.000	*	*	*	*	74.000			
31860.000	*	*	*	*	74.000			
37170.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical Peak Detector:								
	17 177	25.550	50 717	01 092	74.000			
11340.000	17.167 *	35.550 *	52.717 *	-21.283 *	74.000			
15930.000					74.000			
21240.000	*	*	*	*	74.000			
26550.000	*	*			74.000			
31860.000	*	*	*	*	74.000			
37170.000	*	*	*	*	74.000			

Average

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Эліејек

Product Test Item Test Site Test Mode	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS Mode 5 Transmit (802.11ac-20BW-65Mbps) (5720MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m			
Horizontal								
Peak Detector:								
11440.000	16.779	36.920	53.699	-20.301	74.000			
17160.000	*	*	*	*	74.000			
22880.000	*	*	*	*	74.000			
28600.000	*	*	*	*	74.000			
34320.000	*	*	*	*	74.000			
40040.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11440.000	17.519	36.410	53.929	-20.071	74.000			
17160.000	*	*	*	*	74.000			
22880.000	*	*	*	*	74.000			
28600.000	*	*	*	*	74.000			
34320.000	*	*	*	*	74.000			
40040.000	*	*	*	*	74.000			

Average

Detector: ___

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Quielek

Product Test Item Test Site		Point/Sensor ic Radiated Emiss TS	sion Data				
Test Mode	: Mode 6 Transmit (802.11ac-40BW-65Mbps) (5710MHz)						
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
11420.000	16.648	36.180	52.827	-21.173	74.000		
17130.000	*	*	*	*	74.000		
22840.000	*	*	*	*	74.000		
28550.000	*	*	*	*	74.000		
34260.000	*	*	*	*	74.000		
39970.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11420.000	17.311	36.240	53.550	-20.450	74.000		
17130.000	*	*	*	*	74.000		
22840.000	*	*	*	*	74.000		
28550.000	*	*	*	*	74.000		
34260.000	*	*	*	*	74.000		
39970.000	*	*	*	*	74.000		

Average

Detector: --

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS Mode 4 Transmit (802.11ac-80BW-65Mbps) (5290MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10580.000	14.423	37.350	51.773	-22.227	74.000		
15870.000	*	*	*	*	74.000		
21160.000	*	*	*	*	74.000		
26450.000	*	*	*	*	74.000		
31740.000	*	*	*	*	74.000		
37030.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical Peak Detector:							
10580.000	14.849	37.890	52.739	-21.261	74.000		
15870.000	*	*	*	*	74.000		
21160.000	*	*	*	*	74.000		
26450.000	*	*	*	*	74.000		
31740.000	*	*	*	*	74.000		
37030.000	*	*	*	*	74.000		

Detector:

Average

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Access Point/Sensor								
Test Item	: Harmonic Radiated Emission Data								
Test Site		: No.3 OATS							
Test Mode	: Mode 4 Transmit (802.11ac-80BW-65Mbps) (5530MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m				
Horizontal									
Peak Detector:									
6230.000	7.494	49.480	56.974	-17.026	74.000				
11060.000	16.580	36.010	52.590	-21.410	74.000				
16590.000	*	*	*	*	74.000				
22120.000	*	*	*	*	74.000				
27650.000	*	*	*	*	74.000				
33180.000	*	*	*	*	74.000				
Average									
Detector:									
6230.000	7.494	24.350	31.844	-22.156	54.000				
Vertical									
Peak Detector:									
6230.000	9.410	55.700	65.110	-8.890	74.000				
11060.000	17.375	35.740	53.115	-20.885	74.000				
11060.000	*	*	*	*	74.000				
16590.000	*	*	*	*	74.000				
22120.000	*	*	*	*	74.000				
27650.000	*	*	*	*	74.000				
33180.000	*	*	*	*	74.000				
Average									
Detector:									
6230.000	9.410	24.650	34.060	-19.940	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Access Point/Sensor Harmonic Radiated Emission Data No.3 OATS Mode 4 Transmit (802.11ac-80BW-65Mbps) (5690MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m			
Horizontal								
Peak Detector:								
11380.000	16.480	35.600	52.081	-21.919	74.000			
17070.000	*	*	*	*	74.000			
22760.000	*	*	*	*	74.000			
28450.000	*	*	*	*	74.000			
34140.000	*	*	*	*	74.000			
39830.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11380.000	17.125	35.680	52.806	-21.194	74.000			
17070.000	*	*	*	*	74.000			
22760.000	*	*	*	*	74.000			
28450.000	*	*	*	*	74.000			
34140.000	*	*	*	*	74.000			
39830.000	*	*	*	*	74.000			
Average								

Average

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: General : No.3 O		n a-6Mbps) (5300MHz	;)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
222.060	-10.439	45.017	34.578	-11.422	46.000
505.300	0.308	31.268	31.576	-14.424	46.000
664.380	2.062	29.952	32.014	-13.986	46.000
747.800	3.296	29.620	32.916	-13.084	46.000
858.380	5.972	31.844	37.816	-8.184	46.000
961.200	6.450	43.202	49.652	-4.348	54.000
Vertical Peak Detector					
101.780	-0.021	34.656	34.634	-8.866	43.500
171.620	-8.752	41.884	33.132	-10.368	43.500
229.820	-8.512	44.640	36.128	-9.872	46.000
363.680	-2.393	37.978	35.585	-10.415	46.000
480.080	-4.359	32.641	28.282	-17.718	46.000
961.200	7.260	33.483	40.743	-13.257	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Access Point/Sensor General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5580MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal								
Peak Detector								
152.220	-10.135	41.859	31.724	-11.776	43.500			
402.480	-2.263	33.788	31.525	-14.475	46.000			
513.060	1.550	30.172	31.722	-14.278	46.000			
625.580	1.770	28.788	30.558	-15.442	46.000			
697.360	3.171	27.379	30.550	-15.450	46.000			
961.200	6.450	43.013	49.463	-4.537	54.000			
Vertical								
Peak Detector	1 (10	27.222	22.504	10.01.6	12 500			
134.760	-4.648	37.232	32.584	-10.916	43.500			
355.920	-3.488	38.783	35.295	-10.705	46.000			
480.080	-4.359	36.246	31.887	-14.113	46.000			
600.360	-2.833	29.121	26.288	-19.712	46.000			
747.800	2.166	29.746	31.912	-14.088	46.000			
961.200	7.260	36.865	44.125	-9.875	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Access Point/Sensor						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 14.4Mbps) ((5300MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
148.340	-10.254	41.038	30.784	-12.716	43.500		
408.300	-2.866	38.357	35.491	-10.509	46.000		
474.260	0.024	36.979	37.002	-8.998	46.000		
600.360	3.977	34.330	38.307	-7.693	46.000		
720.640	3.511	32.508	36.019	-9.981	46.000		
961.200	6.450	43.038	49.488	-4.512	54.000		
Vertical							
Peak Detector							
111.480	-0.954	37.405	36.451	-7.049	43.500		
235.640	-9.330	48.536	39.206	-6.794	46.000		
390.840	-3.099	35.414	32.315	-13.685	46.000		
480.080	-4.359	40.738	36.379	-9.621	46.000		
666.320	-1.809	32.539	30.731	-15.269	46.000		
961.200	7.260	36.131	43.391	-10.609	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Access Point/Sensor General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5580MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
159.980	-11.775	43.334	31.559	-11.941	43.500		
355.920	-2.528	40.571	38.043	-7.957	46.000		
460.680	1.589	34.277	35.866	-10.134	46.000		
600.360	3.977	35.394	39.371	-6.629	46.000		
720.640	3.511	31.599	35.110	-10.890	46.000		
825.400	6.250	24.043	30.293	-15.707	46.000		
Vertical Peak Detector							
159.980	-6.185	41.531	35.346	-8.154	43.500		
288.020	-8.189	43.397	35.208	-10.792	46.000		
365.620	-2.179	40.213	38.034	-7.966	46.000		
480.080	-4.359	36.693	32.334	-13.666	46.000		
681.840	1.484	28.552	30.036	-15.964	46.000		
961.200	7.260	36.174	43.434	-10.566	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Access Point/Sensor General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal								
Peak Detector								
49.400	-11.018	44.021	33.003	-6.997	40.000			
225.940	-9.878	45.873	35.994	-10.006	46.000			
398.600	-2.268	36.141	33.873	-12.127	46.000			
600.360	3.977	35.177	39.154	-6.846	46.000			
747.800	3.296	29.772	33.068	-12.932	46.000			
961.200	6.450	42.999	49.449	-4.551	54.000			
Vertical Peak Detector								
165.800	-7.719	43.118	35.399	-8.101	43.500			
276.380	-8.653	45.953	37.300	-8.700	46.000			
369.500	-2.868	38.155	35.287	-10.713	46.000			
480.080	-4.359	39.388	35.029	-10.971	46.000			
664.380	-1.918	34.414	32.496	-13.504	46.000			
961.200	7.260	36.736	43.996	-10.004	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Access Point/Sensor General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5550MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
175.500	-10.017	46.537	36.519	-6.981	43.500		
396.660	-2.296	35.982	33.686	-12.314	46.000		
476.200	-0.252	39.170	38.918	-7.082	46.000		
600.360	3.977	33.844	37.821	-8.179	46.000		
666.320	2.031	31.468	33.500	-12.500	46.000		
961.200	6.450	43.395	49.845	-4.155	54.000		
Vertical Peak Detector							
169.680	-8.728	42.051	33.323	-10.177	43.500		
299.660	-6.855	42.258	35.403	-10.597	46.000		
373.380	-2.373	35.882	33.509	-12.491	46.000		
503.360	-0.852	29.721	28.869	-17.131	46.000		
637.220	-3.649	31.262	27.613	-18.387	46.000		
961.200	7.260	34.913	42.173	-11.827	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Access Point/Sensor						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 5	Transmit (802.11a	c-20BW-65Mbps) (5	720MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$		
Horizontal							
Peak Detector							
103.720	-8.230	33.748	25.517	-17.983	43.500		
241.460	-6.590	35.990	29.400	-16.600	46.000		
445.160	-0.432	37.184	36.752	-9.248	46.000		
593.570	3.492	34.900	38.392	-7.608	46.000		
741.980	3.892	31.077	34.969	-11.031	46.000		
890.390	6.515	30.232	36.747	-9.253	46.000		
Vertical							
Peak Detector							
84.320	-4.204	32.854	28.650	-11.350	40.000		
216.240	-6.051	37.313	31.262	-14.738	46.000		
378.230	0.769	24.459	25.228	-20.772	46.000		
593.570	-0.388	30.578	30.190	-15.810	46.000		
741.980	-0.358	32.363	32.005	-13.995	46.000		
940.830	3.480	26.738	30.218	-15.782	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Access Point/Sensor General Radiated Emission No.3 OATS Mode 6 Transmit (802.11ac-40BW-65Mbps) (5710MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
103.720	-8.230	33.292	25.061	-18.439	43.500
241.460	-6.590	36.001	29.411	-16.589	46.000
445.160	-0.432	38.900	38.468	-7.532	46.000
593.570	3.492	35.533	39.025	-6.975	46.000
741.980	3.892	34.004	37.896	-8.104	46.000
935.010	6.813	25.099	31.912	-14.088	46.000
Vertical					
Peak Detector					
102.750	-5.326	32.941	27.615	-15.885	43.500
216.240	-6.051	37.548	31.497	-14.503	46.000
374.350	0.224	26.101	26.325	-19.675	46.000
593.570	-0.388	29.926	29.538	-16.462	46.000
787.570	2.719	24.742	27.461	-18.539	46.000
890.390	1.095	29.445	30.540	-15.460	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n 1c-80BW-65Mbps) (5	290MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector						
143.490	-7.665	25.649	17.984	-25.516	43.500	
276.380	-6.526	35.418	28.892	-17.108	46.000	
445.160	-0.432	37.276	36.844	-9.156	46.000	
593.570	3.492	33.767	37.259	-8.741	46.000	
741.980	3.892	33.804	37.696	-8.304	46.000	
884.570	6.531	22.533	29.064	-16.936	46.000	
Vertical Peak Detector						
82.380	-4.523	33.515	28.992	-11.008	40.000	
126.030	-3.719	34.442	30.724	-12.776	43.500	
288.990	-5.523	33.467	27.944	-18.056	46.000	
505.300	0.056	27.333	27.389	-18.611	46.000	
741.980	-0.358	33.804	33.446	-12.554	46.000	
891.360	0.905	30.118	31.023	-14.977	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n uc-80BW-65Mbps) (5	690MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector						
126.030	-7.349	34.894	27.546	-15.954	43.500	
288.990	-5.513	34.904	29.391	-16.609	46.000	
445.160	-0.432	37.913	37.481	-8.519	46.000	
593.570	3.492	34.947	38.439	-7.561	46.000	
741.980	3.892	34.283	38.175	-7.825	46.000	
891.360	6.265	28.993	35.258	-10.742	46.000	
Vertical						
Peak Detector						
126.030	-3.719	34.894	31.176	-12.324	43.500	
241.460	-6.000	38.481	32.481	-13.519	46.000	
445.160	-6.402	38.227	31.825	-14.175	46.000	
593.570	-0.388	34.947	34.559	-11.441	46.000	
692.510	1.917	29.661	31.578	-14.422	46.000	
891.360	0.905	29.746	30.651	-15.349	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

7. Band Edge

7.1. **Test Equipment**

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

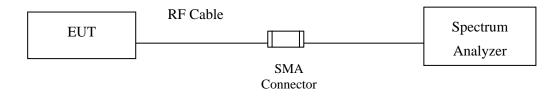
Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

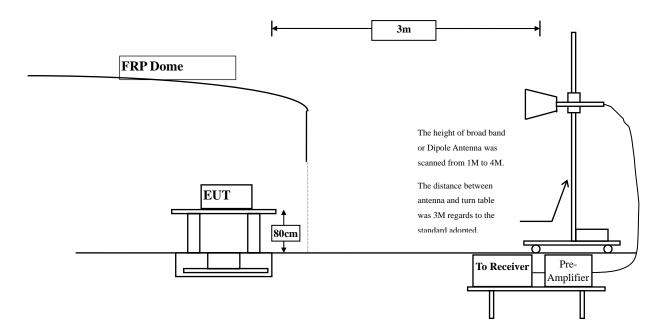
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Bilog Antenna		Schaffner Chase	CBL6112B/2673	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
		Pre-Amplifier QTK QTK-AMP-03 / 0003		QTK-AMP-03 / 0003	May, 2014
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2014
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

7.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	uV/m @3m	dBµV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks : 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

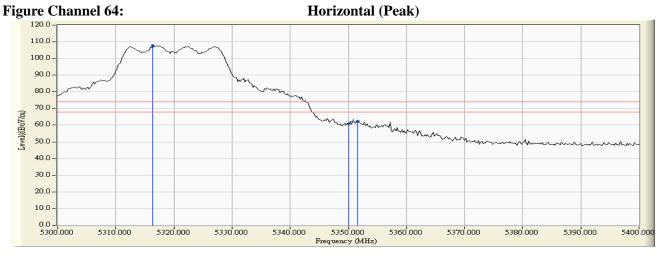
7.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2009 on radiated measurement.

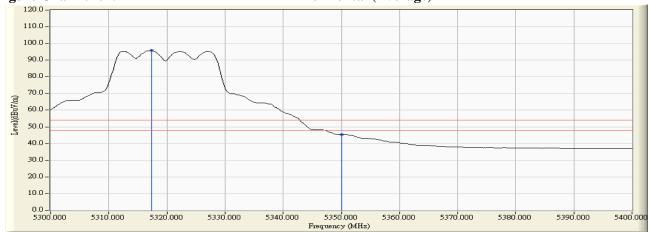
The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty


- \pm 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

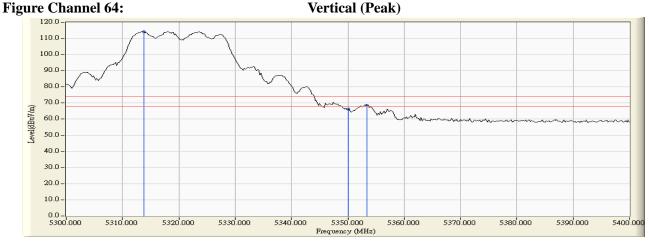
7.6. **Test Result of Band Edge**

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64 (5320MHz)


RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
64 (Peak)	5316.400	3.823	103.970	107.794			Pass
64 (Peak)	5350.000	3.716	56.954	60.671	74.00	54.00	Pass
64 (Peak)	5351.600	3.711	58.570	62.281	74.00	54.00	Pass
64 (Average)	5317.400	3.820	91.908	95.729			Pass
64 (Average)	5350.000	3.716	41.702	45.419	74.00	54.00	Pass

Horizontal (Average)



- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 1.
- 2. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

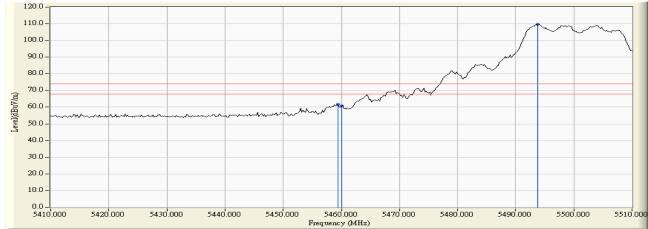
Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64 (5320MHz)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
64 (Peak)	5313.800	· · /	108.501	114.238	(uDµ (/)III) 	(dDµ (/m))	Pass
64 (Peak)	5350.000	5.691	60.709	66.401	74.00	54.00	Pass
64 (Peak)	5353.400	5.687	62.952	68.639	74.00	54.00	Pass
64 (Average)	5313.600	5.738	96.581	102.318			Pass
64 (Average)	5350.000	5.691	44.620	50.312	74.00	54.00	Pass
	5352.600	5.688	45.207	50.895	74.00	54.00	Pass

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (5500MHz)

RF Radiated Measurement (Horizontal):

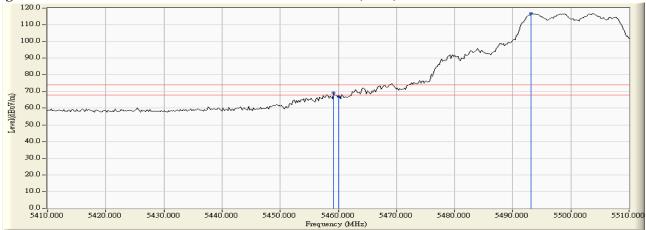
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.400	4.347	57.435	61.781	74.00	54.00	Pass
100 (Peak)	5460.000	4.354	56.453	60.807	74.00	54.00	Pass
100 (Peak)	5493.800	4.771	104.876	109.648			Pass
100 (Average)	5460.000	4.354	41.057	45.411	74.00	54.00	Pass
100 (Average)	5493.600	4.770	92.327	97.097			Pass

Figure Channel 100:

Horizontal (Peak)

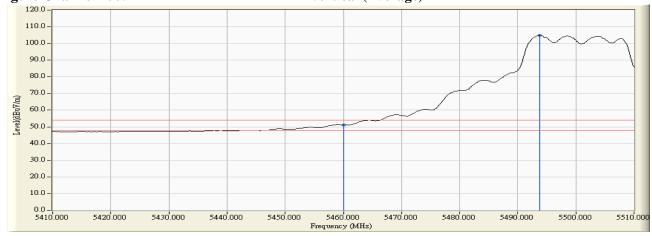
Horizontal (Average)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. 1.
- Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto. 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (5500MHz)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
100 (Peak)	5459.200	6.035	62.987	69.022	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	60.846	66.887	74.00	54.00	Pass
100 (Peak)	5493.200	6.255	110.572	116.826			Pass
100 (Average)	5460.000	6.041	45.217	51.258	74.00	54.00	Pass
100 (Average)	5493.800	6.256	98.518	104.774			Pass


Figure Channel 100:

Vertical (Peak)

Figure Channel 100:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (5500MHz)

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizonta	1 5470.000	18.334	-67.580	-49.246	-22.246	-27.000	Pass

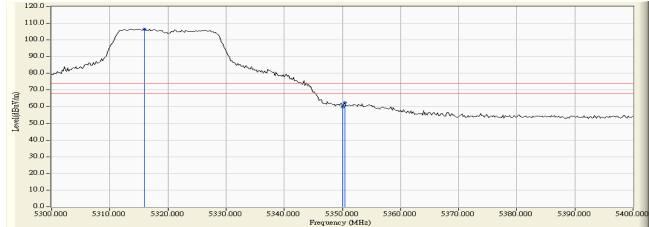
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertica	1 5470.000	19.335	-65.420	-46.085	-19.085	-27.000	Pass

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 140 (5700MHz)

RF Radiated Measurement:

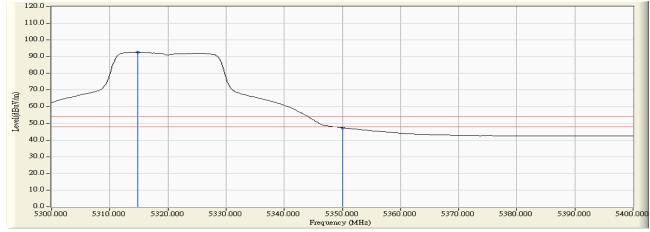
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-69.490	-50.841	-23.841	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertic	al 5725.000	19.372	-67.260	-47.888	-20.888	-27.000	Pass


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64 (5320MHz)

RF Radiated Measurement (Horizontal):

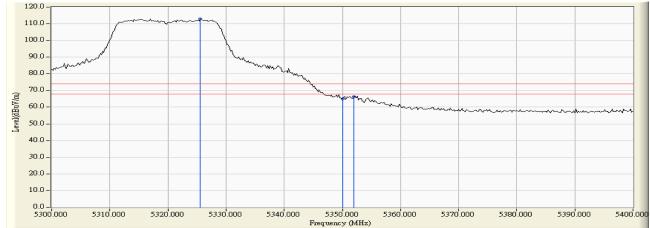
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5316.000	3.824	102.698	106.523			Pass
64 (Peak)	5350.000	3.716	56.269	59.986	74.00	54.00	Pass
64 (Peak)	5350.400	3.714	58.815	62.530	74.00	54.00	Pass
64 (Average)	5314.800	3.829	88.852	92.681			Pass
64 (Average)	5350.000	3.716	43.673	47.390	74.00	54.00	Pass


Figure Channel 64:

Horizontal (Peak)

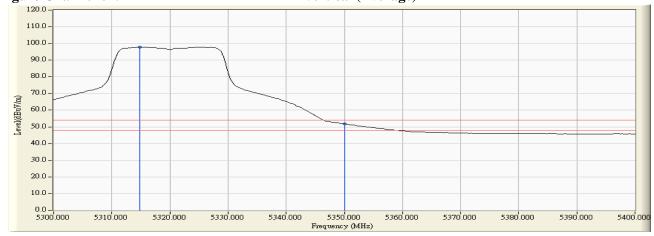
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64 (5320MHz)

RF Radiated Measurement (Vertical):

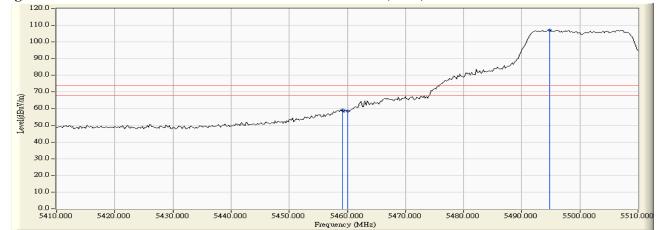
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5325.600	5.722	107.241	112.963			Pass
64 (Peak)	5350.000	5.691	59.423	65.115	74.00	54.00	Pass
64 (Peak)	5352.000	5.689	60.579	66.268	74.00	54.00	Pass
64 (Average)	5314.800	5.736	92.072	97.808			Pass
64 (Average)	5350.000	5.691	46.136	51.828	74.00	54.00	Pass

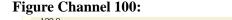

Figure Channel 64:

Vertical (Peak)

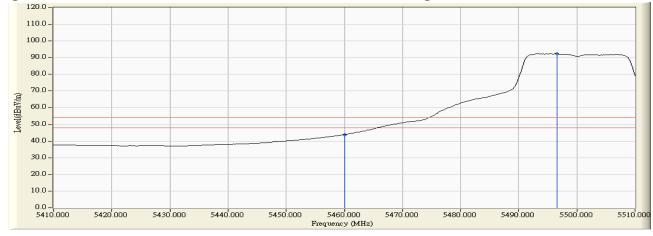
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (5500MHz)


RF Radiated Measurement (Horizontal):

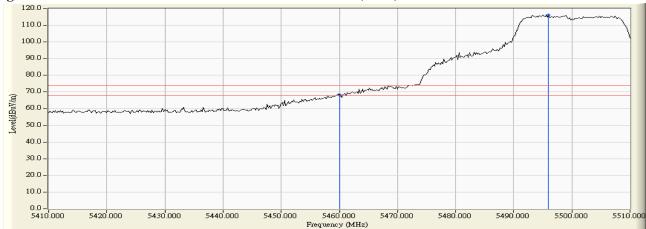
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.200	4.343	54.917	59.260	74.00	54.00	Pass
100 (Peak)	5460.000	4.354	54.237	58.591	74.00	54.00	Pass
100 (Peak)	5494.800	4.779	102.390	107.169			Pass
100 (Average)	5460.000	4.354	39.475	43.829	74.00	54.00	Pass
100 (Average)	5496.600	4.792	87.561	92.352			Pass


Figure Channel 100:

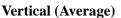
Horizontal (Peak)

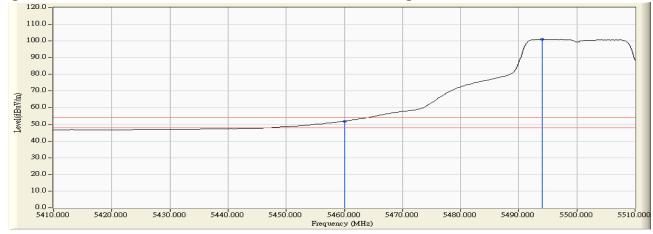
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (5500MHz)

RF Radiated Measurement (Vertical):


Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	6.041	62.093	68.134	74.00	54.00	Pass
100 (Peak)	5496.000	6.263	109.885	116.148			Pass
100 (Average)	5460.000	6.041	45.787	51.828	74.00	54.00	Pass
100 (Average)	5494.000	6.256	94.858	101.115			Pass


Figure Channel 100:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (5500MHz)

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-67.770	-49.436	-22.436	-27.000	Pass

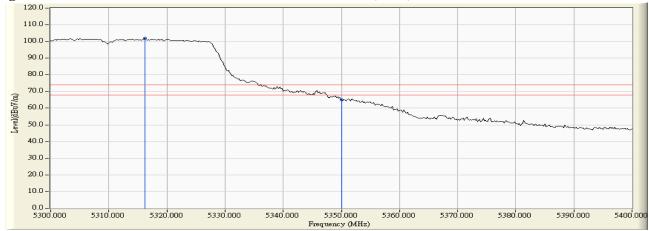
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-65.390	-46.055	-19.055	-27.000	Pass

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 140 (5700MHz)

RF Radiated Measurement:

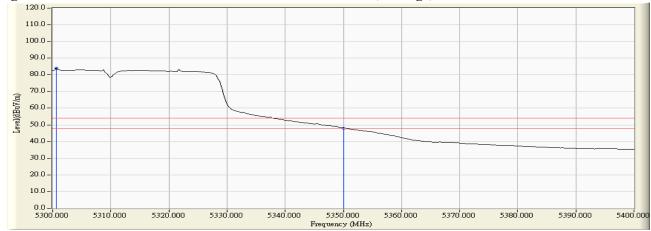
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-67.260	-48.611	-21.611	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-64.570	-45.198	-18.198	-27.000	Pass


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62 (5310MHz)

RF Radiated Measurement (Horizontal):

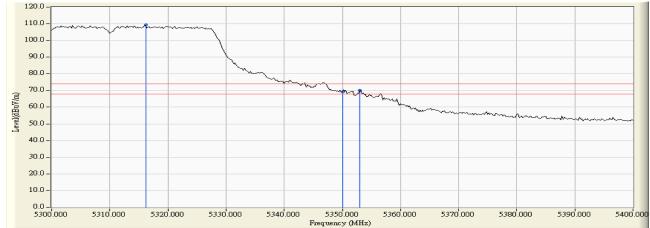
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	$(dB\mu V/m)$	Result
62 (Peak)	5316.200	3.824	98.126	101.950			Pass
62 (Peak)	5350.000	3.716	61.186	64.903	74.00	54.00	Pass
62 (Average)	5300.600	3.871	80.052	83.923			Pass
62 (Average)	5350.000	3.716	44.312	48.029	74.00	54.00	Pass

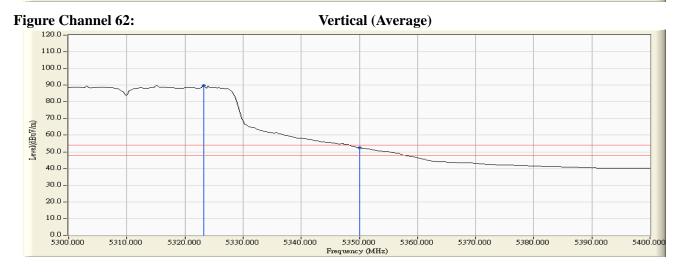

Figure Channel 62:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62 (5310MHz)

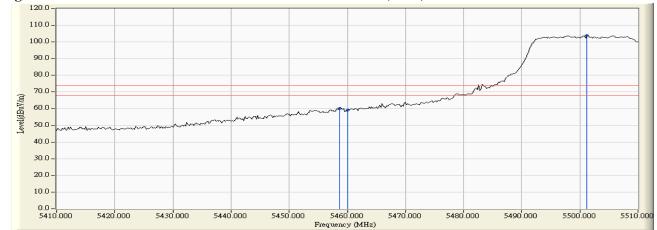

RF Radiated Measurement (Vertical):

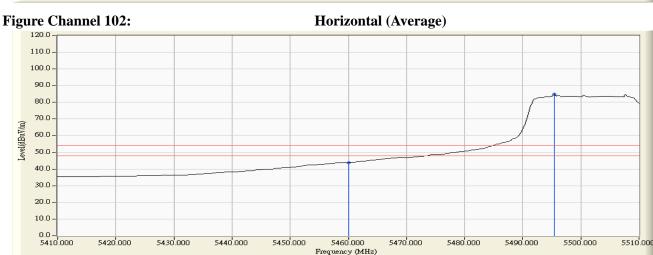
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5316.200	5.733	103.589	109.323			Pass
62 (Peak)	5350.000	5.691	63.516	69.208	74.00	54.00	Pass
62 (Peak)	5353.000	5.688	64.331	70.019	74.00	54.00	Pass
62 (Average)	5323.200	5.725	84.032	89.757			Pass
62 (Average)	5350.000	5.691	46.778	52.470	74.00	54.00	Pass

Figure Channel 62:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102 (5510MHz)

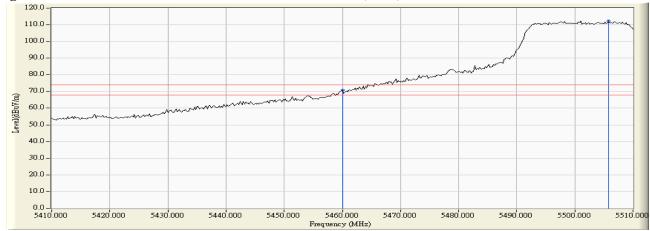

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
102 (Peak)	5458.600	4.335	55.940	60.275	74.00	54.00	Pass
102 (Peak)	5460.000	4.354	54.813	59.167	74.00	54.00	Pass
102 (Peak)	5501.200	4.823	99.220	104.043			Pass
102 (Average)	5460.000	4.354	39.540	43.894	74.00	54.00	Pass
102 (Average)	5495.400	4.782	80.089	84.872			Pass

Figure Channel 102:

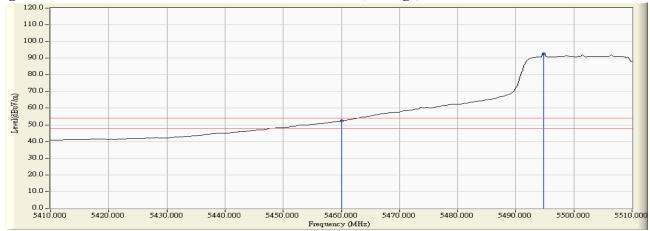
Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102 (5510MHz)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
102 (Peak)	5460.000	6.041	64.856	70.897	74.00	54.00	Pass
102 (Peak)	5505.800	6.284	106.110	112.395			Pass
102 (Average)	5460.000	6.041	46.245	52.286	74.00	54.00	Pass
102 (Average)	5494.800	6.259	86.287	92.546			Pass


Figure Channel 102:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102 (5510MHz)

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-66.390	-48.056	-21.056	-27.000	Pass

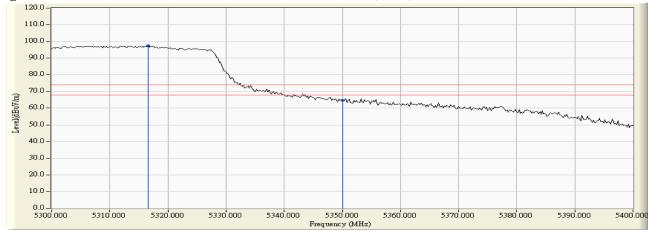
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-63.370	-44.035	-17.035	-27.000	Pass

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 134 (5670MHz)

RF Radiated Measurement:

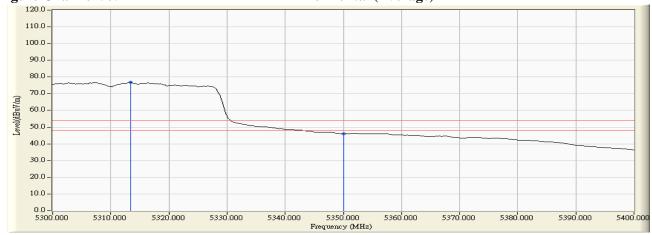
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-66.370	-47.721	-20.721	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-62.290	-42.918	-15.918	-27.000	Pass


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Transmit (802.11ac-80BW-65Mbps) -Channel 58 (5290MHz)

RF Radiated Measurement (Horizontal):

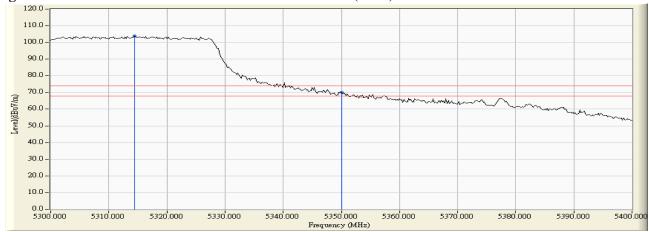
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
58 (Peak)	5316.600	3.823	93.575	97.398			Pass
58 (Peak)	5350.000	3.716	61.072	64.789	74.00	54.00	Pass
58 (Average)	5313.400	3.834	73.047	76.881			Pass
58 (Average)	5350.000	3.716	42.197	45.914	74.00	54.00	Pass


Figure Channel 58:

Horizontal (Peak)

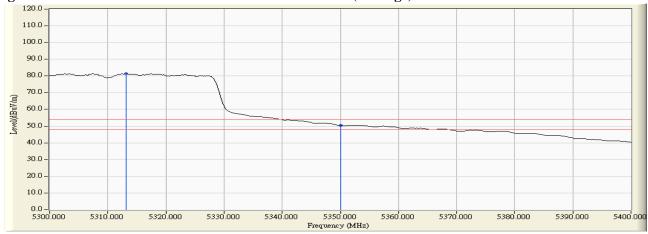
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Transmit (802.11ac-80BW-65Mbps) -Channel 58 (5290MHz)

RF Radiated Measurement (Vertical):

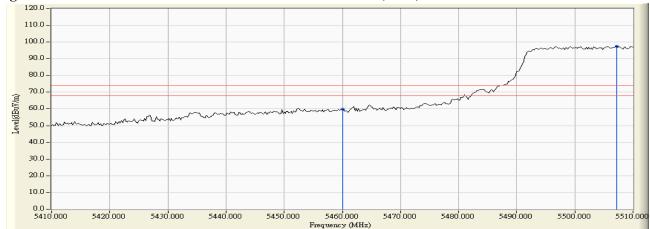
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5314.400	5.737	98.056	103.792			Pass
58 (Peak)	5350.000	5.691	64.296	69.988	74.00	54.00	Pass
58 (Average)	5313.200	5.738	75.748	81.486			Pass
58 (Average)	5350.000	5.691	44.696	50.388	74.00	54.00	Pass


Figure Channel 58:

Vertical (Peak)

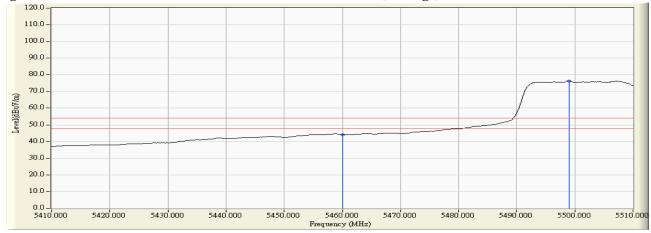
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Transmit (802.11ac-80BW-65Mbps) -Channel 106 (5530MHz)

RF Radiated Measurement (Horizontal):

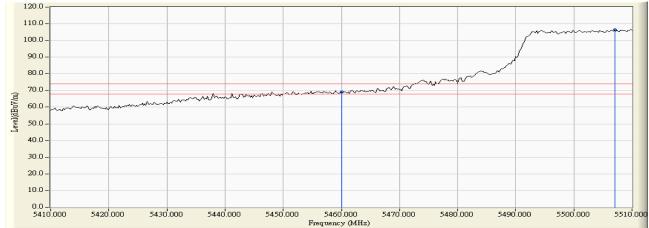
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
106 (Peak)	5460.000	4.354	55.478	59.832	74.00	54.00	Pass
106 (Peak)	5507.200	4.831	92.761	97.592			Pass
106 (Average)	5460.000	4.354	39.669	44.023	74.00	54.00	Pass
106 (Average)	5499.000	4.808	71.457	76.265			Pass

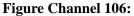

Figure Channel 106:

Horizontal (Peak)

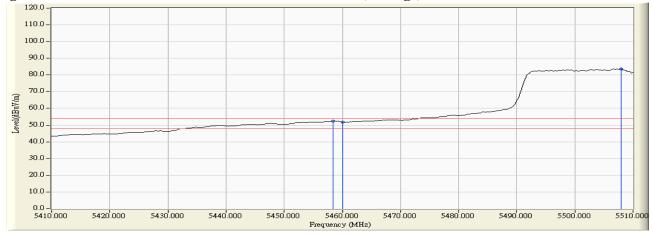
Figure Channel 106:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Transmit (802.11ac-80BW-65Mbps) -Channel 106 (5530MHz)


RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
106 (Peak)	5460.000	6.041	63.141	69.182			Pass
106 (Peak)	5507.000	6.278	100.162	106.439	74.00	54.00	Pass
106 (Average)	5458.400	6.029	46.308	52.338	74.00	54.00	Pass
106 (Average)	5460.000	6.041	45.787	51.828	74.00	54.00	Pass
106 (Average)	5508.000	6.270	77.315	83.586			Pass


Figure Channel 106:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Transmit (802.11ac-80BW-65Mbps) -Channel 106 (5530MHz)

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-68.490	-50.156	-23.156	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-67.270	-47.935	-20.935	-27.000	Pass

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)

Test Frequency	Chain	Measurement Level	Limit	Result
(MHz)		(20dB BW)	(MHz)	
		(MHz)		
5590	А	5590.15	<5600	PASS
5580	В	5589.75	<5600	PASS
5660	А	5651.00	>5650	PASS
5660	В	5650.95	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

									zer - Swe		etrun		
Frequency	3:20 PM Oct 15, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWW		Log-Pwr	Avg Typ	NSE:INT	and and and	Hz NO: Fast C	AC	50 Ω 58000	RF 9 q 5 .	Fre	_	Cer
Auto Tune	DET P NNNNN 90 15 GHz	2 5.59	Mkr	-		#Atten: 30	Gain:Low	IF				_	
	13.30 dBm				_			IBm	0.00 c	Ref 2	v	B/div	10 d Log
Center Free					-	Q1				-		1	10.0
5.580000000 GH	-12.11 dBm		2	1			and the second s						0.00 -10.0
2,332.3	-	hippeneren	Man Markeline					-anther and the second	a faith			1	-20.0
Start Free 5.555000000 GH	Mun Mun					1			_	Protection	- and	deller	-30.0 -40.0
Oton Era													-50.0
Stop Free 5.605000000 GH:													-60.0 -70.0
CF Ster 5.000000 MH	n 50.00 MHz ns (1001 pts)		#Sweep	4		W 1.0 MHz	#VB			3000 00 ki			
Auto Mai	NCTION VALUE	FUN	CTION WIDTH	NCTION F		Y		X			TRC		MKR
		-			Bm Bm	7.89 d -13.30 d		5.575 8 5.590 1	-	f	1	N N	1
Freq Offse 0 H						_							3456
													7
													9 10 11 12
		6	STATUS				-					-	MSG

Frequency	06:42:25 PM Oct 15, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	ALIGNAUTO	Avg		-	NO: Fast C	00000 GI				
Auto Tun	5.589 75 GHz -11.94 dBm	Mkr2		. 50 08	#Attent	Gain:Low		enter Freq 5.5800000	0 d		
Center Fre 5.58000000 GH	-11.00 dBm	2	man	m	inner	5					. og 10.0 0.00
Start Fre 5.55500000 GH	made a land all and and	Maran Branchard						photos and the	and the second	-	20.0 30.0 40.0
Stop Fre 5.60500000 GH											50.0 60.0 70.0
CF Ster 5.000000 MH	Span 50.00 MHz 00 ms (1001 pts)	#Sweep {	-	łz	W 1.0 MH:	#VB					
Auto Ma	FUNCTION VALUE	FUNCTION WIDTH	UNCTION		9.00 c -11.94 c		× 5.582 3 5.589 7		f	N 1	1
Freq Offse 0 H											4 5 6
											8 9 10 11
		STATUS				-		_		-	12 sg

	nt Spe	ectru		yzer - Sw												t
Cer	nter	Fre	eq t	50 Ω 5.6600) GH	Iz		SENSE	un	Avg T		Log-Pwr	TRA T	PM Oct 22, 2014 CE 1 2 3 4 5 6 (PE MWWWWW	Frequency
10 d	0/45		Bof	13.00 (dBm	IFGa	ain:Low		Atten: 30 dE		-		Mkr	2 5.651	00 GHz	Auto Tune
Log 3.00 -7.00		v	Rei	13.00 0			22	>1	all advision that was	handbardha	and we have been by				-17.08 dBm	Center Fred 5.66000000 GH:
-17.0 -27.0 -37.0 -47.0	wind	NY YAR	(Man Jawa	NUNIVANIVA	vandamada	malehttraip						MAN.	New Address of the	have by children by	the manufactures and	Start Fred 5.635000000 GH2
-57.0 -67.0 -77.0																Stop Fred 5.685000000 GH2
#Re	s B	W 1	00 k	GHz Hz			#VB	sw	1.0 MHz	Pitt		_		500 ms	50.00 MHz (1001 pts)	CF Step 5.000000 MH
1 3 4 5 6 7 8 9	N	1	f			53 70 51 00			2.917 dBm -17.44 dBm	1		FUN	CTION WIDTH			Auto Mar Freq Offset 0 H:
10 11 12 MSG													E STATUS			

						pt SA	alyzer - Swe		nt Spec
Frequency	08:34:14 PM Oct 22, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	ALIGNAUTO e: Log-Pwr	Avg Typ	SENSE:INT	2	AC 00000 GH:	50 Ω 5.6600	Freq	ter
Auto Tune	5.650 95 GHz -18.59 dBm	Mkr2		Atten: 30 dB	n:Low		13.00 c	Ref	B/div
Center Free 5.66000000 GH			()1	Superland produced and	pulloundenden				
	-16.54 dBm	in-unionanan	1		2	all the set to be all and the			
Start Free 5.635000000 GH	Whendpiechenswertherpulationships					NOVAR AND LAND	and a stand with the stand of the	inde Annaulter	n subor
Stop Fre 5.685000000 GH									
	Span 50.00 MHz 00 ms (1001 pts)	#Sweep :		.0 MHz	#VBW		0 GHz kHz	.6600 V 100	
Auto Ma	FUNCTION VALUE	UNCTION WIDTH	INCTION	3.458 dBm -18.59 dBm		5.664 95			N
Freq Offse 0 H						0.000 30		-	

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

Test Frequency	Chain	Measurement Level	Limit	Result
(MHz)		(20dB BW)	(MHz)	
		(MHz)		
5590	А	5590.55	<5600	PASS
5580	В	5590.50	<5600	PASS
5660	А	5650.40	>5650	PASS
5660	В	5650.30	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

Agilent Sp	ectru											
Center	Fre	RF 9 q 5 .		AC 00000	SHZ PNO: Fast C	-	Run	Avg Typ	e: Log-Pwr	TRA TY	PM Oct 15, 2014 CE 1 2 3 4 5 6 PE MWWWWW	Frequency
					FGain:Low	#Atten: 30			Mkr	1.1.1.1.1.	55 GHz	Auto Tune
10 dB/di Log	v	Ref	20.00 0	dBm	10			4	1	-12.	31 dBm	
10.0	-	-										Center Free
-10.0					1				2		-12.08 dBm	5.580000000 GH:
-20.0		-	-	non					- Martin Schman	-aileron -		OtentEnn
-30.0	~										monort	Start Fred 5.555000000 GH
-50.0		-			-			-				
-60.0 -70.0		-										Stop Fred 5.605000000 GH
Center #Res B					#VB	W 1.0 MHz		1	#Sweep		50.00 MHz (1001 pts)	CF Step 5.000000 MH
MKR MODE	TRC			X		Y		NCTION FU	INCTION WIDTH	FUNCT	ON VALUE	Auto Mar
1 N 2 N	1	f	-		00 GHz 55 GHz	7.92 dE -12.31 dE	m m			-	-	
3 4 5 6	-							-				Freq Offse 0 Hi
6 7 8	-											
9 10	-											
11 12			_	_					-			
MSG									STATUS	i		

Frequency	04:07:20 PM Oct 15, 2014			ENSE:INT	SE			50 Ω	RF		
	TRACE 123456 TYPE MWWWWWW DET PNNNNN	: Log-Pwr	Avg Type	e Run	Trig: Fre	Hz PNO: Fast	00000 G	.5800	eq 5	er Fr	ent
Sec. 24	DET PNNNN				Atten: 3	FGain:Low	1.0				
Auto Tur	5.590 50 GHz -11.08 dBm	Mkr2 (dBm	20.00	Ref	/div	0 dB/d 9 10.0 10.0 20
- 20.00000	A		$\langle \rangle^1$		C	· · · · ·					-
Center Fre		1.5 mm	annon	Conner	nymene	have				-	
5.58000000 GI	-11.00 dBm		X		2	1					
		man				-11	HDIAME				
Start Fre	allowed the makes the	- Street						a real for and	men	-	
5.555000000 GH	ages and									and a mark	0.0
				-		-					0.0
				-					-		0.0
Stop Fre	-			-						-	0.0
5.60500000 GI						-			-	-	0.0
	Span 50.00 MHz			5		-		CHT	0000	or 5 5	L
				z	W 1.0 MHz	#VE				BW 3	
CF Ste		#Sweep 50									
5.000000 MI	00 ms (1001 pts)				Y		×		d set l	ODEL TRO	BL M
	00 ms (1001 pts)	#Sweep 50			Y 9.00 d	55 GHz			f		1
5.000000 Mi <u>Auto</u> Ma	00 ms (1001 pts)				9.00 d -11.08 d	55 GHz 50 GHz	5.585			N 1	1
5.000000 Mi <u>Nuto</u> Mi Freq Offs	00 ms (1001 pts)						5.585		f	N 1	1 2 3 4
5.000000 Mi <u>Auto</u> Ma	00 ms (1001 pts)						5.585		f	N 1	1 2 3 4 5
5.000000 Mi <u>Nuto</u> Mi Freq Offs	00 ms (1001 pts)						5.585		f	N 1	1 2 3 4 5
5.000000 Mi <u>Nuto</u> Mi Freq Offs	00 ms (1001 pts)						5.585		f	N 1	1 2 3 4 5 5 7 8
5.000000 Mi <u>Nuto</u> Mi Freq Offs	00 ms (1001 pts)						5.585		f	N 1	1 2 3 4 5 5 7
5.000000 Mi <u>Nuto</u> Mi Freq Offs	00 ms (1001 pts)						5.585		f	N 1	1 3 4 5 7 3 3

									alyzer - Sw		nt Spe	
Frequency	43:41 PM Oct 22, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWW		ALIGNAUTO e: Log-Pwr	Avg Typ		Trig: Fre	Hz	AC 00000 GI	50 Ω 5.6600	Freq	nter	Cer
Auto Tune	IFGain:Low Atten: 30 dB DET P NNNN Mkr2 5.650 40 GHz											
207.002.0	17.71 dBm			1	1		()1	IBm	13.00	Ret	B/div	10 d Log 3.00
Center Fred 5.66000000 GHz				international herry	production	restingthyolan	verstand burd					-7.00
	-17.26 dBm		Phintol Made	1				Mary Renth	-			-17.0 -27.0
Start Freq 5.635000000 GHz	WWW. apply and	mark grad pairwark						Middlessinger	ay and in the server	Manantaka	Alm.	-27.0 -37.0 -47.0
Stop Freq												-57.0
5.685000000 GHz												-67.0 -77.0
CF Step 5.000000 MH;	an 50.00 MHz ms (1001 pts)		#Sweep	1	z	1.0 MHz	#VBW		0 GHz kHz	.6600 V 100		
Auto Mar	UNCTION VALUE	IDTH F	INCTION WIDT	NCTION		Y 2.743 d	5 GHz	× 5.653 7		TRC SCL	MODE	MKR 1
Freq Offset 0 Hz						-17.71 d		5.650 4		1 f	N	2 3 4 5 6
												7 8 9 10 11
		ATUS	I STATI								-	12 MSG

									nalyzer - Swe		nt Spe	giler
Frequency	M Oct 22, 2014 E 1 2 3 4 5 6 E MWWWWWW T P N N N N N	TRAC	ALIGNAUTO : Log-Pwr 89/100	Avg Type Avg Hold		Trig: Free	-Iz	AC 00000 GH		Freq	nter	en
Auto Tune	30 GHz 45 dBm	2 5.650	Mkr		dB	Atten: 30	ain:Low	1	f 13.00 c	Re	B/div	
Center Free				1 Aerolandhay		unhalischer	websternlare				71	. og 3.00 7.00
1157222522575755694	-16.74 dBm	_	Mir.	1			¢	100		_	-	7.0
Start Free	ntronghan	the words	white and the second started					Mathan			-	7.0
5.635000000 GH	ntrinstantia	and and the							Manne	ANALINANAA	www	7.0 7.0
Stop Fre												7.0 7.0
5.685000000 GH					_							7.0
CF Ster 5.000000 MH	0.00 MHz 1001 pts)		#Sweep			1.0 MHz	#VBW		00 GHz kHz	5.6600 N 100		
Auto Ma	IN VALUE	FUNCTIO	NCTION WIDTH	CTION FU		¥ 3.350 dE		× 5.665 00		TRC SC	MODE	1 1
Freq Offse	_					-17.145 dE		5.650 30	ļ	Î	N	2 3 4
он					1							5 6 7
												89
									-		-	0 1 2
			STATUS								-	G

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

Test Frequency	Chain	Measurement Level	Limit	Result
(MHz)		(20dB BW)	(MHz)	
		(MHz)		
5550	А	5571.30	<5600	PASS
5550	В	5570.90	<5600	PASS
5(70)	А	5650.90	>5650	PASS
5670	В	5650.90	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

ectrui			pt SA								
Fre	1.43						Avg Typ		TRAC TY	E 123456	Frequency
IFGain:Low #Atten: 30 dB Mkr2 5.571 3 GHz										Auto Tune	
V	Ref	20.00 a	BM	T			minung	2	-10.		Center Free 5.550000000 GH
لمسلهم	whome		and					and a second	and the second s		Start Free 5.500000000 GH
											Stop Free 5.600000000 GH:
				#VBV	N 1.0 MHz			#Sweep			CF Step 10.000000 MH
TRC 1	f		5.546	6 GHz	5.69 dBr	1	CTION	NCTION WIDTH	FUNCTI	DN VALUE	<u>Auto</u> Mar
			3.371		-10.30 001						Freq Offse 0 H:
	Fre ,	5.55000 W 300 kl	Ref 20.00 d	Freq 5.550000000 Gi P Freq 20.00 dBm 5.55000 GHz W 300 KHz	RF 50 2 AC Freq 5.550000000 GHz PN0: Fast G IFGain:Low / Ref 20.00 dBm ////////////////////////////////////	RF 50 Ω AC SENSE Freq 5.550000000 GHz IFGain:Low Trig: Free R #Atten: 30 d Trig: Free R #Atten: 30 d A Ref 20.00 dBm 1 1 J J J 1 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J	RF 50 % AC SENSE.INT Freq 5.550000000 GHz PNO: Fast PNO: Fast Atten: 30 dB Trig: Free Run #Atten: 30 dB / Ref 20.00 dBm ////////////////////////////////////	RF 50 02 AC SENSE::INT Avg Type PNO: Fast Trig: Free Run #Atten: 30 dB Avg Type / Ref 20.00 dBm #Atten: 30 dB Image: Argent and	RF S0 Q AC SENSEJNT AUGNAUTO Freq 5.550000000 GHz PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr V Ref 20.00 dBm 0	RF 50 % AC SENSEJNT ALIGNAUTO 05:22:58F Freq 5.550000000 GHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr TriAtten: 30 dB TriAtten: 30 dB / Ref 20.00 dBm -15.5 -15.5 -15.5 / Ref 20.00 dBm -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 -15.5 -15.5 / 1 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 / 1.0 1.0 -15.5	RF SD Q. AC SENSE(INT) ALIGNAUTO DS:22:58PPM oct 15, 2014 Freq 5.550000000 GHz PNO: Fast PNO: Fast

ilent Spectrum Analyzer - Swept SA				
RL RF 50 Ω AC enter Freq 5.550000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	05:26:50 PM Oct 15, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWWW	Frequency
PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB		DET P N N N N N	T.8.57
0 dB/div Ref 20.00 dBm		Mki	2 5.570 9 GHz -14.75 dBm	Auto Tune
	⟩1			Center Freq
0.00	manusura manus	ChimBlutterpine		5.550000000 GHz
0.0		*****	-13.30 dBm	
0.0			and a second and a second and a second and	Start Freq
0.0				5.50000000 GHz
0.0				
0.0				Stop Freq 5.60000000 GHz
0,0				
enter 5.55000 GHz Res BW 300 kHz #VE	3W 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF Step 10.000000 MHz
KR MODE TRC SCL		NCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 N 1 f 5.536 9 GHz 2 N 1 f 5.570 9 GHz	6.70 dBm -14.75 dBm			
3 4 5				Freq Offset 0 Hz
5 6 7				0 112
8				
0 1				
2				
G		STATUS		

Agilent S	ipectr		alyzer - Sw									
Cente	er Fi	req		AC		SEN Trig: Free	SE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr	TRAC	M Oct 22, 2014 E 1 2 3 4 5 6 E M WWWWWW	Frequency
IFGain:Low Atten: 30 dB DETIP NNNN Mkr2 5.650 9 GHz											Auto Tune	
10 dB/c 3,00 - -7,00 - -17.0 -	div	Rei	f 13.00		الماليالياليالي 2	h-qohahahahahahaha	لمانغاليان مراجع المعاليات	and the first and a			-19.71 dBm	Center Frec 5.670000000 GHz
-27.0 -37.0 -47.0	4.40.00	ever	upper la	hit pride structure					Yorkyi demonstrati da ina ina ina ina ina ina ina ina ina in	heart and a solid for the	Hardon & Statellow Ave	Start Fred 5.620000000 GHz
-57.0 — -67.0 — -77.0 —												Stop Free 5.720000000 GH;
Cente #Res			0 GHz kHz		#VB	N 1.0 MHz		4	#Sweep		00.0 MHz 1001 pts)	CF Step 10.000000 MH
	11	ic scu f		5.67	37 GHz 09 GHz	0.289 dE -20.34 dE	3m	ICTION FL	INCTION WIDTH	FUNCTIO	DN VALUE	<u>Auto</u> Mar
3 4 5 6 7 8 9 10 11 12												Freq Offset 0 Hz
MSG										i		

								ept SA	lyzer - Swa	m Ana	pectru	ilent S
Frequency	M Oct 22, 2014		ALIGNAUTO	Aug Tup	NSE:INT	SEI			50 Ω	RF		
1 2.57	E MWWWWW T P N N N N N	TYP	Avg Type. Log-t wi		Trig: Free Run Atten: 30 dB		⊓Z Gain:Low ∽	00000 G	0.0700	eq :	er Fre	ente
Auto Tune	Mkr2 5.650 9 GHz 10 dB/div Ref 13.00 dBm -20.50 dBm											
Center Free			1			⊘ 1	1		10.00 0		414	.00
5.670000000 GH	-18 69 dBm			evelosiaiselataik.	probabilishedofield	dollatinke tinhery	2					.00 -
		Dable - A	NIN!					a must wind port				7.0 = 7.0 -
Start Free 5.620000000 GHz	theological and an and the	White may have		-					nailed representation	mb (backet)	ANAY PHAN	7.0
Stop Free		-										7.0 - 7.0 -
5.720000000 GHz												7.0 -
CF Step 10.000000 MHz	00.0 MHz 1001 pts)		#Sweep			1.0 MHz	#VBW		GHz Hz		r 5.6 BW 1	
Auto Mar	N VALUE	FUNCTIO	NCTION WIDTH	ICTION FL		Y 1.307 dl	0 GHz	× 5.665 0		f	DE TRO	KRIMO
Freq Offse						-20.50 di		5.650		f		2 N 3 4
0 Hz											-	5 6 7
												8 9 0
												1
			To STATUS									G

Product	:	Access Point/Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Transmit (802.11ac-80BW-65Mbps)

Test Frequency	Chain	Measurement Level	Limit	Result
(MHz)		(20dB BW)	(MHz)	
		(MHz)		
5520	А	5569.80	<5600	PASS
5530	В	5569.80	<5600	PASS
5(00	А	5650.20	>5650	PASS
5690	В	5650.30	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

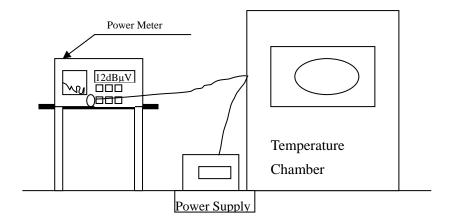
Avg Type: Log-Pwr Free Run	51:40PM Oct 22, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWW							
IFGain:Low Atten: 30 dB DETIP NNNN Mkr2 5.569 8 GHz -23.57 dBm								
2	Center Freq 5.53000000 GHz							
	-23.46 dBm							
The accurate and and	Start Free 5.430000000 GHz							
	5.630000000 GHz							
	an 200.0 MHz ms (1001 pts) CF Step 20.000000 MHz							
FUNCTION FUNCTION WIDTH	UNCTION VALUE Auto Man							
57 dBm	Freq Offset							
To STATUS								

							alyzer - Sv	etrum Ar	nt Spe	
Frequency	08:54:21 PM Oct 22, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWWW	ALIGNAUTO g Type: Log-Pwr		SENSE:IN		AC 00000 GH	5.5300	Freq	nter	
Sec.	DET P N N N N N			Trig: Free Run Atten: 30 dB	ain:Low	IFG				
Auto Tune	Mkr2 5.569 8 GHz 10 dB/div Ref 13.00 dBm -23.06 dBm									
Center Free			11		\Diamond^1					
5.530000000 GH		(Contraction of the second se		and the second s	Conservation and			-	-	
	-22,50 dBm	2								
Start Free	and April in some for such as the such as	Man half - was and			<u>.</u>	10 and and and and and				
5.430000000 GH;	and the second second and a second as						the marked at	ALL DO DO DO DO DO DO DO	1	
			-						-	
Stop Free 5.630000000 GH:										
CF Step 20.000000 MH	pan 200.0 MHz 0 ms (1001 pts)	#Sweep :		1.0 MHz	#VBW			5.5300 N 300		
Auto Mar	FUNCTION VALUE	FUNCTION WIDTH	FUNCTI	Y		×	8	TRC SCI		
				-2.504 dBm -23.06 dBm		5.502 4 5.569 8		1 f 1 f	N N	
Freq Offse 0 H:										
							-			
								-		
		L STATUS								

Agilent S	pectr		alyzer - Sv									
Cente	er F	req		2 AC	Hz	Trig: Free		Avg Type	ALIGNAUTO : Log-Pwr	TRAC	M Oct 22, 2014 E 1 2 3 4 5 6 E MWWWWW	Frequency
10 dB/d	div	Re	f 13.00		Gain:Low	Atten: 30	dB		Mk	r2 5.650	0 2 GHz 62 dBm	Auto Tune
Log - 3,00 - -7,00 -					2	Q1	- And and a	ing and the strong			-19.78 dBm	Center Freq 5.690000000 GHz
-27.0	ah and		معنوط المرجم الع	Martin Production					Alexandersa	Maria maria and and and and and and and and and an	have har solutions	Start Freq 5.590000000 GHz
-57.0 — -67.0 — -77.0 —												Stop Freq 5.790000000 GHz
Cente #Res					#VB	W 1.0 MHz			#Sweep	Span 2 500 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz
MKR MO	013	f			6 GHz	Y 0.220 dE	3m	INCTION FU	NCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
2 N 3 4 5 6		f		5.650	2 GHz	-20.62 dE	lm		1			Freq Offset 0 Hz
7 8 9 10 11 12												
MSG		-										

								alyzer - Sw	rum Ana	nt Spec	Agiler
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWW	ALIGNAUTO :: Log-Pwr	Avg Ty	ENSE:INT	- Carlos	Hz	AC 00000 G	50 G 5.6900	req	ter	Cen
A	5.650 3 GHz -20.03 dBm	Mkr2		0 dB	Atten: 30	Gain:Low		13.00	Dof	B/div	10 d
Center Free 5.690000000 GH	19.26 dBm		200 mayor / 17 / 200 mayor	n mar i yan i yan	Q1	2		13.00			3,00 -7.00 -17.0
Start Free 5.590000000 GH:	un ministration	Marana and a second					a part of the second of	whendurate	minim	Jane C	-27.0 -37.0 -47.0
Stop Free 5.790000000 GH											-57.0 -67.0 -77.0
	oan 200.0 MHz ms (1001 pts)			z	1.0 MHz	#VBV			.6900 300		
<u>Auto</u> Mar	FUNCTION VALUE	NCTION WIDTH	NCTION	dBm	0.74 d -20.03 d		× 5.673 5.650		RC SOL 1 f	N N N	MKB 1 2
Freq Offse 0 H					-20.03 0	3 612	5,650			N	3456
											7 8 9 10 11 12
		STATUS				-		-	-		MSG

8. Frequency Stability


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

8.4. Test Procedure

The EUT was setup to ANSI C63.10, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

± 150 Hz

8.6. Test Result of Frequency Stability

Product	:	Access Point/Sensor
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave

Chain A

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		52	5260.0000	5260.0088	-0.0088
		54	5270.0000	5270.0034	-0.0034
		60	5300.0000	5300.0084	-0.0084
		62	5310.0000	5310.0020	-0.0020
		64	5320.0000	5320.0099	-0.0099
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0013	-0.0013
		102	5510.0000	5510.0103	-0.0103
		110	5550.0000	5550.0089	-0.0089
		116	5580.0000	5580.0078	-0.0078
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0062	-0.0062
		52	5260.0000	5260.0026	-0.0026
		54	5270.0000	5270.0053	-0.0053
		60	5300.0000	5300.0077	-0.0077
		62	5310.0000	5310.0031	-0.0031
		64	5320.0000	5320.0028	-0.0028
Tmax (50) °C	Vmax (138)V	100	5500.0000	5500.0047	-0.0047
		102	5510.0000	5510.0023	-0.0023
		110	5550.0000	5550.0044	-0.0044
		116	5580.0000	5580.0066	-0.0066
		134	5670.0000	5670.0089	-0.0089
		140	5700.0000	5700.0102	-0.0102
		52	5260.0000	5260.0023	-0.0023
		54	5270.0000	5270.0073	-0.0073
		60	5300.0000	5300.0080	-0.0080
		62	5310.0000	5310.0107	-0.0107
		64	5320.0000	5320.0057	-0.0057
Tmax (50) °C	Vmin (102)V	100	5500.0000	5500.0083	-0.0083
		102	5510.0000	5510.0013	-0.0013
		110	5550.0000	5550.0036	-0.0036
		116	5580.0000	5580.0101	-0.0101
		134	5670.0000	5670.0069	-0.0069
		140	5700.0000	5700.0048	-0.0048

Test	Conditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0074	-0.0074
		54	5270.0000	5270.0047	-0.0047
		60	5300.0000	5300.0041	-0.0041
		62	5310.0000	5310.0053	-0.0053
		64	5320.0000	5320.0097	-0.0097
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0039	-0.0039
		102	5510.0000	5510.0020	-0.0020
		110	5550.0000	5550.0046	-0.0046
		116	5580.0000	5580.0060	-0.0060
		134	5670.0000	5670.0084	-0.0084
		140	5700.0000	5700.0038	-0.0038
		52	5260.0000	5260.0074	-0.0074
		54	5270.0000	5270.0047	-0.0047
		60	5300.0000	5300.0041	-0.0041
		62	5310.0000	5310.0053	-0.0053
		64	5320.0000	5320.0097	-0.0097
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0039	-0.0039
		102	5510.0000	5510.0020	-0.0020
		110	5550.0000	5550.0046	-0.0046
		116	5580.0000	5580.0060	-0.0060
		134	5670.0000	5670.0084	-0.0084
		140	5700.0000	5700.0038	-0.0038

Chain B

Test C	Conditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0028	-0.0028
		54	5270.0000	5270.0123	-0.0123
		60	5300.0000	5300.0088	-0.0088
		62	5310.0000	5310.0044	-0.0044
		64	5320.0000	5320.0100	-0.0100
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0073	-0.0073
		102	5510.0000	5510.0033	-0.0033
		110	5550.0000	5550.0141	-0.0141
		116	5580.0000	5580.0101	-0.0101
		134	5670.0000	5670.0105	-0.0105
		140	5700.0000	5700.0044	-0.0044
		52	5260.0000	5260.0033	-0.0033
		54	5270.0000	5270.0135	-0.0135
	Vmax (138)V	60	5300.0000	5300.0029	-0.0029
		62	5310.0000	5310.0139	-0.0139
		64	5320.0000	5320.0178	-0.0178
Tmax (50) °C		100	5500.0000	5500.0087	-0.0087
		102	5510.0000	5510.0162	-0.0162
		110	5550.0000	5550.0047	-0.0047
		116	5580.0000	5580.0046	-0.0046
		134	5670.0000	5670.0188	-0.0188
		140	5700.0000	5700.0064	-0.0064
		52	5260.0000	5260.0036	-0.0036
		54	5270.0000	5270.0093	-0.0093
		60	5300.0000	5300.0090	-0.0090
		62	5310.0000	5310.0151	-0.0151
		64	5320.0000	5320.0136	-0.0136
Tmax (50) °C	Vmin (102)V	100	5500.0000	5500.0172	-0.0172
		102	5510.0000	5510.0081	-0.0081
		110	5550.0000	5550.0049	-0.0049
		116	5580.0000	5580.0122	-0.0122
		134	5670.0000	5670.0153	-0.0153
		140	5700.0000	5700.0151	-0.0151

Test	Conditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0092	-0.0092
		54	5270.0000	5270.0149	-0.0149
		60	5300.0000	5300.0097	-0.0097
		62	5310.0000	5310.0106	-0.0106
		64	5320.0000	5320.0194	-0.0194
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0050	-0.0050
		102	5510.0000	5510.0105	-0.0105
		110	5550.0000	5550.0106	-0.0106
		116	5580.0000	5580.0119	-0.0119
		134	5670.0000	5670.0115	-0.0115
		140	5700.0000	5700.0070	-0.0070
		52	5260.0000	5260.0126	-0.0126
		54	5270.0000	5270.0111	-0.0111
		60	5300.0000	5300.0183	-0.0183
		62	5310.0000	5310.0095	-0.0095
		64	5320.0000	5320.0171	-0.0171
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0138	-0.0138
		102	5510.0000	5510.0145	-0.0145
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0108	-0.0108
		134	5670.0000	5670.0098	-0.0098
		140	5700.0000	5700.0127	-0.0127

Product	:	Access Point/Sensor
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (AC)

Chain A

Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0024	-0.0024
Tnom (20) oC	Vnom (120)V	138	5690.0000	5690.0046	-0.0046
		142	5710.0000	5710.0029	-0.0029
		144	5720.0000	5720.0064	-0.0064
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0016	-0.0016
Tnom (50) oC	Vnom (138)V	138	5690.0000	5690.0064	-0.0064
		142	5710.0000	5710.0044	-0.0044
		144	5720.0000	5720.0037	-0.0037
	Vnom (102)V	58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0036	-0.0036
Tnom (50) oC		138	5690.0000	5690.0027	-0.0027
		142	5710.0000	5710.0046	-0.0046
		144	5720.0000	5720.0033	-0.0033
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0025	-0.0025
Tnom (0) oC	Vnom (138)V	138	5690.0000	5690.0017	-0.0017
		142	5710.0000	5710.0039	-0.0039
		144	5720.0000	5720.0047	-0.0047
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0026	-0.0026
Tnom (0) oC	Vnom (102)V	138	5690.0000	5690.0021	-0.0021
		142	5710.0000	5710.0036	-0.0036
		144	5720.0000	5720.0039	-0.0039

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0024	-0.0024
Tnom (20) oC	Vnom (120)V	138	5690.0000	5690.0046	-0.0046
		142	5710.0000	5710.0029	-0.0029
		144	5720.0000	5720.0064	-0.0064
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0016	-0.0016
Tnom (50) oC	Vnom (138)V	138	5690.0000	5690.0064	-0.0064
		142	5710.0000	5710.0044	-0.0044
		144	5720.0000	5720.0037	-0.0037
	Vnom (102)V	58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0036	-0.0036
Tnom (50) oC		138	5690.0000	5690.0027	-0.0027
		142	5710.0000	5710.0046	-0.0046
		144	5720.0000	5720.0033	-0.0033
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0025	-0.0025
Tnom (0) oC	Vnom (138)V	138	5690.0000	5690.0017	-0.0017
		142	5710.0000	5710.0039	-0.0039
		144	5720.0000	5720.0047	-0.0047
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0026	-0.0026
Tnom (0) oC	Vnom (102)V	138	5690.0000	5690.0021	-0.0021
		142	5710.0000	5710.0036	-0.0036
		144	5720.0000	5720.0039	-0.0039

Chain B

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs