Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna)

CHAIN A

Channal No.	Frequency	Data Rate	Measurement Level	Required Limit	Decult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result
		MCS (0)	8.860	<13	Pass
100	5500	MCS (2)	9.630	<13	Pass
100	5500	MCS (4)	9.050	<13	Pass
		MCS (7)	9.410	<13	Pass

Agilent Spectrum Analyzer - Sw	vept SA				
Contor From 5 500		SENSE:INT	ALIGNAUTO	02:56:24 PM Aug 03, 2013 TRACE 1, 2, 3, 4, 5, 6	Frequency
Center Freq 5.5000	PNO: Fast G	Trig: Free Run #Atten: 30 dB	and g tipertake	TYPE A MWWWW DET A P N N N N	A started
10 dB(div Ref 20.00	dBm		Mkr1	5.503 350 GHz 9.30 dBm	Auto Tune
		N Longer	¢1 2		Center Freg
0.00			V.	Non Mary	5.500000000 GHz
-20.0				All and a second	Start From
-30.0				And State St	5.487500000 GHz
-50.0					Stop Freq
-70.0					5.512500000 GHz
Center 5.50000 GHz #Res BW 1.0 MHz	#VBW	/ 3.0 MHz	Sweep	Span 25.00 MHz 1.00 ms (1001 pts)	CF Step 2.500000 MHz
MKR MODE TRC SCL		Y FU	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 2 f 2 N 1 f	5.503 350 GHz 5.505 250 GHz	9.30 dBm 0.44 dBm			
3 4 5					Freq Offset 0 Hz
6 7					
9					
11 12					
MSG			STATU	5	

Agile	nt Spe	etrur	n Ana	lyzer - Sv	vept SA								
DKI I	RL.		RF	50 \$	2 AC			SENSE:INT		ALIGNAUTO	02:58:47	PM Aug 03, 2013	Exclusion
Ce	nter	Fre	eq 5	.5000	00000	GHZ PNO: Fast IFGain:Low	Trig: F #Atten	ree Run : 30 dB	#Av	g Type: RMS	TRA T'	ACE 1 2 3 4 5 6 YPE A MWWWWW DET A P N N N N	Frequency
10 0	B/div	,	Ref	20.00	dBm					Mkr1	5.495 10	600 GHz .29 dBm	Auto Tune
10. 0.0			and and	and a state of the	an far far far start at a	1940mhola	Maria Marina da	Americanite	in the second		and a second	** Valence	Center Freq 5.500000000 GHz
-20.1 -30.1 -40,1			-									and the second	Start Freq 5.487500000 GHz
-50.1 -60.1 -70.1) 												Stop Freq 5.512500000 GHz
Cei #R	nter es Bl	5.50 W 1	0000 .0 N) GHz IHz		#VI	3W 3.0 MI	łz	142	Sweep	Span 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR 1	MODE	1RC 2	SCL f		5.495	600 GHz	¥ 10.29	dBm	FUNCTION	FUNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
23456	N	1	f		5.504	975 GHz	0.66	dBm					Freq Offset 0 Hz
7 8 9 10													
12 MSG								-	_	STATU	5		

RL		RF	50 Ω	AC		SE	NSE:INT		ALIGN AUTO	03:00:37	PM Aug 03, 2013	-
enter	Fre	q 5	.50000	00000 G	Hz	Trig: Fre	e Run	#Avg	Type: RMS	TRA T	CE 1 2 3 4 5 6	Frequency
-			_	6	Gain:Low	#Atten: 3	0 dB			2.1.1.1	DET A P N N N N	Auto Tuno
dB/di	v	Ref	20.00	dBm					Mkr1	5.496 9	375 GHz 53 dBm	AutoTune
					•1		2	2			×	Contor From
00	_		and the state of t		and the purchased in state of the	THE PROPERTY OF THE PROPERTY O	ulluman	P	long of the state	and the second s	1.00	5.50000000 GHz
0.0	Les IV	- war				_				1.	Then the me	
0.0	Mpres -	1			-			1			a swilling	Oteast France
0	Non-thirty	in.		-			-	1			THROUGH AND	5 487500000 GHz
.0				-		1	-	-	-	-		
.0				-		-		-	-			Ctop Eron
0.0	_							1				5.512500000 GHz
0.0										1		
enter les B	5.50 W 1	0000 .0 M	GHz Hz		#VB	W 3.0 MH:			Sweep	Span 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
	TRC	SCL		×		Y	(FU	NCTION	FUNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
N 2 N	2	f		5.496 3	75 GHz 25 GHz	9.53 d	Bm Bm					
3	-	-				0.7.1				-		Freq Offset
5								Î		-		0 Hz
7												
8		-										
0		-	_				_	_		-		
2			_									
G									STATU	5		

Agilent Spectrum Analyzer - Swept SA				
RL RF 50 Ω AC Center Freq 5.500000000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	03:02:14PM Aug 03, 2013 TRACE 1 2 3 4 5 6	Frequency
PNO: Fast 🦕 IFGain:Low	#Atten: 30 dB		DET A P N N N N	Auto Tune
10 dB/div Ref 20.00 dBm		Mkr1	5.502 150 GHz 9.97 dBm	Auto Turie
10.0	and the state of the state	1	sturies.	Center Freq
0,00		Y Y	- Alasticana	5.500000000 GHz
-10.0			Comment was not	
-30.0		4 4 4	and	Start Freq
-40.0				3.487300000 8112
-50.0				Stop Freq
-70.0				5.512500000 GHz
Center 5.50000 GHz #Res BW 1.0 MHz #VBW	3.0 MHz	Sweep	Span 25.00 MHz 1.00 ms (1001 pts)	CF Step 2.500000 MHz
MKR MODE TRC SCL X	A OZ dBas	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 5.504 325 GHz	0.56 dBm			
4 5				0 Hz
6 7				
8 9				
10 11 12				
		CTATA		

CHAIN B

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Posult
Channel NO.	(MHz)	(Mbps)	(dB)	(dB)	Kesun
		MCS (0)	9.120	<13	Pass
100	5500	MCS (2)	8.950	<13	Pass
100	5500	MCS (4)	9.520	<13	Pass
		MCS (7)	8.970	<13	Pass

Agilent Sp	ectru	m Ana	lyzer - Swe	ept SA								
Cente	r Fre	RF eq 5	50 Ω .50000	AC 00000 GH	z	SENS	E:INT	#Avg T	ALIGNAUTO	03:10:47 TRA T	PM Aug 05, 2013 CE 1 2 3 4 5 6 /PE A MWWWW	Frequency
10 dB/d	iv	Ref	20.00 c	iFC	io: Fast G Sain:Low	#Atten: 30	dB		Mkr1	5.501 : 5.	250 GHz 39 dBm	Auto Tune
Log 10.0			and the second	²	awan daga awas	homeningan	1 1		nth Younderton you	an My		Center Freq 5.50000000 GHz
-10.0 -20.0 -30.0 -40.0	anaportal	april a	1								Martin Martin Martin	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0												Stop Free 5.512500000 GHz
Center #Res E	5.5 3W 1	0000 .0 N	GHz IHz		#VB\	N 3.0 MHz			Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR MOD	E TRO	f		5.501 25) GHz	5.39 dBr	n Fun	CTION F	UNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
2 N 3 4 5 6	1	r		5.494 25	JGHZ	-3.73 dBr	n					Freq Offset 0 Hz
7 8 9 10 11												
MSG	-								STATU	5		

Agilent Spectrum Analyzer - Swept SA				
Center Freq 5.500000000 GHz	SENSE;INT	ALIGNAUTO #Avg Type: RMS	03:13:12 PM Aug 05, 2013 TRACE 1 2 3 4 5 6	Frequency
PNO: Fast 🕞 IFGain:Low	Trig: Free Run #Atten: 30 dB		DET A P N N N N	Auto Turo
10 dB/div Ref 20.00 dBm		Mkr1	5.495 700 GHz 5.58 dBm	Auto Tune
10.0 0.00	an and a standard and	and 200 de unionens	www.water	Center Freq 5.50000000 GHz
-10.0			Contraction of the second	Start Freq 5.487500000 GHz
-50.0				Stop Freq 5.512500000 GHz
Center 5.50000 GHz #Res BW 1.0 MHz #VBW	/ 3.0 MHz	Sweep	Span 25.00 MHz 1.00 ms (1001 pts)	CF Step 2 500000 MHz
MKF MODE TRC SCL X 1 N 2 f 5.495 700 GHz	5.58 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 5.503 275 GHz 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-3.37 dBm			Freq Offset 0 Hz
9 10				
12 Msg		STATU	s	

gilent Spe	etrum /	Inalyzer - Sw	rept SA		OEM	ICE (TAIT)		ALIGNALITO	02:15:001	MAUN05 2012	
enter	Freq	5.5000	00000 GH	IZ	Trig: Free	Run	#Avg Typ	e: RMS	TRA T	CE 1 2 3 4 5 6 /PE A MWWWW	Frequency
			lÉ	Gain:Low	#Atten: 30) dB	-	Mkr1	5.504	D25 GHz	Auto Tune
0 dB/div	/ R	ef 20.00	dBm		-		1	-	6.	15 dBm	
10.0 0,00		and the second s	andregrander	panto mananana	and tomerany wo	un-un-	man 1/2	ether from the second	Survey Call		Center Free 5.500000000 GH
10.0 20.0 	Marken	North Contraction of the second secon				1			X	Mines Arrenting up	
30.0	and a state of the	ľ				-				Mar and and and and a	Start Free 5.487500000 GH:
50.0 60.0										4	Stop Free
70.0											5.512500000 GH
Center Res B	5.500 W 1.0	00 GHz MHz		#VB\	V 3.0 MHz			Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Ster 2.500000 MH
KR MODE	TROS		×		Y C 45 JI	FU	NCTION	ICTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Ma
2 N 3 4 5	1 1		5.504 02	0 GHz	-3.37 dE	3m					Freq Offse 0 H
6 7 8 9											
10 1 2											
3G								STATU	5		

Agilent Spe	ectrur	n Ana	lyzer - Sw	ept SA									
Center	Fre	RP eq 5	50 Ω .50000	AC 00000 G	Hz	Tria: Fi	SENSE:IN	##	vg Ty	ALIGNAUTO	03:16:45 TRA	M Aug 05, 2013 CE 1 2 3 4 5 6 PE A MARAAAA	Frequency
				IF	'NO: Fast Gain:Low	#Atten:	30 dB			Mkr1	5.496	TAPNNNN 275 GHZ	Auto Tune
10 dB/div Log 10.0	V	Ref	20.00	dBm	1	- and a second second	~ihour	-a	ayarana	Q ²	.c		Center Freq 5.50000000 GHz
-10.0 -20.0 -30.0 -40.0	when	100	ľ								7	And a state of the	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0													Stop Freq 5.512500000 GHz
Center #Res B	5.50 W 1	0000 .0 N	GHz Hz		#VE	SW 3.0 MH	łz	11		Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKE MODE	180 2	SCL f		× 5.496 27	5 GHz	¥ 5.63	dBm	FUNCTION	FL	INCTION WIDTH	FUNCTI	DN VALUE	<u>Auto</u> Man
2 N 3 4 5 6	1	r		5.505 90	DO GHZ	-3.34	dBm						Freq Offset 0 Hz
7 8 9 10													
12 MSG		1					-	_		STATU	5		

Channal No.	Frequency	Data Rate	Measurement Level	Required Limit	Docult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesult
		MCS (0)	9.610	<13	Pass
100	5500	MCS (2)	9.200	<13	Pass
100	5500	MCS (4)	9.790	<13	Pass
	-	MCS (7)	9.770	<13	Pass

CHAIN C

Agilent	Spec	trum	Analyzer	- Swept	SA.								
Cent	er f	Frec	15.50	50 Ω 10000	000 GI	HZ NO: East	Trig:	SENSE (INT	#Avg Typ	e: RMS	04:19:44 F TRA TY	M Aug 09, 2013 CE 1 2 3 4 5 6 PE A MWWWW	Frequency
10 dB	div	F	ef 20	.00 dE	iF 3m	Gain:Low	#Atter	1:30 dB		Mkr1	5.494 7 8.	700 GHz 98 dBm	Auto Tune
10.0 -			When we want the		sur-lowed	1 magellandrock	&****	harine after a farmer of	- <u>a</u> lan g ²	at man and a start	and a second and a second	a pla	Center Freq 5.500000000 GHz
-20.0 -30.0 -	www.	antrand	/								1	Margaret Margaret	Start Freq 5.487500000 GHz
-50.0 - -60.0 - -70.0 -		_		_									Stop Fred 5.512500000 GH
L Cento #Res	er 5 BW	.500 V 1.(00 GI MHz	dz		#VE	3W 3.0 M	Hz		Sweep	Span 2 1.00 ms /	25.00 MHz (1001 pts)	CF Step 2.500000 MH:
	IDE N	180 S	60 6		× 5.494 70	0 GHz	¥ 8.9(3 dBm	UNCTION FU	NCTION WIDTH	FUNCTION	ON VALUE	<u>Auto</u> Mar
2 3 4 5 6	N	1			5.503 62	5 GHz	-0.6.	} dBm					Freq Offse 0 H;
7 8 9 10 11													
12 MSG				_						STATU	s		

Agiler	t Spectri	um Ana	lyzer - Swi	ept SA				1			ir.
Cen	iter Fr	req 5	50.00	AC 00000 GH PN IEG	Z O:Fast G ain:Low	Trig: Free Ru #Atten: 30 dB	#Av in 3	g Type: RMS	04:21:19P TRAC TY D	M Aug 09, 2013 ^{2E} 1 2 3 4 5 6 PE A M MMMM ET A P N N N N	Frequency
10 d	B/div	Ref	20.00 0	iBm	unicon			Mkr1	5.505 C 8.	50 GHz 61 dBm	Auto Tune
Log 10.0 0.00			ANDREAM	a factor of the states	i kanadhi (hur	La person and a person and a person of the	ministration	un my Dimman	and the and the standy		Center Freq 5.50000000 GHz
-10.0 -20.0 -30.0 -40.0	MARINA	and a start	1						- And	Philipsed under presson	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0											Stop Freq 5.512500000 GHz
Cen #Re	ter 5.5 s BW	000 1.0 N	0 GHz AHz		#VB\	N 3.0 MHz		Sweep	Span 2 1.00 ms (5.00 MHz 1001 pts)	CF Step 2.500000 MHz Auto Man
1 2 3 4 5 6	N 2 N 1	f		\$ 5.505 050 5.505 075	GHz GHz	8.61 dBm -0.59 dBm	FUNCTION		FUNCTU		Freq Offset 0 Hz
7 8 9 10 11											1
MSG								STATU	s		
Agiler	it Spectri	um Ana	ılyzer - Swi	ept SA				1			
Cen	iter Fr	eq 5	5.5000C	AC 100000 GH PN IFG	Z O: Fast G ain:Low	Trig: Free Ru #Atten: 30 dB	#Av In 3	g Type: RMS	04:24:24 P TRAC TY D	M Aug 09, 2013 2E 1 2 3 4 5 6 PE A MWWWW ET A P N N N N	Frequency
10 d	B/div	Ref	20.00 0	Bm	1			Mkr1	5.494 3 9.	675 GHz 64 dBm	Auto Tune
10.0 0.00 -10.0	140	and	-	prestad rates	ารการราชการระ	and and a second second second	yan tarah yang karang karan Sang karang ka	-main that A Zeres in	And wanter and	heren	Center Freq 5.500000000 GHz
-20.0 -30.0 -40.0	and the second	-			_					Marthan and a second	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0											Stop Freq 5.512500000 GHz
Cen #Re	ter 5.5 s BW	0000 1.0 N	0 GHz AHz		#VB\	N 3.0 MHz		Sweep	Span 2 1.00 ms (5.00 MHz 1001 pts)	CF Step 2.500000 MHz
MKE 1 2 3	N 2 N 1	f f		5.494 375 5.505 850	GHz GHz	9.64 dBm -0.15 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION	IN VALUE	Freq Offset
4 5 6 7 8											0 Hz
9 10 11 12											
HSG								STATU	2		

Agilent S	pectru	m Ana	yzer - Sw	ept SA								
Cente	r Fr	eq 5	.5000	AC 00000 GI	łz	SENSE:	INT #Av	g Type: RM	. <u>Што </u> 5	04:26:04 Pf TRAC TYP	Aug 09, 2013 E 1 2 3 4 5 6 E A MWWWWW	Frequency
0		-	3.6	IF	Gain:Low	#Atten: 30 dE	3	M	lkr1 5.	502 4	00 GHz	Auto Tune
10 dBid	div	Ref	20.00	dBm	-	1				9.4	13 dBm	
10.0 — 0.00 —			Alertonia	and on the address inter	e hip man day white	unger marchael Arrent for Los	and the market water	02				Center Freq 5.50000000 GHz
-10.0	ale maller	AN /	1							1	who who who who who	
-30.0	WY BALLUN									=	- Province and a solite of the	Start Freq 5.487500000 GHz
-50.0								_				Stop Freq
-70.0 —										-		5.512500000 GHz
Cente #Res I	r 5.5 BW 1	0000 1.0 M	GHz Hz		#VB	W 3.0 MHz		Swe	ep 1.0	Span 2 10 ms (5.00 MHz 1001 pts)	CF Step 2.500000 MHz
MKE MOI	DE TRO	SCL f		× 5.502 40	0 GHz	9.43 dBm	FUNCTION	FUNCTION	VIDTH	FUNCTIO	N VALUE	<u>Auto</u> Man
2 N 3 4 5 6	1	f		5.504 02	5 GHz	-0.34 dBm						Freq Offset 0 Hz
7 8 9	-											
11 12	-											
MSG									STATUS			

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna)

Chain A

Channal No.	Frequency	Data Rate	Measurement Level	Required Limit	Degult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result
		MCS (0)	8.480	<13	Pass
102	5510	MCS (2)	8.920	<13	Pass
102	5510	MCS (4)	9.480	<13	Pass
		MCS (7)	9.710	<13	Pass

	M Aug 03, 2013	03:55:29	ALIGN AUTO		SENSE:IN		AC	50 Ω	RF		L	R
Frequency	E 1 2 3 4 5 6 E A MWWWW	TR/ T	Type: RMS	#Avg	Trig: Free Rur	Z	0000 GH	.51000	eq 5	Fre	nter	en
Auto Tur	ET A P N N N N				#Atten: 30 dB	ain:Low	IFC				_	
Auto Tur	00 GHz 43 dBm	5.523	Mkr				Bm	20.00 c	Ref	v	B/div	0 dl
Center Fre		1.1	1 ¹				1					og 10.0
5.510000000 GH		man and	\sim	mann				w			_	0,00
i	Mary	- Ca	-		Y			1	And		-	10.0
Start Fre	Marth Start)							and a	MAN	HINA	20.0
5.485000000 GH	Sound have a property	_					1.1		all .	a sugar	-m	40.0
		_									-	50.0
Stop Fre	1	_							_		-	30.O
5.555000000 GF		-								_	21.	70.0
CF Ste 5.000000 MH	0.00 MHz 1001 pts)	Span I.00 ms	Sweep		3.0 MHz	#VBW		GHz Hz	1000 1.0 M	5.5 W 1	ter s B	en Re
<u>Auto</u> Ma	IN VALUE	FUNCT	FUNCTION WIDTH	FUNCTION	Y		×		SCL	TRC	MODE	1K.R
100.400					5.43 dBm -3.05 dBm	GHz GHz	5.523 00		f f	2	N	1
Freq Offs										-		3
0 H												5
						-				-		7
												8
										-	-	9
												11
								_				12

Agilent Spec	ctrum	Analy	zer - Swept SA								
UM RL	1	RF	50 Ω AC			SENSE:IN	IT	ALIGNAUTO	03:59:06 PM Aug 0	3,2013	Frequency
Center	Fre	q 5.	5100000	DO GHZ PNO: Fas IFGain:Lo	st 🖵	Trig: Free Rui #Atten: 30 dB	n #Av	g Type: RMS	TYPE A MU DET A P	3456 MMM NNNN	riequiney
10 dB/div	P	Ref 2	20.00 dBm					Mkr	1 5.499 40 0 6.06 c	GHz IBm	Auto Tune
10.0 0.00		and		1 warmenter warmenter	winter	- Martine and and		2. Jan	and make and the		Center Freq 5.510000000 GHz
-20.0 -30.0 -40.0	a lite and	we /							1 month	Lappart .	Start Freq 5.485000000 GHz
-50.0 -60.0 -70.0											Stop Freq 5.535000000 GHz
Center : #Res BV	5.51 N 1.	000 0 MI	GHz Hz	#	VBW	3.0 MHz		Sweep	Span 50.00 1.00 ms (1001	MHz pts)	CF Step 5.000000 MHz
MKR MODE	TRC 2	SCL f	t in the second se	5.499 40 GHz		Y 6.06 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALU		<u>Auto</u> Man
2 N 3 4 5 6	1	f	(5.520 15 GHz		-2.90 dBm					Freq Offset 0 Hz
7 8 9 10 11											
12 MSG		-	_					STATUS			

Agilent Sp	ectru	m Anal	/zer - Swe	pt SA								
Center	Fre	RF eq 5.	50 Ω 51000	AC 0000 G	Hz	Trig: Fre	e Run	#Avg Typ	ALIGNAUTO	04:05:551 TRA T	PM Aug 03, 2013 CE 1 2 3 4 5 6 PE A MWWWWW	Frequency
10 dB/di	v	Ref	20.00 d	ii IBm	Gain:Low	* #Atten: 3	0 dB		Mki	1 5.505 6.	30 GHz 62 dBm	Auto Tune
10.0			formation .	ip Nove Up to be	on all the second	1 producesore of	-		and the matter of the second	moundary of the		Center Freq 5.510000000 GHz
-20.0 -20.0 -30.0 -40.0	a Willing	Never	P								and any and a construction	Start Freq 5.485000000 GHz
-50.0 -60.0 -70.0												Stop Freq 5.535000000 GHz
Center #Res B	5.5 W 1	1000 .0 M	GHz Hz		#VB	W 3.0 MHz			Sweep	Span : 1.00 ms	50.00 MHz (1001 pts)	CF Step 5.000000 MHz
		SCL		×	30 GHz	Y 6.62 d	FL Bm	NCTION FU	NCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
2 N 3 4 5	1	f		5.518	35 GHz	-2.86 d	Bm					Freq Offset 0 Hz
7 8 9 10 11												
MSG	1								STATU	s		

Agilent Spectrum Analyzer - Swept SA				
02/ RL RF 50Ω AC Center Freq 5.510000000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	04:27:20 PM Aug 03, 2013 TRACE 1 2 3 4 5 6 TYPE A MWAAWAA	Frequency
IFGaintLow	#Atten: 30 dB	Mkr	1 5.525 10 GHz 6.71 dBm	Auto Tune
Log 10.0 0.00	and the second		1 Normanian Article	Center Freq 5.510000000 GHz
-0.0 -20.0 -30.0 -40.0			And the second second	Start Freq 5.485000000 GHz
-50.0				Stop Freq 5.535000000 GHz
Center 5.51000 GHz #Res BW 1.0 MHz #VBW	3.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MHz
MKE MODE TRC SCL X 1 N 2 f 5.525 10 GHz	6.71 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N T 5.519 15 GHZ 3 4 5 6	-3.00 dBm			Freq Offset 0 Hz
7 8 9 10 11				
12 Msg		STATUS		

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Pacult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesult
		MCS (0)	9.230	<13	Pass
100	5510	MCS (2)	9.320	<13	Pass
102	5510	MCS (4)	9.680	<13	Pass
		MCS (7)	9.610	<13	Pass

Chain B

Agilen	t Spe	ctrur	n Ana	yzer - Sw	vept SA				SEN	SEMINT		ALTG		04-22-3	9PM Aug 05, 2013	
Cen	ter	Fre	q 5	.5100	0000	GH	Z IO: Fast	- Tr	ig: Free	Run	#Avg	Type: R	MS	T	RACE 1 2 3 4 5 6 TYPE A MINIMUM	Frequency
i.	_			200		IFO	ain:Low	##	tten: 30	dB			Mkr	1 5.49	7 45 GHz	Auto Tune
10 de	3/div	1	Ref	20.00	dBm	_	_	_							1.77 dBm	
10.0 0.00		_		-	-	1-	خرنونو م	-	cred well	h.M.			2	sander		Center Fred 5.510000000 GHz
-10.0 -20.0	.1.1	with	M.M.	¥						(3	Man Marthan	Start Free
-30.0 -40.0		and Service	Warman					-	-		*				and and a second a	5.485000000 GH
-50.0 -60.0					-			+			-					Stop Fred
-70.0	÷														1.000	5.535000000 GH
Cen #Re	ter : s Bl	5.5′ W 1	1000 .0 M	GHz Hz		1	#VE	3.0 W	MHz		A -	SI	weep	Spar 1.00 m	50.00 MHz (1001 pts)	CF Step 5.000000 MH:
MKR	MODE	TRC	SCL		×				Y	(FU	NCTION	FUNCTIO	N WIDTH	FUNC	TION VALUE	<u>Auto</u> Mar
23	N	1	f		5.	497 48 521 48	5 GHz 5 GHz	-	1.77 dB 7.46 dB	im im	_		_			Freq Offse
4 5 6													_			0 H:
7 8 9							-			-						
10 11 12																
MSG												10	STATU	5		

RL RF SOR SENSE:INT ALTONAUTO De4:26:49RM Aug 05, 2013 Frequency Center Freq 5.51000000 GHz Trig: Free Run IFGaintLow Trig: Free Run #Atten: 30 dB #Avg Type: RMS Trixe: T: 2: 34 5: 6 TYPE IA MAMANY DETIA P NNNN Frequency 00 dB/div Ref 20.00 dBm 2.20 dBm 2.20 dBm Center Free 5.510000000 GH 100 2.20 dBm 2.20 dBm 1 Center Free 5.510000000 GH 200 2.20 dBm 2.20 dBm 5.510000000 GH 5.510000000 GH 200 2.20 dBm 2.20 dBm 5.485000000 GH 5.485000000 GH 400 300 300 300 5.53500000 GH 5.53500000 GH 500 5.51000 GHz #VBW 3.0 MHz Sypan 50.00 MHz 5.53500000 GH 1 1 5.520 85 GHz 2.20 dBm 5.00000 MHz 700 1 5.520 85 GHz 2.20 dBm 5.00000 MHz 700 1 5.520 85 GHz 2.20 dBm 5.00000 MHz 712 dBm 1 5.520 85 GHz 2.20 dBm 5.000000 MH
Center Freq 5.510000000 GHz PN0: Fast IFGainLow Trig: Free Run #Atten: 30 dB #Avg Type: RMS Trice [12:3:4:5:6] Prequency 10 dB/div Ref 20.00 dBm 2.20 dBm Auto Tun 00 00 00 00 00 00 00 00 00 00 00 00 00
Mkr1 5.520 85 GHz 2.20 dBm Auto Tune 10 dB/div Ref 20.00 dBm 2.20 dBm 10 dB/div 2.20 dBm 1 Center Free 10 dB/div 2.20 dBm 1 1 Center Free 30.0 40.0 1 1 1 1 40.0 1 1 1 1 1 1 40.0 1<
Og 1 Center Free 0.00 2.4 1 5.51000000 GH 0.00 30.0 30.0 5.48500000 GH 0.00 0 0 0 0 0.00 0 0 0 0 0 0.00 0 0 0 0 0 0 0.00 0 0 0 0 0 0 0 0.00 0<
100 200 3
-50.0 -50.0 -50.0 -50.0 -50.0 -50.0 60.0 -70.0 -50.0 -50.0 -50.0 -50.0 70.0 -50.0 -50.0 -50.0 -50.0 -50.0 Center 5.51000 GHz #VBW 3.0 MHz Span 50.00 MHz CF Step #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) -50.00000 MH 1 N 2 f 5.520 85 GHz 2.20 dBm 2 N 1 f 5.498 20 GHz -7.12 dBm 3 - - - - - 4 - - - - - 4 - - - - - 4 - - - - - 5 - - - - -
Center 5.51000 GHz Span 50.00 MHz CF Step 5.000000 MHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) 5.000000 MHz MRE M00E HRG ISCL X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH FUNCTION WIDTH Auto Mat 1 N 2 f 5.520 85 GHz 2.20 dBm Auto Mat 2 N 1 f 6.498 20 GHz -7.12 dBm Freq Offsee Freq Offsee 0 H
Missi Model TRC Scl. X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Mail 1 N 2 f 5.520 85 GHz 2.20 dBm Auto Mail Auto Mail 2 N 1 f 5.498 20 GHz -7.12 dBm Freq Offsee Freq Offsee Freq Offsee 0 H Freq Offsee
2 N 1 f 5.498 20 GHz -7.12 dBm 3 4 5 9 0 0 Hz -7.12 dBm 9 0 Hz -7.12
9 9 10

Agilent Spectrum Analyzer - Swept SA				
Center Freq 5.510000000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	04:29:15 PM Aug 05, 2013 TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency
IFGain:Low	#Atten: 30 dB	Mkr	1 5.522 30 GHz 2.70 dBm	Auto Tune
	2		mbra	Center Freq 5.510000000 GHz
-20 0 -30.0 Warming and the			1 and many more	Start Freq 5.485000000 GHz
-50.0				Stop Freq 5.535000000 GHz
Center 5.51000 GHz #Res BW 1.0 MHz #VB	W 3.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MHz
MKR MODE TRC SCL X 1 N 2 f 5.522 30 GHz 2 N 2 f 5.522 30 GHz	2.70 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N / I 0.504 35 5H2 3 4 5 6 6	-0.30 UDIII			Freq Offset 0 Hz
7				
12 Msg		STATU	5	

M RL RF S0.2 AC SENSE:INT ALIGNAUTO 04:31:27PM Aug05, 2013 Frequency Center Freq 5.510000000 GHz Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS IRACE [1:23:45:6] Frequency 0 dB/div Ref 20.00 dBm 2.03 dBm Center Free 5.510000000 GHz Auto Tur 10 dB/div Ref 20.00 dBm 2.03 dBm Center Free 5.510000000 GHz Start Free 200 200 200 200 5.510000000 GHZ Start Free 30.0 40.0 40.0 40.0 5.35000000 GHZ Start Free 50.0 50.0 5.35000000 GHZ 5.535000000 GHZ Start Free	Agilent Spectrum Analyze	er - Swept SA				
Center Freq 5.510000000 GHz #Avg type: KMS Tride Run PRO: Fast Trig: Free Run #Avg type: KMS Tride Run Mache 1: 23 45 6 Tride Run Mkr1 5.514 45 GHz Auto Tur 10 dB/div Ref 20.00 dBm Center Fre 10.0 20.0 1 Center Fre 5.510000000 GH Start Fre 30.0 40.0 60.0 60.0 60.0 5.485000000 GH Start Fre 5.535000000 GH 5.535000000 GH 5.535000000 GH Start Fre 5.535000000 GH Start Fre	UN RL RF	50 Ω AC	SENSE:INT	ALIGNAUTO	04:31:27 PM Aug 05, 2013	Frequency
Mkr1 5.514 45 GHz Auto Tur 10 dB/div Ref 20.00 dBm 2.03 dBm 100 1 5.51000000 GH 100 2 1 5.51000000 GH 100 1 1 5.51000000 GH 200 1 1 1 200 1 1 1 1 200 1 1 1 1 200 1 1 1 1 1 200 1 1 1 1 1 1 1 200 1	Center Freq 5.5	10000000 GHz PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	#Avg Type: RMS	TYPE A MWWWW DET A P N N N N	Troquency
Log 10.0 2	10 dB/div Ref 20	0.00 dBm		Mkr	1 5.514 45 GHz 2.03 dBm	Auto Tune
Start Free Start Free 30.0	10.0 0.00	2		↓ ¹	Concernant de la concerna	Center Freq 5.510000000 GHz
-50.0 -60.0 -20.0	-20.0 -30.0 -40.0				Jan Market and State	Start Freq 5.485000000 GHz
	-50.0					Stop Freq 5.535000000 GHz
Center 5.51000 GHz Span 50.00 MHz CF Ste #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) 5.000000 MF	Center 5.51000 G #Res BW 1.0 MH	Hz z #VBW	3.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MHz
MIRE MODEL TRO SCI. X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Ma	MKR MODE TRC SOL 1 N 2 f	X 5.514 45 GHz	2.03 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 F 5.49/ 80 GHz -/.58 dBm Freq Offset Freq Offset 01	2 N 1 F 3 4 5 6	5.497 80 GHZ	-7.58 dBm			Freq Offset 0 Hz
7	7 8 9 10					
	12			CTATU		

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Pacult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesult
		MCS (0)	10.070	<13	Pass
100		MCS (2)	9.460	<13	Pass
102	5510	MCS (4)	9.840	<13	Pass
		MCS (7)	9.220	<13	Pass

Chain C

Agilent Spe	ctrum /	nalyzer - S	wept SA								
Center	Freq	€ 50 5.5100	Ω AC	łz	SENSE	INT	#Avg Typ	ALIGNAUTO e: RMS	05:05:281 TRA	PM Aug 09, 2013 CE 1 2 3 4 5 6	Frequency
			P IF	NO: Fast G Gain:Low	#Atten: 30 d	B		Mkr	1 5.523	65 GHz	Auto Tune
10 dB/div Log 10.0	R		<u>авт</u>	408m-soughares	and		alan water dat	1 menoriles			Center Freq 5.510000000 GHz
-20.0 -30.0 -40.0	and the second								X	American marine	Start Freq 5.485000000 GHz
-50.0 -60.0 -70.0											Stop Freq 5.535000000 GHz
Center : #Res B\	5.510 N 1.0	00 GHz MHz		#VB\	V 3.0 MHz			Sweep	Span : 1.00 ms	50.00 MHz (1001 pts)	CF Step 5.000000 MHz
MKE MODE	TRC S		× 5.523 6	5 GHz	5.90 dBn	FUNCTI	JN FUN	ICTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
2 N 3 4 5 6			5.498 0	5 GHZ	-4.17 abr						Freq Offset 0 Hz
7 8 9 10 11											
MSG		-				1	-	STATUS			

gilent Spectrum Analyzer - Swept SA				
RL RF 50 Q AC	SENSE:INT	ALIGNAUTO	05:07:00 PM Aug 09, 2013	- Contraction
enter Freq 5.510000000 G	HZ NO: Fast C Gain: I nw #Atten: 30 dB	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A MWWWW DET A P N N N N	Frequency
o dB/div Ref 20.00 dBm	Culletow	Mkr	1 5.523 35 GHz 5.30 dBm	Auto Tune
00 10.0 0.00	- all all and a state and a state and	in manual 2 minutes	manade the	Center Freq 5.510000000 GHz
20.0 www.www.www.www.www.www.www.www.www.			and a second and a	Start Freq 5.485000000 GHz
00				Stop Freq 5.535000000 GHz
enter 5.51000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MHz
KR MODE TRC SCL ×	35 GHz 5.30 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 5.5194 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 GHz -4.16 dBm			Freq Offset 0 Hz
5 7 8 9 0 0				
2		CTATIN		

RL R	F 50.0	AC		SEL	SEANT	-	ALIGNAUTO	05:13:03	M Aug 09, 2013	
enter Freq	5.51000	0000 GH	lz NO: Fast ⊆	Trig: Free	Run	#Avg Ty	pe: RMS	TRA T\	CE 123456 PE A MWWWW	Frequency
uta da		IF	Gain:Low	#Atten: 30	0 dB	-	Mkr	1 5.497	10 GHz	Auto Tune
dB/div Re	ef 20.00 c	IBm		1		1		5.		V
.0	manin	emalura	12 march	matulan	-	alumatarila	meldanessappeleman	Americana .		Center Freq
.0	-		V			-		-	un north	0.01000000 0112
0 .0								1	and the start	Start Freq
.0									and the states	5.485000000 GHz
										Stop Freq
.0										5.535000000 GHz
nter 5.510 es BW 1.0	00 GHz MHz		#VBV	/ 3.0 MHz	e .	1.	Sweep	Span : 1.00 ms	50.00 MHz (1001 pts)	CF Step 5.000000 MHz
R MODE TRC SO	u)	×		Y	EUN	TION FL	INCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
N 2 f N 1 f		5.497 1 5.500 8	0 GHz 5 GHz	5.71 di -4.13 di	3m 3m					
3 4 5					-					Freq Offset 0 Hz
3 7										
1								_		
							STATUS			

Agilent Spectrum Analyzer - Swept SA				
RL RF 50 Ω AC Center Freq 5.510000000 GHz AC AC AC	SENSE(INT)	ALIGNAUTO #Avg Type: RMS	05:15:33 PM Aug 09, 2013 TRACE 1 2 3 4 5 6 TYPE & MIMMAN	Frequency
PNO: Fast IFGain:Low	#Atten: 30 dB	Mki	1 5.517 40 GHz 5.49 dBm	Auto Tune
	Korthole within the part of the	1	Automany .	Center Freq 5.510000000 GHz
-10.0 -20.0 -30.0 -40.0				Start Freq 5.485000000 GHz
-60.0				Stop Freq 5.535000000 GHz
Center 5.51000 GHz #Res BW 1.0 MHz #VB	W 3.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MHz
MKR MODE TRC SCL X 1 N 2 f 5.517 40 GHz	5.49 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 5.499 85 GHz 3 4	-3.73 dBm			Freq Offset 0 Hz
7 8 9 10 11				
12 Msg		STATU	s	

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna)

CHAIN A

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Decult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result
		MCS (0)	8.010	<13	Pass
100	5500	MCS (2)	7.730	<13	Pass
100	5500	MCS (4)	9.620	<13	Pass
		MCS (7)	8.670	<13	Pass

RL		RF 50 Ω	AC	SENSE:II	m l	ALIGNAUTO	07:39:46	PM Aug 09, 2013	Fraguanay
enter	Fre	q 5.50000	00000 GHz	Trig: Free Ru	#Avg T	ype: RMS	TRA T	VCE 1 2 3 4 5 6	Frequency
-			IFGain:Lo	w #Atten: 30 dB			2.4	DETAPNNNN	
) dB/di	v F	Ref 20.00	dBm			Mkr1	5.506 : 12	325 GHz .55 dBm	Auto Tun
^g				2	an and a state of	91		2.5	e statuelle
.0		Margaria		-V			man		Center Fre
uu dan	provelilled	TRING					1	The stringer here will	5.50000000 GF
		and the second s					N.	the second	11
J.U. Contraction	Contractor	1						and the second se	Start Fre
									5.487500000 GH
		1				0 II (b 1			
									Stop Ere
0.0			1						5 512500000 GH
0.0							100		
enter Res B	5.50 W 1.	000 GHz	#\	/BW 3.0 MHz	1	Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Ste
	-		~				FUND		Auto Ma
1 N	2	f	5.506 325 GHz	12.55 dBm		TONCTION WIGHT	Toner	ONVALOE	
2 N	1	f	5.498 325 GHz	4.54 dBm			-		Eron Offer
4	-								riequise
5									01
7	-								
9							-		
1					- 14		-		
2	-					_			
3						STATU	s		

Agilent Sp	ectrun	n Ana	yzer - Swe	pt SA								
Center	Fre	RF q 5	50 Q	AC 0000 GH	z	SENS	E:INT	#Avg	ALIGNAUTO Type: RMS	07:43:10F TRA	M Aug 09, 2013 CE 1 2 3 4 5 6 PE A MANANA	Frequency
10 dB(d)		Pof	20.00 0	IFG	IO: Fast C ain:Low	#Atten: 30	dB		Mkr1	5.506 °	ET A P NNNN 150 GHZ 10 dBm	Auto Tune
10.0	amput	-	20.00 C		hier diverses	mananale A segre	An other states of the state of		1	2 million and a	an maker and	Center Freq 5.500000000 GHz
-20.0 -30.0 -40.0			<u></u>							~		Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0	-											Stop Freq 5.512500000 GHz
Center #Res B	5.50 W 1	0000 .0 M	GHz IHz		#VB	W 3.0 MHz		14	Sweep	Span 2 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR MODE	2	SCL f		× 5.506 150	GHz	Y 13.10 dBi	n n	INCTION	FUNCTION WIDTH	FUNCTI	JN VALUE	<u>Auto</u> Man
2 N 3 4 5 6	1	T		5.506 925	GHZ	5.37 dBi	n					Freq Offset 0 Hz
7 8 9 10 11												
12 MSG		-			-				STATU	5		

lent Spec	trum A	alyzer - Swe	pt SA		CENCE		1		07:44:411	M AUG 19 2013	
enter	Freq	5.50000	0000 GH	Z	Trig: Free R	un	#Avg Typ	e: RMS	TRA TY	CE 1 2 3 4 5 6 /PE A MWWWW	Frequency
antaise	Be	£ 20.00 d	IFC	Sain:Low	#Atten: 30 d	8		Mkr1	5.505 T	750 GHz 37 dBm	Auto Tun
	A CONTRACTOR	Walkand Comment		an The Ublight and Para	langer daaroo to karandagaa	lan na an a			a and a second	heren when the	Center Fre 5.500000000 G⊦
		1.							~		Start Fre 5.487500000 G⊢
o o o											Stop Fre 5.512500000 G⊦
enter 5 tes BV	i.5000 V 1.0	00 GHz MHz		#VB	N 3.0 MHz		4	Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Ste 2.500000 MH
NUDE N	TRE SE		× 5.505 750) GHz	Y 14.37 dBm	FUNC	TION FU	NCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Ma
N	1 f		5.505 72	5 GHz	4.75 dBm						Freq Offse 0 H
											1
						0		STATU	5		

Agilen	it Spe	ctru	m Ana	lyzer - Swi	ept SA								
Cen	ter	Fre	RP eq 5	50 Q	AC 00000 GH:	Z	SENSE:INT #Avg T Trig: Free Run			ALIGNAUTO	07:46:19F TRA TY	M Aug 09, 2013 CE 1 2 3 4 5 6 PE A MWWWW	Frequency
0	_		-		IFG	o: Fast C ain:Low	#Atten: 30 d	iB	TAPNNNN	Auto Tune			
10 dl	3/div	1	Ref	20.00	dBm	1.1				30317.7	13.	44 dBm	
10.0	71				1 me alone and	- alan har	ay any 2min po	and a start and a start	perior	war to man the the		100	Contor From
0.00	2.11			With			V				- when the are		5 50000000 CH
-10.0	hurd	-	Annas	-	1						1	toping topped and	3.300000000 0112
.20.0		_	-	1							and the second s		
-30.0					1								Start Freq
-40.0	F _			1 1	- 1.I								5.487500000 GHz
-50.0	11												
-50.0													Stop Freq
70.0	j: [11	1 - 0 - 0							5.512500000 GHz
-70.0	9.6.			1.							2	1.00	100 X 10 X 10 C 4
Cen #Re	ter s Bl	5.50 W 1	000 .0 N) GHz 1Hz		#VB	W 3.0 MHz			Sweep	Span 2 1.00 ms (25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR	MODE	TRC	SCL		X		Y	FUNCTI	JN FU	NCTION WIDTH	FUNCTI	IN VALUE	<u>Auto</u> Man
1	N	2	f		5.495 675	GHZ	13.44 dBr	n					
3					0.400 000	UTIZ	4.17 GD1						Freq Offset
4													0 Hz
6		_						-					
8													
9	-							-	- 1				
11													
12	-	-				_			-		-		
MSG										STATUS			

CHAIN B

Channal No.	Frequency	Data Rate	Measurement Level	Required Limit	Docult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesuit
		MCS (0)	9.420	<13	Pass
100	5500	MCS (2)	9.060	<13	Pass
100	5500	MCS (4)	8.920	<13	Pass
		MCS (7)	9.980	<13	Pass

Agilent	Spec	etrun	n Ana	lyzer - Swe	pt SA								
Cent	RL RF 50 Ω AC enter Freq 5.500000000 GHz PN0: Fast G						SEN	Run	#Avg T	ALIGNAUTO	10:53:19. TRA T	AM Aug 10, 2013 CE 1 2 3 4 5 6 /PE A MWWWW	Frequency
10 dB	(dia		Dof	20.00 0	IFGa	: Fast G	#Atten: 30	dB		Mkr1	5.503	650 GHz	Auto Tune
10.00			Arter	20.000	الله الم	addan a flen	- Alla Concentration	- Contraction	1	2	Markan Mark	the day we have	Center Freq 5.500000000 GHz
-20.0 -30.0 -40.0	her ^a h		-								1	Man Mantendaria	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0													Stop Freq 5.512500000 GHz
Cent #Res	er : BV	5.50 N 1	000 0 N) GHz 1Hz		#VB	N 3.0 MHz			Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR M	IDDE N	180	SCL f		× 5.503 650 (GHz	9.90 dE	FL Sm	INCTION	UNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
2 3 4 5 6 7	N	1	T		5.504 850 (jHz	0.48 dE	5m					Freq Offset 0 Hz
9 10 11 12													

Agilen	t Spec	trum	i Ana	yzer - Sw	rept SA										
C RL			RF	50 9	AC	-		_	SENSE:IN	IT .	HAva	ALIGNAUTO	10:54:5	3 AM Aug 10, 2013	Frequency
Cen	teri	-re	qэ	.5000	00000	PNO): Fast C in:Low	Trig: Fi #Atten:	ee Rui 30 dB	n	envy	Type. RMS		DET A P N N N N	
10 dF	Ridiv		Ref	20.00	dBm						Ē	Mkr1	5.502	925 GHz 61 dBm	Auto Tune
Log 10.0	Jiany			20.00	2						1				Center Fred
0.00				EN Parter	V		and the state	- Madarthans	Agene-Perton		Philippine D		and the shall	hut	5.500000000 GHz
-10.0 -20.0	and the second	imet	Jum	1									A. C.		
-30.0 -40.0	Aughter	and a start of	and and a											Mercon and and	Start Freq 5.487500000 GHz
-50.0 -60.0	1		+				_					_			Stop Freq
-70.0															5.512500000 GH2
#Re	s BW	/ 1.	000	GHZ IHZ		2.0	#VB	W 3.0 MH	Iz			Sweep	Span 1.00 ms	25.00 MHZ (1001 pts)	CF Step 2.500000 MHz
MKB N	N	2	SCL f		× 5.50	2 925 (GHz	¥ 9.61	dBm	FUNCTIO)N	FUNCTION WIDTH	FUNC	TION VALUE	<u>Auto</u> Man
2345	N	1	f		5.49	3 025 (GHz	0.55	dBm						Freq Offset 0 Hz
6 7 8		-													
9 10 11		-											-		
12 MSG			-						-			STATU	5	-	

ilent Spe	ctrum /	Inalyzer - Swi	ept SA		OT N	202308-020		ALTCH ALTCO	10,56,53	M Nor 10 2012	
enter	Frec	5.50000	00000 GH	Z 10: Fast G	Trig: Free	Run	#Avg Typ	e: RMS	TR/ TR/ T	AM AUG 10, 2013 ACE 1 2 3 4 5 6 YPE A MWWWW DET A P N N N N	Frequency
) dB/div	R	ef 20.00 (dBm	Gain:Low	#Atten: 30	dВ		Mkr1	5.506 9	050 GHz .55 dBm	Auto Tune
	1.114	Hardward Barnan	alations of the officer	agna, la di sun sa		alanta da ana ang ang ang ang ang ang ang ang an		nave and makines	and the second second	Mada	Center Fred 5.500000000 GH;
0.0	and the second	the second s							>	and any any and a second	Start Free 5.487500000 GH:
io.o io.o io.o											Stop Free 5.512500000 GH
enter : Res B\	5.500 N 1.0	00 GHz MHz		#VBV	V 3.0 MHz			Sweep	Span 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MH
I MODE	TRC S		5.506 050 5.503 875) GHz	9.55 dB 0.63 dB	m m	NCTION FU	NCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Mar
3 4 5 6											Freq Offsel 0 Hz
7 8 9 0 1 2							4 1 4 1 7 1 7				
G								STATUS			

Agilent Spectrum Analyzer - Swept SA					
Center Freq 5.500000000 GHz	SENSE:INT	#Avg	ALIGNAUTO	11:00:41 AM Aug 10 TRACE 1 2 3	4 5 6 Frequency
PNO: Fast 🔾 IFGain:Low	#Atten: 30 dB		1.000	DET A P N	
10 dB/div Ref 20 00 dBm			Mkr1	5.502 800 G 10.78 d	Bm
		1	2		-
0.00	and we share a second and a second	sour polation	harrison	Manna	5.50000000 GHz
-10.0				The starting by	Minney
-20.0 -30.0 yeureleurenenenenenenenenenenenenenenenenenene				and a standard	Start Freq 5.487500000 GHz
-50.0			-		Ston Fred
-70.0					5.512500000 GHz
Center 5.50000 GHz #Res BW 1.0 MHz #VBV	V 3.0 MHz		Sweep	Span 25.00 1.00 ms (1001	MHz CF Step pts) 2.500000 MHz
MKR MODE TRC SCL	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 N 2 f 5.502 800 GHz 2 N 1 f 5.504 850 GHz 3	0.80 dBm				Freg Offset
4 5 6					0 Hz
7 8					
9					
12		_			
MSG			STATUS	5	

CHAIN C

Channel Ne	Frequency	Data Rate	Measurement Level	Required Limit	Desult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result
		MCS (0)	10.130	<13	Pass
100	5500	MCS (2)	8.290	<13	Pass
100	5500	MCS (4)	9.430	<13	Pass
		MCS (7)	9.910	<13	Pass

								rept SA	lyzer - Sw	im Ana	Spectru	jilen
Frequency	M Aug 12, 2013 E 1 2 3 4 5 6 E A MWWWW	03:19:10 P TRAC TYI	ALIGNAUTO	וד #Aי ו	sense:IN		GHz	AC 00000 C	50 Q	eq 5	er Fr	en
Auto Tun	50 GHz	5.505 4	Mkr1		tten: 30 dB		IFGain:Low	1				
	19 dBm	14.			-		(div					
Center Fre		A	and for more	2	- maller and	-the share	the draw as		and maker		_	10.0
5.50000000 GH	man and and and a	those with							and the second s	reprotor	miliolud	0.00 0.0
Otort Ero	- under	The second secon					1		1	Carton	metro	20.0
5.487500000 GH				1	-							10.0
Stop Fre	ſ											50.0 Sò.0
5.512500000 GH					_					-	-	0.0
CF Ste	5.00 MHz 1001 pts)	Span 2 1.00 ms (Sweep		MHz	BW 3	#VE		0 GHz /IHz	000 1.0 N	er 5.5 BW	eni Res
<u>Auto</u> Ma	N VALUE	FUNCTIO	FUNCTION WIDTH	FUNCTION	Y			×		SCL	DDE TRO	KR N
					4.19 dBm 4.06 dBm		450 GHz 900 GHz	5.505 4 5.500 9		f	N 2 N 1	1
Freq Offse												4
												6 7 8
											-	9
		_		_					_			1
		1	STATUS									G

								pt SA	zer - Swe	n Anal	ectrun	t Spe
Frequency	M Aug 12, 2013 E 1 2 3 4 5 6	03:30:18 F TRA	ALIGNAUTO	#Avg T	Bun	SEN	lz	AC 0000 GH	50 Ω 50000	RF eq 5.	Fre	ter
Auto Tupe	APNNNN	D	-		dB	#Atten: 30	NO: Fast G Gain:Low	P	-			
Auto Tulk	50 GHZ 42 dBm	5.492 6	Mkr1					Bm	20.00 c	Ref	v	3/div
Center Fred		-	a marterel alterna		2.	L Blackgar		1				
5.500000000 GHz	Warm Is	which when the			V			h ar taran	Manna	allips		
		There							ł	and the second	in the second	(south
Start Fred	a particular April present										PANANAN	-
5.487500000 GH2	-			-					-	-	_	
Stop Fred												
5.512500000 GHz	-			_							-	1. 1
CE Ster	5.00 MHz	Span 2			-			_	GHz	0000	5.50	ter :
2.500000 MHz	1001 pts)	1.00 ms (Sweep			3.0 MHz	#VBV		Hz	.0 M	W 1	s Bl
<u>rato</u> mai	N VALUE	FUNCTI	NUTION WIDTH	LIIUN	Im	12.42 dB	0 GHz	5.492 65		f	2	N
Freq Offse				- 1	lm.	4.13 dB	5 GHz	5.501 07		f	1	N
0 Hz												
				1	_							
		_			_							-
				1								
					-					-	_	-

Agilent Sp	ectrum (Analyzer - Sw	rept SA									
Center	Frec	RF 50 Ω 5.50000	00000 GH	Z O: Fast	SEI	NSE:INT	#Avg Ty	ALIGNAUTO pe: RMS	03:34:131 TRA T	PM Aug 12, 2013 CE 1 2 3 4 5 6 /PE A MWWWW	Frequency	
10 dB/di	v R	ef 20 00 j	dBm	ain:Low	in:Low #Atten: 30 dB Mkr1 5.503 825 GHz 13.92 dBm							
10.00	maketiyan	northetwar		n Marado Manada	hermonist-manage	an sa sta a a de a	alay hade marked and	<u>h</u> 2	North Market	Japan .	Center Fred 5.50000000 GHz	
-10.0	- and - and -	word							`	and and and a second second	Start Freq 5.487500000 GHz	
-50.0 -60.0 -70.0											Stop Free 5.512500000 GH7	
Center #Res B	5.500 W 1.0	00 GHz MHz		#VBV	V 3.0 MHz			Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz	
MKF MODO 2 N 3 4 5 6 7 8 9 10 11 12	TRC 5		× 5.503 825 5.505 100	GHz GHz	1 <u>3.92 dl</u> 4.49 dl	3m 3m					Freq Offsel 0 Hz	
ASG								STAT	us			

								pt SA	yzer - Swe	m Ana	pectru	ilent
Frequency	M Aug 12, 2013 E 1 2 3 4 5 6	03:36:04 P TRAC	ype: RMS	#Avg	SENSE:INT	Tria: Era	8F 50 Ω AC ⇒r Freq 5.500000000 GHz PN0: Fast C If Calibation					ent
Auto Tupo	APNNNN	DI	-		: 30 dB	#Atten: 3	PNO: Fast IFGain:Low			-		-
Auto Turie	25 GHz 53 dBm	5.495 2 14.	Mkr1					Bm	20.00 d	Ref	div) dB/
0	3. C . C . C	~	man 2 ann	an Company and	-	man wallow	man					
5 50000000 GHz	2	WWW	V						Winner			0.0
0.00000000000	the with the	2 m							1	Une	parmin	0.0
	Carlos Ca	20-			-		-	· · · · · · ·	(1	-	0.0
5 487500000 GHz		-			-	-	-		-		-	0.0
3.487300000 6112	-		-	-	-	-						0.0
Ctop From			-		-		-			-		0.0
5 512500000 GHz								1				0.0 -
	1-1-1	7 1		- 11				1			i	0.0 -
CF Step 2.500000 MHz	5.00 MHz 1001 pts)	Span 2 1.00 ms (Sweep	w	Hz	W 3.0 MH:	#VB		GHz IHz	0000 .0 M	r 5.50 BW 1	ente Res
<u>Auto</u> Man	N VALUE	FUNCTIO	FUNCTION WIDTH	FUNCTION		Y	-	Х		SCL	DE TRC	KR MO
	_				dBm	14.53 c 4.62 c	25 GHz 25 GHz	5.495 2 5.505 7		f	2	1 1 2 1
Freq Offset				_								3
0 Hz												5
		-			-						-	6 7
												8
												0
					-							1
L			CTATIO	-							0	

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna)

CHAIN A

Channal No.	Frequency	Data Rate	Measurement Level	Required Limit	Decult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesult
		MCS (0)	8.170	<13	Pass
100	5500	MCS (2)	8.300	<13	Pass
100	5500	MCS (4)	8.900	<13	Pass
		MCS (7)	8.890	<13	Pass

Agrient Spectrum An	alyzer - Swept SA						
RL RF	50 Q AC		SENSE;INT	ALIGNAUT	0 08:32:26 F	M Aug 09, 2013	Frequency
Senter Freq	5.500000000	PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	#Avg Type. RMS	TY	PEAMWWWW ETAPNNNN	
10 dB/div Re	f 20.00 dBm			Mk	r1 5.492 5 12.	575 GHz 39 dBm	Auto Tune
0.00	1			Q2		anter million	Center Fred 5.500000000 GHz
-20.0							Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0							Stop Fred 5.512500000 GH;
Center 5.5000 #Res BW 1.0 I	0 GHz VIHz	#VBW	/ 3.0 MHz	Swee	Span 2 p 1.00 ms (25.00 MHz (1001 pts)	CF Step 2.500000 MH
MKR MODE TRC SCL 1 N 2 f 2 N 1 f	5.492 5.505	575 GHz 550 GHz	12.39 dBm 4.22 dBm	UNCTION FUNCTION WID	THEFUNCTION	ON VALUE	<u>Auto</u> Man
3 4 5 6 7 8 9 10 11							Freq Offset 0 Hz
12 sg				STA	TUS		

PF SD2 AC SENSE UNT ALTENAUTO DB3339PM Aug09,2013 Frequency Freq 5.500000000 GHz PN0: Fast Trig: Free Run #Avg Type: RMS TriAct [1 2 3 40 MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	gilent Spect	um Analyzer	- Swept SA						
Might Hast Might Hast Might Hast Might Hast Auto Tune v Ref 20.00 dBm 1.2.70 dBm 1.2 Center Freq 5.50000000 GHz Start Freq v Image: Start Freq Image: Start Freq Start Freq 5.50000000 GHz Start Freq 5.50000 GHz #VBW 3.0 MHz Span 25.00 MHz Start Freq 5.512500000 GHz V 1.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) CF Step 2.50000 MHz 1 f 5.507 700 GHz 1.270 dBm Finistion Mobil H Finistion Mobil H Finistion Mobil H 2 f 5.507 700 GHz 1.270 dBm Finistion Mobil H Finistion Mobil H <t< th=""><th>Center F</th><th>RF req 5.50</th><th>50 Q AC 00000000 GHz</th><th>SENS</th><th>EINT #A</th><th>aLIGNAUTO</th><th>08:33:59 TRA</th><th>PM Aug 09, 2013 ACE 1 2 3 4 5 6 A MANANAN</th><th>Frequency</th></t<>	Center F	RF req 5.50	50 Q AC 00000000 GHz	SENS	EINT #A	aLIGNAUTO	08:33:59 TRA	PM Aug 09, 2013 ACE 1 2 3 4 5 6 A MANANAN	Frequency
V Ref 20.00 dBm 12.70 dBm Image: Control of the second s			PNO: Fas IFGain:Lo	w #Atten: 30	dB	Mkr1	5.506	475 GHz	Auto Tune
Center Freq Start Freq S	10 dB/div	Ref 20.	00 dBm				12.	70 dBm	
Start Free St	10.0				Il man and the second	lature mon	12		Center Fred
Start Free St	0.00	www					V Mary	lan	5 50000000 GH
Start Free St	10 0 harpingow	PART -					X	Welnuth Marker	0.00000000000
Start Free St	20.0	-						-	
Stop Free Stop Free 1	20.0					-			Start Free
Stop Free Stop Free <th< td=""><td>-30.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.487500000 GHz</td></th<>	-30.0								5.487500000 GHz
Stop Precision Stop Pr	-50.0						-		Stop Free
S.50000 GHz Span 25.00 MHz CF Step 2.500000 MHz W 1.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) Auto 1 f 5.506 475 GHz 12.70 dBm Auto Mar 1 f 5.507 700 GHz 4.40 dBm Finction Finction Finction 1 d - </td <td>-60.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.512500000 GH</td>	-60.0								5.512500000 GH
X Y FUNCTION PUNCTION WIDTH FUNCTION WALLE 2 f 5.506 475 GHz 12.70 dBm Image: Constraint of the second se	Center 5. #Res BW	50000 GH 1.0 MHz	łz #\	/BW 3.0 MHz		Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Step 2 500000 MHz
2 f 5.506 475 GHz 12.70 dBm 1 f 5.507 700 GHz 4.40 dBm - - - - - - - - - - - - - - - - - - - -	MKR MODE T	IC SOL	X	Y	FUNCTION	FUNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Mar
Freq Offset	1 N 2	f	5.506 475 GHz 5 507 700 GHz	12.70 dBi 4 40 dBi	m		-		
0 H:	3								Freq Offset
	5								0 Hz
	6						-		
	8								
	10			1					
	11								
				1	4	- Kene			

lgilent Sp	ectrum	Analyzer	- Swept SA								
Center	Fre	q 5.50	00000000 (GHz	Trig: Free	Run	#Avg T	ALIGNAUTO	08:35:431 TRA T\	PM Aug 09, 2013 CE 1 2 3 4 5 6 PE A MWWWW	Frequency
10 dB(di	v 1	Ref 20 (00 dBm	IFGain:Low	#Atten: 30	dB		Mkr1	5.507 2 13.	225 GHz 37 dBm	Auto Tune
10.0	where the	A manually		~0~5~~~/~materia		interiority	ann an the second	2	1 ma	War Haugender 1	Center Fred 5.500000000 GH;
-10.0	Canada San San San San San San San San San Sa									and the second second	Start Fred 5.487500000 GH;
50.0 60.0 70.0	_										Stop Free 5.512500000 GH;
Center #Res B	5.50 W 1.	000 GH 0 MHz	z	#VB	N 3.0 MHz			Sweep	Span 2 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MH
Mode 1 N 2 N 3 4 5 6 7 8 9 10 11 12	2 1	501 f	× 5.507 5.505	225 GHz 300 GHz	¥ 13.37 dB 4.47 dB			UNCTION WIDTH	FUNCTI		Auto Mar Freq Offset 0 H:
sg						-1		STATU	5		

Agile	nt Spe	etrur	n Analy	zer - Sw	ept SA									
Cei	nter	Fre	RF eq 5.	50 Q	AC 00000 GI	łz	SE	NSE:INT	#Avş	Al Type:	IGN AUTO RMS	08:40:12F	M Aug 09, 2013	Frequency
					P IF	NO: Fast C Gain:Low	#Atten: 3	o dB			000	D	APNNNN	Auto Tupo
10 0	B/div	,	Ref :	20.00	dBm						Mkr1	5.506 9	75 GHz 51 dBm	Auto Tune
Log				andered	-	-	-	- ne marting	arithy statesting	man	2.1		1.5.6.01	
0.0			. m	Part					-		V	White a	()	Center Freq
0.0	ant	-stump	Mr 1	1								Z	"Hummanz holler EA	5.500000000 GHz
-10.0			w					1						11
-20.0		-			1					-		-		Start Freq
-30.0				-					1					5.487500000 GHz
-40.0	2		11 11 1					1			b =			
-50.0											-		1	Stop Fred
-60.0	1.1.				1			1		- 1				5.512500000 GHz
-70.0	26.		11	1	1			-		- 1		1	1-10-1	
Cei #Re	nter es B	5.50 W 1	0000 .0 M	GHz Hz		#VB	W 3.0 MHz				Sweep	Span 2 1.00 ms (5.00 MHz 1001 pts)	CF Step 2.500000 MHz
MKR	MODE	TRC	SCL		×		Y	FL	INCTION	FUNC	TION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Man
1	N	2	f	-	5.506 97	5 GHz	13.51 d	3m	-					
3	IN	1			0.000 17	0 0112	4.02 U	201						Freq Offset
4	-							-				-		0 Hz
6														
8														
9	-									-				
11	-													
12			-	_	_		_							
MSG											STATUS			

CHAIN B

Channal No.	Frequency	Data Rate	Measurement Level	Required Limit	Docult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesult
		MCS (0)	8.710	<13	Pass
100	5500	MCS (2)	9.360	<13	Pass
100	5500	MCS (4)	9.380	<13	Pass
		MCS (7)	9.330	<13	Pass

			aniel	orthogram		ept SA	lyzer - Swi	um Ana	Spectru	gilent
TRACE 1 2 3 4 5 6 TYPE A MWAAWAW TRACE N NNNN	11:42:	Type: RMS	n	Trig: Free Rui	IZ NO: Fast 😱	00000 GH	.50000	req 5	er Fr	ent
5.497 125 GHz Auto Tun 8.25 dBm	5.497	Mkr1		#Atten: 30 dB	Gain:Low	iFi dBm	20.00 (Ref	div	0 de
Center Fre 5,50000000 GH	Mun M	ing and the first of the second s	al sources	general and an an	ula marine and	~~ ² ~~~	all and the second second	accept visit		og 10.0 0.00
Start Fre 5.487500000 GH								www	And Delivery	20.0 30.0 40.0
Stop Fre 5.512500000 GH										50.0 50.0 70.0
Span 25.00 MHz .00 ms (1001 pts) 2.500000 MH	Spai 1.00 m	Sweep	_	3.0 MHz	#VBW) GHz IHz	50000 1.0 N	er 5.5 BW	ent Res
FUNCTION VALUE Auto Ma	FUN	FUNCTION WIDTH	FUNC	¥ 8.25 dBm	5 GHz	× 5.497 12		ic sci f	DE TR	IKR M
Freq Offso				-0.46 dBm	5 GHz	5.493 12		f		23456
										7 8 9 10
	Is	STATUS	_						_	sg

Agile	nt Spe	etru	n Ana	lyzer - Sw	rept SA									
R NA	L nter	Fre	RF q 5	.5000	AC 00000 G	Hz	Tria: Er	ENSE:INT	#Av	g Type: R	MAUTO MS	11:43:47 TR	AM Aug 10, 2013 ACE 1 2 3 4 5 6	Frequency
						PNO: Fast Gain:Low	#Atten:	ae Run 30 dB			-	210	DET A P N N N N	Auto Time
10 d	B/div	,	Ref	20.00	dBm					-	Mkr1	5.498 9	525 GHz .10 dBm	Auto Tune
Log						_	1		- 1					Contra From
0.00				and white the	- Annouse and	Nelson	numeric a theorem	Marchan	anon-the second	whenthe	-longe	and the second		5.50000000 GHz
-10.0	- shell	ut produ	V.W.	1							_	1	wheeled and	11
-20.0		-	100			-		-		_	-		Mintenau	Start Fred
-30.0	- alter	per											The Proof Officiant	5.487500000 GHz
-50.0	-		-	-				+		-	-		1	Stop From
-60.0													-	5.512500000 GHz
Cer #Re	nter : s Bl	5.50 W 1	0000) GHz 1Hz		#VE	3W 3.0 MH	z		Sv	veep	Span 1.00 ms	25.00 MHz (1001 pts)	CF Step 2 500000 MHz
MKR	MODE	TRC	SCL		×		Y		FUNCTION	FUNCTIO	NWIDTH	FUNCT	ION VALUE	<u>Auto</u> Man
1	N	2	f		5.498 5	25 GHz 75 GHz	9.10	dBm dBm						
3			-											Freq Offset
5														0 Hz
7		-												
9	-							_						
11												-		
MSG	-										STATUS	5	0	L

Agilent Sp	pectrum	Analyzer	- Swept SA		L orth	energia (mil	1	11 Mart 1 1 1 Mart 1			
Cente	r Fre	q 5.50	0000000 G	Hz PNO: Fast G	Trig: Free	Run	#Avg Ty	pe: RMS	11:46:00 A TRA	M Aug 10, 2013 E 1 2 3 4 5 6 PE A MWWWW	Frequency
10 dB(d	iv F	Ref 20 (u dBm	Gain:Low	#Atten: 30	dB		Mkr1	5.505 9. 9.	00 GHz 04 dBm	Auto Tune
10.0 0.00	-	Makar	something the second	ng aklinainussansyky	minumulus	- Canada and and	ng stored or	21	and the second	M.	Center Freq 5.50000000 GHz
-20.0	and the second	*								With an and the set	Start Fred 5.487500000 GH2
-50.0 -60.0 -70.0											Stop Fred 5.512500000 GH2
Center #Res E	5.50 3W 1.	000 GH 0 MHz	z	#VB\	V 3.0 MHz			Sweep	Span 2 1.00 ms (5.00 MHz 1001 pts)	CF Step 2.500000 MH
MKR MOD	E 160	SCL f	× 5.505 90	00 GHz	9.04 dE	FU Sm	NCTION	UNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Mar
2 N 3 4 5 6	1	*	5.505 72	25 GHZ	-0.34 dE	im					Freq Offset 0 Hz
7 8 9 10 11											I
MSG	0							STATUS	5		

Agilent Sp	ectru	m Ana	yzer - Swa	pt SA								
UNI RL		RF	50 Ω	AC		SE	NSE:INT		ALIGNAUTO	11:47:40	AM Aug 10, 2013	Frequency
Center	Fre	eq 5	.50000	0000 GH	Iz	Trig Fre	e Run	#Av	g Type: RMS	TR/	CE 1 2 3 4 5 6	Trequency
				IF	NU: Fast C Gain:Low	#Atten: 3	0 dB				DET A P N N N N	and and a second
1									Mkr1	5 495	850 GHz	Auto Tune
10 dBidi	v	Ref	20.00 /	IBm					0010	9	00 dBm	
Log			20.00 0		A1		0					
10.0		-	- Alter	meeting	muter		- ALANS		mone and many	2 struce		Center Freq
0.00			N						V	Ma		5.50000000 GHz
-10.0	de,	ANT	1							Y	Mary Mary	
20.0	ALM1	- /			1						- materiale	1
-20.0	month	-re-		1				- 1 1	-		and Briefford	Start Freq
-30.0				1		1					- They	5.487500000 GHz
-40.0		-		· · · · · · · ·		1						
-50.0		-				-	-		-	-		101010
-60.0		-			-	-				-		Stop Freq
-70.0					-		-				-	5.512500000 GHz
						_			-			
Center #Res B	5.5 W 1	.0 M	GHZ	_	#VB	W 3.0 MHz			Sweep	Span 1.00 ms	25.00 MHZ (1001 pts)	CF Step 2.500000 MHz
MKR MODE	TRC	SCL		×		Y		UNCTION	FUNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
1 N	2	f		5.495 85	0 GHz	9.00 d	Bm		-			
2 N 3	1	T		5.507 02	5 GHZ	-0.33 a	Bm		-			From Offect
4												riequise
5	-						_	_				UHZ
7												
8												
9	-						_			-		
11					. 111.							
12	-			_	_	_		_			_	
MSG									STATU	s		

CHAIN C

Channal No	Frequency	Data Rate	Measurement Level	Required Limit	Docult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Kesult
		MCS (0)	10.200	<13	Pass
100	5500	MCS (2)	9.510	<13	Pass
100	5500	MCS (4)	8.660	<13	Pass
		MCS (7)	10.060	<13	Pass

Agilent Sp	pectrum	n Analy	zer - Swe	ept SA								
Cente	r Fre	RF eq 5.	50 Ω 50000	AC 00000 G	Hz INO: Fast	Trig: Fre	e Run	#Avg	ALIGNAUTO	04:50:03F TRA TY	M Aug 12, 2013 CE 1 2 3 4 5 6 PE A MWWWW	Frequency
10 dB/d	iv	Ref 2	20.00 0	l Bm	FGain:Low	#Atten: 3	0 dB		Mkr1	5.493 2 14.	275 GHz 51 dBm	Auto Tune
10.0 0.00	nymn feisl	and and a	8	1	2	with men man a le	S. Barrer Boyley		nens set al parte non n	when when with	mangal and and	Center Fred 5.50000000 GH;
-20.0	- Andrewski										and the second second	Start Free 5.487500000 GH:
-50.0 -60.0 -70.0												Stop Free 5.512500000 GH
Center #Res E	r 5.50 BW 1	0000 .0 MI	GHz Iz		#VE	SW 3.0 MHz			Sweep	Span 2 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MH
	E TRC	SCL f		× 5.493 2	75 GHz	14.51 d	Sm FL	NCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Mar
2 N 3 4 5 6	1	т. 		5.495 1	75 GHZ	4.31 di	5m.					Freq Offset 0 Hz
7 8 9 10 11												
12 MSG	4	-	-						STATU	5		

gile	nt Spe	ctrur	n Ana	lyzer - Sw	vept SA									
RL RP 50 Ω AC Center Freq 5.500000000 GHz					Tria: E			#Avg Type: RMS			CE 1 2 3 4 5 6	Frequency		
0	PNO: hast Line Child Det A P NNNN IFGain:Low #Atten: 30 dB Det A P NNNN											Auto Trees		
10 d	B/div		Ref	20.00	dBm						Mkr1	5.498 2 13.	275 GHz 73 dBm	Auto Tune
Log				-	Listensen	m. nothing man		a selend	ASSAMPLANDAS	mayle	A2.		200	Contor From
0.00			-	Win	-		-				V			5.50000000 GHz
-10.0	June	- Allino	-	-			-	-		_		1	With and a	
-20.0	To open to	TOP	Tarv	-		-	-				-		Tube waspilles	Start From
-30.0	1-1	_	_			-	-						-	5.487500000 GHz
-40.0	-						-							
-50.0				-										Stop From
-60.0		_				1.1								5.512500000 GHz
-70.0	þ. í.,	. 0			0.10	1						12	1.	
Cer #Re	nter Is Bl	5.50 N 1	000 0 N) GHz 1Hz	8	#VE	3W 3.0 MI	Hz		s	weep	Span 2 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR	KR MODE TRC SCL				Y		FUNCTION.	FUNCTION WIDTH		FUNCTION VALUE		<u>Auto</u> Mar		
1	NN	2	f		5.498 275 GHz 5.505 950 GHz		13.73 dBm 4.22 dBm							
3					- 97.54			-				-		Freq Offset
5														0 Hz
7														
9	1													
10	-		_					-						
12	1											_		
MSG											STATUS			

Agilent Spectrum Analy	zer - Swept SA										
Center Freq 5.	500000000 GH	Z	SENSE JINT	#Avg Type	ALIGNAUTO E: RMS	04:53:51 PM Aug 12, 2013 TRACE 1 2 3 4 5 6 TYPE A MWWWW		Frequency			
IFGain:Low #Atten: 30 dB DETIA PINNN Mkr1 5.493 900 GHz 10 dB/div Ref 20.00 dBm 12.85 dBm											
10,0 0,00	with a marine management of the second secon	ngPungeun natifici	an particular and a second		antralau - sanger a sa		and the second	Center Fred 5.500000000 GHz			
-20.0)	and and the stand and a street	Start Free 5.487500000 GH:			
-50.0							-	Stop Free 5.512500000 GH;			
Center 5.50000 #Res BW 1.0 MI	GHz Hz	#VBW	3.0 MHz		Sweep	Span 2 1.00 ms (25.00 MHz (1001 pts)	CF Step 2.500000 MH:			
MXB: MUDDS TRC SQL1 1 N 2 f 2 N 1 f 2 N 1 f 3 1 f 3 1 f 3 1 f 3 1 f 3 1 f 3 1 f 3 1 f 3 1 f 3 1 f 3 1 f 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 8 8 9 9 10	5.493 900 5.504 550	D GHz D GHz	Y F 12,85 dBm 4.19 dBm		CTION WIDTH	FUNCTIC		Auto Mar Freq Offse 0 H:			
11 12 MSG					STATUS						

Agilent Spect	um Analyzer	- Swept SA						
Center F	RF req 5.50	50 Ω AC	SENSE:INT	#Av;	ALIGNAUTO g Type: RMS	04:58:16 TRA	PM Aug 12, 2013 CE 1 2 3 4 5 6	Frequency
10 dB(div	Pef 20	PNO: Fast IFGain:Low	#Atten: 30 dB		Mkr1	5.505 3	325 GHz	Auto Tune
10.00 0.00	Ner 20.	permetter montenen - defense	War store (state of the state of the state	An Taylor and the second	when all the provide grane	2	and the work where the	Center Freq 5.50000000 GHz
-20.0							Marrian	Start Freq 5.487500000 GHz
-50.0 -60.0 -70.0								Stop Freq 5.512500000 GHz
Center 5. #Res BW	50000 GH 1.0 MHz	lz #VB	W 3.0 MHz	4	Sweep	Span : 1.00 ms	25.00 MHz (1001 pts)	CF Step 2.500000 MHz
MKR MODE TI	f f	5.505 325 GHz	14.10 dBm	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
3 4 5 6								Freq Offset 0 Hz
7 8 9 10 11 12								
MSG					STATU	s		

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna)

Chain A

Channal No.	Frequency	Data Rate	Measurement Level	Required Limit	Docult
Channel No.	(MHz)	(Mbps)	(dB)	(dB)Result<13	
		MCS (0)	8.990	<13	Pass
100	5510	MCS (2)	8.820	<13	Pass
102	5510	MCS (4)	9.360	<13	Pass
		MCS (7)	9.150	<13	Pass

Channel 102:

Agilen	it Spe	ctrur	in Ane	llyzer - Swe	pt SA.								
a R Cen	ter	Fre	RF eq t	50 Ω 5.51000	AC 0000 GI		SENS	Run	#Avg 1	ALIGNAUTO	10:11:12F TRA TY	M Aug 09, 2013 CE 1 2 3 4 5 6 PE A MWWWW	Frequency
10 di	B/div	v	Ref	20.00 d	iF IBm	Gain:Low	#Atten: 30	dB		Mkr	1 5.519 6.	10 GHz 57 dBm	Auto Tune
-og 10.0 0.00											Running		Center Fred 5.510000000 GHz
-10.0 -20.0 -30.0 -40.0	and and a	porte									1	Manager and	Start Free 5.485000000 GH:
50.0 60.0 -70.0			_										Stop Free 5.535000000 GH
Cen #Re	ter s B	5.5′ W 1	1001 .0 N) GHz /Hz		#VBV	N 3.0 MHz			Sweep	Span 5 1.00 ms /	50.00 MHz (1001 pts)	CF Ster 5.000000 MH
	MODE	2	SCL f		× 5.519 ′	10 GHz	6.57 dB	in Fu	NCTION	FUNCTION WIDTH	FUNCTION	ON VALUE	<u>Auto</u> Ma
2 3 4 5 6 7 8 9	<u>N</u>	1	f		5.524 3		2.42 dB	m					Freq Offse 0 H
11 12										STATU			

Of RL RF 502 AC SENSE:INT ALIGNAUTO 10:13:22PM Aug09,2013 Frequency Center Freq 5.510000000 GHz Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS TriAct [1 2 3 4 5 6 Type] Aug09,2013 Frequency 10 dB/div Ref 20.00 dBm 6.54 dBm Center Freq 5.510000000 GHz Auto Tur 10 dB/div Ref 20.00 dBm 6.54 dBm Center Freq 5.510000000 GH Start Fre 5.51000000 GH 10 dB/div Ref 20.00 dBm 0 0 0 0 0 10 dB/div Ref 20.00 dBm 0 1 0 0 0 0 0 10 dB/div Ref 20.00 dBm 0 1 0
Center Freq 5.510000000 GHz IFGain:Low Trig: Free Run #Atten: 30 dB Trig: Free Run Urg Type: RMS Trig: Accel 1: 23 45 6 Type: RMS Trig: Run Urg Type: RMS Trig: Run Type: Run Urg Type: RMS Run Type: Run Urg Type: Run Urg Type: RMS Run Type: Run Urg Type: Run Urg Ty
Mkr1 5.516 30 GHz Auto Tur 10 dB/div Ref 20.00 dBm 6.54 dBm 10 dB/div Ref 20.00 dBm 6.54 dBm 10 dB/div 1 2 10 dB/div 1 1 20 dB/div 1 1
Log 1 Center Fre 100 1
Start Fre 300
Stop Stop Free -60.0 -60.0 -60.0 -60.0 -70.0 -60.0 Center 5.51000 GHz Span 50.00 MHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) 5.000000 MF MKEI MODEL TERI SCI. X
Center 5.51000 GHz Span 50.00 MHz CF Ste #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) 5.000000 MHz Intel Model Table Set X Y EUNISTION MODEL TABLESEL Auto Material Model Table Set
IMKEI MODEL TRCI SCLI X I Y I FUNCTION VIDTH I FUNCTION VALUE I Auto Ma
1 N 2 f 5.516 30 GHz 6.54 dBm
2 N 1 f 5.523 45 GHz -2.28 dBm Freq Offse 3 - - - - - - Freq Offse 0+ 4 - - - - - 0+

Agilent Spectrum Analyzer - Sw	vept SA.				
Center Freq 5.5100	2 AC 00000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	10:28:12 PM Aug 09, 2013 TRACE 1 2 3 4 5 6 TYPE A MIMMAN	Frequency Auto Tune
10 dB/div Ref 20.00	IFGain:Low	#Atten: 30 dB	Mk	DET A P NNNN 1 5.521 85 GHz 6.91 dBm	
10.0 0.00	- Marthanes -	let me when the set	angeneration and another and	2.	Center Freq 5.510000000 GHz
-10.0 -20.0 -30.0 -30.0 -40.0				Manual Contraction	Start Freq 5.485000000 GHz
-50.0 -80.0 -70.0					Stop Freq 5.535000000 GHz
Center 5.51000 GHz #Res BW 1.0 MHz	#VBM	/ 3.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MHz
KMSE FRC SSL 1 N 2 f 2 N 1 f 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 11 - - -	× 5.521 85 GHz 6.525 45 GHz	Y F		FUNCTION VALUE	Auto Man Freq Offset 0 Hz
12 MSG			STATU	s	

Agilent Spectrum Analyzer - Swept SA							
24 RL RF 50Ω AC Center Freq 5.510000000 GH	SENSE(IN	T ALIGNAUTO #Avg Type: RMS	10:30:51 PM Aug 09, 2013 TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency			
10 dB/div Ref 20.00 dBm	Gain:Low #Atten: 30 dB	Mki	^{DET APNNNN} 1 5.520 30 GHz 6.78 dBm	Auto Tune			
100 0.00		ner le faire de la company	marg2	Center Freq 5.510000000 GHz			
-20.0 4/4/4/4/10/07/ -30.0			Mary share and share	Start Freq 5.485000000 GHz			
-50.0				Stop Freq 5.535000000 GHz			
Center 5.51000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 50.00 MHz Sweep 1.00 ms (1001 pts)				
MKR MODE TRC SCL X 1 N 2 f 5.520 30) GHz 6.78 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man			
2 N 1 f 5.527 2 3 4 5 6 6	D GHz -2.37 dBm			Freq Offset 0 Hz			
7 8 9 10							
12 MSG		STATU	s				

Ch	ain	B
----	-----	---

Channel No.	Frequency (MHz)	Data Rate (Mbps)	Measurement Level (dB)	Required Limit (dB)	Result
		MCS (0)	9.230	<13	Pass
100	5510	MCS (2)	9.340	<13	Pass
102	5510	MCS (4)	8.850	<13	Pass
		MCS (7)	9.370	<13	Pass

Channel 102:

								wept SA	alyzer - Sw	rum An	t Spec	gilen
Fraguanay	PM Aug 10, 2013	12:22:57	ALIGN AUTO	1	SENSE:INT			Ω AC	50 \$	RF	4	RI RI
Frequency	CE 123456 PEAM WWWW DETAPNNNN	TRA TY E	ype: RMS	#Avg	Free Run n: 30 dB	Trig: F #Atter	SHZ PNO: Fast IFGain:Low	00000	5.5100	req	ter i	Cen
Auto Tune Center Freq 5.510000000 GHz Start Freq	70 GHz 92 dBm	1 5.522 1.	Mkr					dBm	f 20.00	Rei	3/div	10 dE
		and the second	1		- Valendaria	949-14-1-		2				-0g 10.0 0.00
Start Freq 5.485000000 GHz	Mar and the second second for	1							-		- ANA	-20.0 -30.0 -40.0
Stop Freq 5.53500000 GHz CF Step 5.000000 MHz Auto Man												-50.0 -60.0 -70.0
	50.00 MHz (1001 pts)	Span : 1.00 ms	Sweep		1Hz	N 3.0 M	#VB\		0 GHz ViHz	5100 1.0 I	ter 5 s BW	Cen #Re
	DN VALUE	FUNCTI	FUNCTION WIDTH	NCTION	2 dBm	Y 1.92	70 CHz	X 5.52		RC SCL		MKR N
Freq Offset 0 Hz					1 dBm	-7.31	05 GHz	5.494		1 f	N	23456
				4								7 8 9 10 11
			STATUS						1		-	ISG

Agile	nt Spe	etrur	n Ana	yzer - Swe	pt SA								
Cer	ter	Fre	RF	50 Ω .51000	AC 0000 GH	iz	SEN	Bun	#Avg	ALIGNAUTO	12:25:43 TR 1	PM Aug 10, 2013 ACE 1 2 3 4 5 6 YPE A MW/WWW	Auto Tune
10 d	B/div	,	Ref	20.00 d	Bm	Gain:Low	#Atten: 30) dB		Mkı	1 5.494	1 30 GHz	Auto Tune
Log 10.0 0.00				-			and the second with	norumout on	wid and serve	مىنىلەر مەركىنىيە مەنبالەر مەركىنىيە			Auto Tune Center Freq 5.51000000 GHz Start Freq 5.485000000 GHz Stop Freq 5.535000000 GHz
-10.0 -20.0 -30.0 -40.0	math	phpante	and a									Andrahangerty	
-50.0 -60.0 -70.0													
Cer #Re	ter s B	5.5° W 1	1000 .0 IV	GHz IHz		#VB	W 3.0 MHz	-	42	Sweep	50.00 MHz (1001 pts)	CF Step	
MKE	MODE	7BC 2	SCL f		× 5.494 3	0 GHz	Y 2.18 dB	Sm FL	INCTION	FUNCTION WIDTH	FUNCT	ION VALUE	Auto Man
23456	Ň	1	f		5.494 1	5 GHz	-7.16 dE	3m					Freq Offset 0 Hz
7 8 9 10													
12 MSG			-	-						STATU	5		

Agile	nt Spe	ctrur	n Ana	lyzer - Swe	pt SA								
Cer	L nter	Fre	RF eq 5	50 Ω 5.51000	AC 10000 G	Hz	St	NSE:INT	#Avg Ty	ALIGNAUTO	12:28:32 TR. T	PM Aug 10, 2013 ACE 1 2 3 4 5 6	Frequency
			-			PNO: Fast FGain:Low	#Atten: 3	30 dB			1 5 100		Auto Tune
10 d	B/div	,	Ref	20.00 c	IBm					IVIKI	1 5.493 1	.93 dBm	Center Freq
10.0				1				-	_	-			
0.00				1 -	1	alore ad alor	- taken and a	all and	one shulpda	manuesant	12		5.510000000 GHz
-20.0	Hant	ar part	Hally	1		-		¥				Martin Martinan	Start Freq
-30.0 -40.0	comute	- March	and a									Marken Marken agen	5.485000000 GHz
-50.0	-												Stop Freg
-70.0	1. L.,												5.535000000 GHz
Cer #Re	ter s Bl	5.5° W 1	1000 .0 N) GHz 1Hz		#VE	SW 3.0 MH:	z	1.018	Sweep	Span 1.00 ms	50.00 MHz (1001 pts)	CF Step 5.00000 MHz <u>Auto</u> Man Freq Offset 0 Hz
MKR	MODE	TRC	SCL		Х		Ÿ	FL.	NCTION	UNCTION WIDTH	FUNCT	ION VALUE	
2	N	2	f	-	5.493	60 GHz 65 GHz	1.93 d -6.92 d	Bm Bm		_			
3 4 5													
67													
8	-	1									2		
10 11 12		1											
MSG										STATU	s		

							ot SA.	yzer - Swe	n Anal	ectrun	t Spe	lgilen
30:11 PM Aug 10, 2013 TRACE 1 2 3 4 5 6	12:3	ALIGNAUTO	#Avg	SENSE:IN		z	AC 0000 GH	50 Ω 51000	RF eq 5	Fre	ter	l R Cen
DET A P N N N N				: Free Rur en: 30 dB	φ,	NO: Fast Gain:Low	PI IFC					
525 00 GHz 2.25 dBm	1 5.8	Mkr					Bm	20.00 d	Ref		3/div	10 dl
	1_			1		-	1	1		÷		10.0
~	Paulor in	محمر متوند بالمؤلسية	- and a grapher day	and the forder	-	the second second second	······································	Provelenenter	-	_	-	0.00
and a				~~		-	¥.,	-	AS WIN			-10.0
- internation			4						1	W.A.	of and	-20.0
and sudary with the survey					-				Marrie .	معصلين	Nun	-40.0
					-				-		-	-50.0
											J. I.,	-60.0 -70.0
an 50.00 MHz ms (1001 pts)		ИНz	W 3.	#VE		GHz Hz	1000 .0 M	5.51 W 1	ter : s B\	Cen #Re		
UNCTION VALUE	F	UNCTION WIDTH	FUNCTION				×		SCL	TRC	MODE	MKR
	-		_	25 dBm 12 dBm		5 GHz	5.498 0		f	1	N	2
												345
												7
											-	9
			-	-				_			-	10
										-		12
	0:11PM Aug 10, 2013 TRACE [1 2 3 4 5 6 TYPE A MWAWAWA DET A P NNN N 525 00 GHz 2.25 dBm an 50.00 MHz ms (1001 pts) INCTION VALUE	12:30:11PM Aug 10, 2013 TRACE [1 2 3 4 5 6 TYPE [A MAWAWAY DET [A P NNN N 1 5.525 00 GHz 2.25 dBm 1 Span 50.00 MHz 1.00 ms (1001 pts) PUNCTION VALUE	ALIGNAUTO 12:30:11 PM Aug 10, 2013 Type: RMS TRACE [1 2 3 4 5 6 TYPE A MWWWW Der A P N N N Mkr1 5.525 00 GHz 2.25 dBm Span 50.00 MHz Sweep 1.00 ms (1001 pts) FUNCTION WIDTH FUNCTION VALUE	ALIGNAUTO 12:30:11 PM Aug 10, 2013 #Avg Type: RMS TRACE [1:2:3:4:5:6 TYPE A MAXWAWAY Der[A P N NN N Mkr1 5.525 00 GHz 2.25 dBm 1 1 <	SENSE:INT ALIGNATIO 12:30:11 PM Aug 10, 2013 Irig: Free Run (Atten: 30 dB If Avg Type: RMS If Avg Type: RMS If Avg Type: A PN NN NN Mkr1 5.525 00 GHz 2.25 dBm If Avg Type: RMS If Avg Type: A PN NN NN If Avg Type: A PN NN NN Mkr1 5.525 00 GHz 2.25 dBm If Avg Type: A PN NN NN If Avg Type: A PN NN NN If Avg Type: A PN NN NN Mkr1 5.525 00 GHz 2.25 dBm If Avg Type: A PN NN NN If Avg Type: A PN NN NN If Avg Type: A PN NN NN Mkr1 5.525 00 GHz 2.25 dBm If Avg Type: A PN NN NN If Avg Type: A PN NN NN If Avg Type: A PN NN NN Mkr1 5.525 00 GHz 2.25 dBm If Avg Type: A PN NN NN If Avg Type: A PN NN NN If Avg Type: A PN NN NN Mkr1 5.525 00 GHz 2.25 dBm If Avg Type: A PN NN NN If Avg Type: A PN NN NN If Avg Type: A PN NN NN Visit 1.00 MHz Span 50.00 MHz Span 50.00 MHz If Avg Type: A PN NN NN Visit 1.00 Mit 1.00	SENSE:INT ALIGNAUTO 12:30:11 PM Aug10, 2013 Trig: Free Run #Atten: 30 dB #Avg Type: RMS TracE [1:2:3:45:6 Mkr1 5.525 00 GHz 2.25 dBm 1 1 1 2 1 1 3 1 1 2 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1	SENSE:INT ALIGNAUTO 12:30:11PM Aug10,2013 IZ Trig: Free Run Bain:Low Trig: Free Run #Atten: 30 dB Trace [1:3:3:45:6 With Trace [1:3:3:45:6 Mither Trace [1:3:3:45:6 Interview Mither Trace [1:3:3:45:6 Interview Trace [1:3:3:45:6 Trace [1:3:3:45:6 Span 50.00 MHz Span 50.00 MHz Span 50.00 Mither Trace [1:3:3:6:6 Span 5	ALIGNAUTO 12:30:11 PM Aug 10, 2013 AC SENSEINT ALIGNAUTO 12:30:11 PM Aug 10, 2013 Trace 12:34 5 6 TYPE A MAWAWAWA DET A P NNN Mkr1 5.525 00 GHz 2.25 dBm 4000 MHz Sweep 1.00 ms (1001 pts) X X X 100 MHz Sweep 1.00 ms (1001 pts) X 100 ms (100 ms (Vzer - Swept SA SENSE:JNT ALIGNAUTO 12:30:11PM Aug10, 2013 5.510000000 GHz PN0: Fast Trig: Free Run #Avg Type: RMS TrACE [1:3:3:4:5:6 PN0: Fast Trig: Free Run #Avg Type: RMS TrACE [1:3:3:4:5:6 O O GHz PN0: Fast Trig: Free Run #Avg Type: RMS TrACE [1:3:3:4:5:6 O O GHz 20.00 dBm O O GHz 20.00 dBm 2.25 dBm 1	nhalyzer - Swept SA RF 50:9 AC seq 5.510000000 GHz Trig: Free Run #Avg Type: RMS TrACE [1:3:45:6 PN0: Fast Trig: Free Run #Avg Type: RMS TrACE [1:3:45:6 Ref 20.00 dBm 0.00 GHz 0.00 GHz 0.00 GHz 0.00 GHz 000 GHz WBW 3.0 MHz Span 50.00 MHz Span 50.00 MHz State of f 5.498 05 GHz -7.12 dBm FUNCTION WOMH FUNCTION WOMH	International system ALIGNAUTO Interest (12.3.4.5.6) Freq 5.510000000 GHz PN0: Fast IFGainLow Trig: Free Run #Atten: 30 dB #Avg Type: RMS ItRACE [12.3.4.5.6) Ref 20.00 dBm C.25 dBm 0.2.25 dBm 0.2.25 dBm 2.25 dBm 0.0.0.00 MHz Span 50.00 MHz 5.51000 GHz #VBW 3.0 MHz Span 50.00 MHz 5.51000 GHz Y VBW 3.0 MHz Span 50.00 MHz 1 1 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	15 Spectrum Analyzer - Swept SA INF S0 Q AC SENSECINT ALIGNAUTO 12:30:11 PM Aug10,2013 ter Freq 5.51000000 GHz PR0: Fast Trig: Free Run #Avg Type: RMS TrAcE [1:3:3:4:5:6 PR0: Fast PR0: Fast Trig: Free Run #Avg Type: RMS TracE [1:3:4:5:6 Soldiv Ref 20.00 dBm 2.25 dBm 0 GHz 2.25 dBm Soldiv Ref 20.00 dBm 2.25 dBm 1 1 Soldiv Ref 20.00 dBm 2.25 dBm 1 1 Soldiv Ref 20.00 dBm 2.25 dBm 1 1 1 Soldiv Ref 20.00 dBm 2.25 dBm 1 1 1 1 Soldiv Ref 20.00 dBm 2.25 dBm 1

Channel No.	Frequency	Data Rate Measurement Level Required Limit		Result		
Channel No.	(MHz)	(Mbps)	(dB)	(dB)	Result	
	5510	MCS (0)	10.010	<13	Pass	
100		MCS (2)	9.400	<13	Pass	
102		MCS (4)	9.170	<13	Pass	
		MCS (7)	9.810	<13	Pass	

Chain C

Channel 102:

	05:34:20 PM Aug 12, 2013	ALIGNAUTO		SENSE:IN		AC	50 Ω	RF		RL
Frequency	TRACE 1 2 3 4 5 6 TYPE A MWWWW DET A P N N N N	Type: RMS	#Avg	Trig: Free Rur #Atten: 30 dB	IZ NO:Fast ⊊ Sain:Low		.51000	eq 5	ter Fr	ent
Auto Tune	1 5.498 75 GHz 6.43 dBm	Mkr1			Junicon	Bm	20.00	Ref	Mdiv	dE
Center Fre 5.510000000 Gi	2.um	-	arine and	ubinete per	mtherestown	user of	-	a.Mc		9 0.0 .00
Start Fre 5.485000000 Gi	Jan and and and and and and and and and a		4	-				- Are	Martin Martin	0.0 0.0 0.0
Stop Fro 5.535000000 GI										0.0 0.0 0.0
CF Ste 5.000000 MI	Span 50.00 MHz 1.00 ms (1001 pts)	Sweep 1		3.0 MHz	#VBW) GHz 1Hz	1000 1.0 N	er 5.5 8 BW 1	ent
Auto M	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	6.43 dBm	5 GHz	× 5.498 7		f	N 2	KRIN 1
Freq Offs 01				-3.58 dBm		5.524 6		T	NT	2 3 4 5 6
										7 8 9 0
										2

Agilent Spectrum A	nalyzer - Swept SA					
UNI RL F	RF 50 Ω AC	SENSE:INT		ALIGNAUTO	05:36:12 PM Aug 12, 2013	Englished
Center Freq	5.510000000 GHz PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	#Avg	Type: RMS	TRACE 1 2 3 4 5 6 TYPE A MWWWW DET A P N N N N	Frequency
10 dB/div R	ef 20.00 dBm			Mkr	5.515 25 GHz 5.86 dBm	Auto Tune
10.0 0.00	a war for the manual second and	ildianation and an and and	e normalma	-Margo - B. A. M. and C. D. M.	2	Center Freq 5.510000000 GHz
-20.0 -20.0					Contraction on the contraction	Start Freq 5.485000000 GHz
-50.0 -60.0 -70.0						Stop Freq 5.535000000 GHz
Center 5.510 #Res BW 1.0	00 GHz MHz #VBW	3.0 MHz	- 11	Sweep	Span 50.00 MHz I.00 ms (1001 pts)	CF Step 5.000000 MHz
MKE MODE THE SI	5.515 25 GHz	5.86 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 3 4 5 6	5.495 70 GHz	-3.54 dBm				Freq Offset 0 Hz
0 7 8 9 10						
12				STATUS		

RI RI	ectrum	RE 50 C	vept SA	-	GE	USETINT	- 1	ALIGNALITO	05/39/50	PM Aug 12 2013	
Center	Free	5.5100	00000 GH	HZ NO: Fast G	Trig: Fre	e Run	#Avg Ty	pe: RMS	TR T	ACE 1 2 3 4 5 6 YPE A MWAMAA	Frequency
40 JD/J		of 20.00	dBm	Gain:Low	#Atten: 3	0 dB	_	Mki	1 5.525	5 95 GHz	Auto Tune
		Lifer 20.00	авш 2	Plannonce	and and the second dimensioned at	-	inter a strategy and the second	halden horas	1		Center Freq 5.510000000 GHz
-20.0	and for the									Manda Bardina	Start Freq 5.485000000 GHz
-50.0 -60.0 -70.0											Stop Free 5.535000000 GH;
Center #Res E	5.510 W 1.0	000 GHz 0 MHz	1	#VB\	V 3.0 MHz			Sweep	Span 1.00 ms	50.00 MHz (1001 pts)	CF Step 5.000000 MHz
MKR MOD	TRO		X E EQE Q	E CLI-	Y E OC H	FU Dina	NCTION FL	UNCTION WIDTH	FUNCT	ION VALUE	<u>Auto</u> Man
2 N 3 4 5 6	1	f	5.496 7	/5 GHz	-3.31 d	Sm Sm					Freq Offset 0 Hz
7 8 9 10 11											
MSG								STATU	s		

Agilent Spectr	um Analy	zer - Swept SA							
XI RL	RF	50 Ω AC		SENSE:IN	τ	ALIGNAUTO	05:41:39 PM	Aug 12, 2013	Francis
Center F	req 5.	51000000	0 GHz PNO: Fast C IFGain:Low	Trig: Free Rur #Atten: 30 dB	#Av	g Type: RMS	TRACE TYPE DE	123456 A M W/W/W A P N N N N	Frequency
10 dB/div	Ref	20.00 dBm				Mkr	1 5.498 : 6.5	35 GHz 2 dBm	Auto Tune
10.0 0.00 -10.0	and the second	punn	2	alant Mana harrow and party services	hanna ta ka sun P	searched again of sural cali	ainer and a start		Center Freq 5.510000000 GHz
-20.0 Mashum -30.0	hour /							man have been and the second	Start Freq 5.48500000 GHz
-50.0 -60.0 -70.0									Stop Freq 5.535000000 GHz
Center 5. #Res BW	51000 1.0 M	GHz Hz	#VB	W 3.0 MHz	4.	Sweep	Span 50 1.00 ms (1).00 MHz 001 pts)	CF Step 5.000000 MHz
MKR MODE TR	RC SCL	×		Y	FUNCTION.	FUNCTION WIDTH	FUNCTION	VALUE	Auto Man
1 N 2 2 N 1 3	f	5 5	498 35 GHz 497 75 GHz	6.52 dBm -3.29 dBm					Eran Offcat
4 5 6									0 Hz
7 8 9									
10 11 12									
MSG						STATU	s		

6. Radiated Emission

6.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2013
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2012
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2012
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	Field strength	Measurement distance						
	(microvolts/meter)	(meter)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above 960	500	3						

Remarks: E field strength (dBuV/m) = $20 \log E$ field strength (uV/m)

6.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10, 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

Product Test Item Test Site Test Mode	: SpectraC : Harmoni : No.3 OA : Mode 1:	Guard® Access Po c Radiated Emiss TS Transmit (802.11	oint / Sensor sion Data a-6Mbps)(Dipole An	tenna) (5260MHz	<u>z</u>)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
1 2	Factor	Level	Level	C		
MHz	dB	dBuV dBuV/m		dB	dBuV/m	
Horizontal						
Peak Detector:						
10520.000	14.015	36.430	50.445	-23.555	74.000	
15780.000	*	*	*	*	74.000	
21040.000	*	*	*	*	74.000	
26300.000	*	*	*	*	74.000	
31560.000	*	*	*	*	74.000	
36820.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10520.000	14.818	36.950	51.768	-22.232	74.000	
15780.000	*	*	*	*	74.000	
21040.000	*	*	*	*	74.000	
26300.000	*	*	*	*	74.000	

6.6. Test Result of Radiated Emission

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

*

*

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

*

*

measurements as necessary.

31560.000

36820.000

Average Detector:

Note:

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

*

*

*

*

74.000

74.000

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average

-

Product	: SpectraGuard® Access Point / Sensor							
Test Item	: Harmon	ic Radiated Emis	sion Data					
Test Site	: No.3 OA	ATS						
Test Mode	: Mode 1	1: Transmit (802.11a-6Mbps)(Dipole Antenna) (5300MHz)						
Energy	Correct	Deedine	Maanuant	Manain	T ::4			
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10600.000	14.550	37.170	51.719	-22.281	74.000			
15900.000	*	*	*	*	74.000			
21200.000	*	*	*	*	74.000			
26500.000	*	*	*	*	74.000			
31800.000	*	*	*	*	74.000			
37100.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
10600.000	14.881	36.660	51.541	-22.459	74.000			
15900.000	*	*	*	*	74.000			
21200.000	*	*	*	*	74.000			
26500.000	*	*	*	*	74.000			
31800.000	*	*	*	*	74.000			
37100.000	*	*	*	*	74.000			
A								

Average

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmon	ic Radiated Emiss	sion Data				
Test Site	: No.3 O	ATS					
Test Mode	: Mode 1	: Transmit (802.11	a-6Mbps)(Dipole An	tenna) (5320MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	35.830	50.520	-23.480	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10640.000	15.083	36.020	51.103	-22.897	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							

Dotootom

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor							
Test Item	: Harmon	ic Radiated Emis	sion Data					
Test Site	: No.3 OA	ATS						
Test Mode	: Mode 1	: Transmit (802.11	la-6Mbps)(Dipole An	tenna) (5500MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11000.000	16.399	36.500	52.899	-21.101	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
33000.000	*	*	*	*	74.000			
38500.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11000.000	17.132	36.420	53.552	-20.448	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
33000.000	*	*	*	*	74.000			
38500.000	*	*	*	*	74.000			
Average								

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmon	ic Radiated Emis	sion Data				
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 1:	Transmit (802.11	la-6Mbps)(Dipole An	tenna) (5580MH	Z)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11160.000	16.664	35.130	51.795	-22.205	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11160.000	17.643	34.830	52.473	-21.527	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor								
Test Item	 Harmonic Radiated Emission Data No.3 OATS 								
Test Site									
Test Mode	: Mode 1	: Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) (5700MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level	C					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11400.000	16.530	35.590	52.121	-21.879	74.000				
17100.000	*	*	*	*	74.000				
22800.000	*	*	*	*	74.000				
28500.000	*	*	*	*	74.000				
34200.000	*	*	*	*	74.000				
39900.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
11400.000	17.138	35.310	52.448	-21.552	74.000				
17100.000	*	*	*	*	74.000				
22800.000	*	*	*	*	74.000				
28500.000	*	*	*	*	74.000				
34200.000	*	*	*	*	74.000				
39900.000	*	*	*	*	74.000				
Average									

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product : SpectraGuard® Access Point / Sensor									
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 2	Transmit (802.11	In-20BW 21.7Mbps)(Dipole Antenna)	(5260MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit				
1	Factor	Level	Level	6					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10520.000	14.015	37.000	51.015	-22.985	74.000				
15780.000	*	*	*	*	74.000				
21040.000	*	*	*	*	74.000				
26300.000	*	*	*	*	74.000				
31560.000	*	*	*	*	74.000				
36820.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
10520.000	14.818	36.590	51.408	-22.592	74.000				
15780.000	*	*	*	*	74.000				
21040.000	*	*	*	*	74.000				
26300.000	*	*	*	*	74.000				
31560.000	*	*	*	*	74.000				
36820.000	*	*	*	*	74.000				
Average									

Average

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	Test Site : No.3 OATS						
Test Mode	: Mode 2: T	ransmit (802.11	n-20BW 21.7Mbps)(Dipole Antenna)	(5300MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10600.000	14.550	36.160	50.709	-23.291	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10600.000	14.881	36.040	50.921	-23.079	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
A							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) (5320MHz						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	36.440	51.130	-22.870	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10640.000	15.083	36.140	51.223	-22.777	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Spectrat : Harmor : No.3 O. : Mode 2	 SpectraGuard® Access Point / Sensor Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) (5500MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level	C				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11000.000	16.399	36.290	52.689	-21.311	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
33000.000	*	*	*	*	74.000			
38500.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11000.000	17.132	36.460	53.592	-20.408	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
33000.000	*	*	*	*	74.000			
38500.000	*	*	*	*	74.000			

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 SpectraGuard® Access Point / Sensor Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) (5580MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11160.000	16.664	34.940	51.605	-22.395	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11160.000	17.643	35.480	53.123	-20.877	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 SpectraGuard® Access Point / Sensor Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) (5700MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11400.000	16.530	35.380	51.911	-22.089	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11400.000	17.138	35.530	52.668	-21.332	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	Product : SpectraGuard® Access Point / Sensor Test Item : Harmonic Radiated Emission Data Test Site : No.3 OATS Test Multice Multice Multice				
Test Widde	: Mode 5:	Transmit (802.11	II-40B w 43wi0ps)(D	ipole Antenna) (3	270 WITZ)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10540.000	14.151	36.830	50.980	-23.020	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
31620.000	*	*	*	*	74.000
36890.000	*	*	*	*	74.000
Average					
Detector:					
X 7 4• 1					
vertical					
Peak Detector:	1 1 2 2 2	2 5 7 0 0	51.000		74.000
10540.000	14.829	36.500	51.328	-22.672	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
31620.000	*	*	*	*	74.000
36890.000	*	*	*	*	74.000

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	Test Site : No.3 OATS						
Test Mode	: Mode 3	310MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10620.000	14.623	36.510	51.133	-22.867	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10620.000	14.970	37.170	52.140	-21.860	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 3	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) (55)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11020.000	16.474	36.160	52.633	-21.367	74.000				
15930.000	*	*	*	*	74.000				
21240.000	*	*	*	*	74.000				
26550.000	*	*	*	*	74.000				
31860.000	*	*	*	*	74.000				
37170.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
11020.000	17.224	36.300	53.524	-20.476	74.000				
15930.000	*	*	*	*	74.000				
21240.000	*	*	*	*	74.000				
26550.000	*	*	*	*	74.000				
31860.000	*	*	*	*	74.000				
37170.000	*	*	*	*	74.000				
Average									

Detector:

Detecto

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product	: SpectraGuard® Access Point / Sensor							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 O	ATS						
Test Mode	: Mode 3	5550MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11100.000	16.681	36.670	53.351	-20.649	74.000			
15930.000	*	*	*	*	74.000			
21240.000	*	*	*	*	74.000			
26550.000	*	*	*	*	74.000			
31860.000	*	*	*	*	74.000			
37170.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11100.000	17.523	36.250	53.773	-20.227	74.000			
15930.000	*	*	*	*	74.000			
21240.000	*	*	*	*	74.000			
26550.000	*	*	*	*	74.000			
31860.000	*	*	*	*	74.000			
37170.000	*	*	*	*	74.000			
Average								

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : SpectraGuard® Access Point / Sensor								
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3:	Transmit (802.11	ipole Antenna) (5	5670MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
riequency	Factor	Level	Level	in anglin	Dimit			
MH ₇	dB	dBuV	dBuV/m	dB	dBuV/m			
	uD	uDu v		ub	uDu v/III			
Horizontal								
Peak Detector:								
11340.000	16.408	36.240	52.647	-21.353	74.000			
15930.000	*	*	*	*	74.000			
21240.000	*	*	*	*	74.000			
26550.000	*	*	*	*	74.000			
31860.000	*	*	*	*	74.000			
37170.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11340.000	17.167	36.630	53.797	-20.203	74.000			
15930.000	*	*	*	*	74.000			
21240.000	*	*	*	*	74.000			
26550.000	*	*	*	*	74.000			
31860.000	*	*	*	*	74.000			
37170.000	*	*	*	*	74.000			
A								

Average Dotoctor

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	e : Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) (5260MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	37.090	51.105	-22.895	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10520.000	14.818	36.770	51.588	-22.412	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) (5300MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	C			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10600.000	14.550	36.220	50.769	-23.231	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10600.000	14.881	35.680	50.561	-23.439	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
A							

Average

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) (5320MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	36.420	51.110	-22.890	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10640.000	15.083	35.310	50.393	-23.607	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) (5500MHz)						
_	a	D			.		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11000.000	16.399	36.210	52.609	-21.391	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11000.000	17.132	35.520	52.652	-21.348	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		
Average							

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) (5580MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11160.000	16.664	34.870	51.535	-22.465	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11160.000	17.643	35.880	53.523	-20.477	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		
Average							

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) (5700MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11400.000	16.530	39.710	56.241	-17.759	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		
Average							
Detector:							
11400.000	16.530	25.050	41.581	-12.419	54.000		
Vertical							
Peak Detector:							
11400.000	17.138	37.970	55.108	-18.892	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		
Average							
Detector:							
11400.000	17.138	23.340	40.478	-13.522	54.000		

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. Measurement Level = Reading Level + Correct Factor.

5. Correct Factor = Antenna factor + Cable loss – Amplifier gain.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	e : Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) (5260MHz						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	36.290	50.305	-23.695	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10520.000	14.818	36.290	51.108	-22.892	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Avorago							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
| Product | : SpectraGuard® Access Point / Sensor | | | | | | |
|------------------|---|---------|-------------|---------|--------|--|--|
| Test Item | : Harmonic Radiated Emission Data | | | | | | |
| Test Site | No.3 OATS Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) (5300MHz) | | | | | | |
| Test Mode | | | | | | | |
| | | | | | | | |
| Frequency | Correct | Reading | Measurement | Margin | Limit | | |
| | Factor | Level | Level | | | | |
| MHz | dB | dBuV | dBuV/m | dB | dBuV/m | | |
| Horizontal | | | | | | | |
| Peak Detector: | | | | | | | |
| 10600.000 | 14.550 | 36.530 | 51.079 | -22.921 | 74.000 | | |
| 15900.000 | * | * | * | * | 74.000 | | |
| 21200.000 | * | * | * | * | 74.000 | | |
| 26500000 | * | * | * | * | 74.000 | | |
| 31800.000 | * | * | * | * | 74.000 | | |
| 37100.000 | * | * | * | * | 74.000 | | |
| Average | | | | | | | |
| Detector: | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| Vertical | | | | | | | |
| Peak Detector: | | | | | | | |
| 10600.000 | 14.881 | 36.520 | 51.401 | -22.599 | 74.000 | | |
| 15900.000 | * | * | * | * | 74.000 | | |
| 21200.000 | * | * | * | * | 74.000 | | |
| 26500000 | * | * | * | * | 74.000 | | |
| 31800.000 | * | * | * | * | 74.000 | | |
| 37100.000 | * | * | * | * | 74.000 | | |
| Average | | | | | | | |

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product	: SpectraGuard® Access Point / Sensor								
Test Item	: Harmon	ic Radiated Emis	sion Data						
Test Site	: No.3 OATS								
Test Mode	: Mode 5	: Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) (5320MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10640.000	14.690	36.500	51.190	-22.810	74.000				
15960.000	*	*	*	*	74.000				
21280.000	*	*	*	*	74.000				
26600.000	*	*	*	*	74.000				
31920.000	*	*	*	*	74.000				
37240.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
10640.000	15.083	36.350	51.433	-22.567	74.000				
15960.000	*	*	*	*	74.000				
21280.000	*	*	*	*	74.000				
26600.000	*	*	*	*	74.000				
31920.000	*	*	*	*	74.000				
37240.000	*	*	*	*	74.000				
Average									

Dotootom

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 SpectraGuard® Access Point / Sensor Harmonic Radiated Emission Data No.3 OATS Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) (5500MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11000.000	16.399	37.130	53.529	-20.471	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11000.000	17.132	35.960	53.092	-20.908	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	 SpectraGuard® Access Point / Sensor Harmonic Radiated Emission Data No.3 OATS Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) (5580MHz) 						
Test Mode							
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11160.000	16.664	35.050	51.715	-22.285	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11160.000	17.643	34.540	52.183	-21.817	74.000		
16740.000	*	*	*	*	74.000		
22320.000	*	*	*	*	74.000		
27900.000	*	*	*	*	74.000		
33480.000	*	*	*	*	74.000		
39060.000	*	*	*	*	74.000		

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 SpectraGuard® Access Point / Sensor Harmonic Radiated Emission Data No.3 OATS Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) (5700MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11400.000	16.530	36.550	53.081	-20.919	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11400.000	17.138	35.940	53.078	-20.922	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor							
Test Item	: Harmonic Radiated Emission Data							
Test Site								
Test Mode	: Mode 6	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) (5270MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10540.000	14.151	36.210	50.360	-23.640	74.000			
15810.000	*	*	*	*	74.000			
21080.000	*	*	*	*	74.000			
26350.000	*	*	*	*	74.000			
31620.000	*	*	*	*	74.000			
36890.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
10540.000	14.829	36.220	51.048	-22.952	74.000			
15810.000	*	*	*	*	74.000			
21080.000	*	*	*	*	74.000			
26350.000	*	*	*	*	74.000			
31620.000	*	*	*	*	74.000			
36890.000	*	*	*	*	74.000			

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product	: SpectraGuard® Access Point / Sensor						
Test Item	 Harmonic Radiated Emission Data No.3 OATS 						
Test Site							
Test Mode	: Mode 6	Transmit (802.11	n-40BW 45Mbps)(PII	FA Antenna) (531	0MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10620.000	14.623	35.710	50.333	-23.667	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10620.000	14.970	36.380	51.350	-22.650	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) (5510MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11020.000	16.474	35.760	52.233	-21.767	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11020.000	17.224	36.670	53.894	-20.106	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Avorago							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	de : Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) (55501						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11100.000	16.681	35.110	51.791	-22.209	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11100.000	17.523	35.470	52.993	-21.007	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	le : Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) (5670M)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11340.000	16.408	35.960	52.367	-21.633	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11340.000	17.167	35.620	52.787	-21.213	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) (5300MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
Trequency	Eactor	Level	Laval	margin	Linnt		
NALL-	JD			П	dD. V/		
MHZ	dB	dBuv	dBuv/m	dВ	dBuv/m		
Horizontal							
Peak Detector							
132.820	-10.230	46.453	36.223	-7.277	43.500		
338.460	-3.925	41.698	37.773	-8.227	46.000		
450.980	-1.756	42.451	40.696	-5.304	46.000		
600.360	3.977	32.774	36.751	-9.249	46.000		
664.380	2.062	34.343	36.405	-9.595	46.000		
800.180	5.141	32.866	38.007	-7.993	46.000		
Vertical							
Peak Detector							
200.720	-7.835	43.100	35.265	-8.235	43.500		
297.720	-7.143	43.648	36.506	-9.494	46.000		
450.980	-7.106	41.175	34.070	-11.930	46.000		
666.320	-1.809	35.185	33.377	-12.623	46.000		
747.800	2.166	34.179	36.345	-9.655	46.000		
875.840	1.621	34.640	36.261	-9.739	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: General Radiated Emission						
Test Site	 No.3 OATS Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) (5580MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
297.720	-3.633	41.685	38.053	-7.947	46.000		
352.040	-2.403	41.424	39.021	-6.979	46.000		
406.360	-2.500	42.480	39.980	-6.020	46.000		
499.480	0.048	35.825	35.873	-10.127	46.000		
600.360	3.977	31.372	35.349	-10.651	46.000		
802.120	5.091	34.740	39.831	-6.169	46.000		
Vertical							
Peak Detector							
148.340	-6.244	36.506	30.262	-13.238	43.500		
258.920	-7.490	40.940	33.450	-12.550	46.000		
400.540	-5.156	38.517	33.362	-12.638	46.000		
499.480	-0.852	35.500	34.648	-11.352	46.000		
666.320	-1.809	35.558	33.750	-12.250	46.000		
749.740	2.510	34.756	37.266	-8.734	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
266.680	-4.963	40.650	35.687	-10.313	46.000
367.560	-1.205	39.856	38.651	-7.349	46.000
499.480	0.048	34.653	34.701	-11.299	46.000
600.360	3.977	31.152	35.129	-10.871	46.000
664.380	2.062	33.498	35.560	-10.440	46.000
802.120	5.091	33.516	38.607	-7.393	46.000
Vertical					
Peak Detector					
128.940	-4.128	37.995	33.867	-9.633	43.500
276.380	-8.653	44.954	36.301	-9.699	46.000
348.160	-3.458	42.946	39.488	-6.512	46.000
450.980	-7.106	40.339	33.234	-12.766	46.000
664.380	-1.918	36.798	34.880	-11.120	46.000
747.800	2.166	34.992	37.158	-8.842	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: SpectraGuard® Access Point / Sensor						
Test Item	: General Radiated Emission						
Test Site	: No.3 OA	TS					
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 21.7Mbps)(Dipole Antenna)	(5580MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
266.680	-4.963	42.341	37.378	-8.622	46.000		
379.200	-1.005	40.390	39.384	-6.616	46.000		
499.480	0.048	37.188	37.236	-8.764	46.000		
664.380	2.062	33.267	35.329	-10.671	46.000		
802.120	5.091	31.902	36.993	-9.007	46.000		
914.640	6.083	29.650	35.733	-10.267	46.000		
Vertical							
Peak Detector							
146.400	-6.248	36.407	30.159	-13.341	43.500		
249.220	-7.634	47.957	40.323	-5.677	46.000		
332.640	-4.914	43.795	38.881	-7.119	46.000		
400.540	-5.156	39.699	34.544	-11.456	46.000		
534.400	-0.571	32.042	31.471	-14.529	46.000		
749.740	2.510	34.147	36.657	-9.343	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
245.340	-6.346	43.465	37.119	-8.881	46.000
377.260	-1.115	36.103	34.988	-11.012	46.000
499.480	0.048	34.447	34.495	-11.505	46.000
600.360	3.977	32.572	36.549	-9.451	46.000
664.380	2.062	35.808	37.870	-8.130	46.000
802.120	5.091	32.341	37.432	-8.568	46.000
Vertical					
Peak Detector					
200.720	-7.835	42.392	34.557	-8.943	43.500

278.320-8.73948.21039.471-6.52946.000361.740-3.12942.19239.063-6.93746.000499.480-0.85235.70134.849-11.15146.000664.380-1.91835.69733.779-12.22146.000749.7402.51035.12437.634-8.36646.000						
361.740-3.12942.19239.063-6.93746.000499.480-0.85235.70134.849-11.15146.000664.380-1.91835.69733.779-12.22146.000749.7402.51035.12437.634-8.36646.000	278.320	-8.739	48.210	39.471	-6.529	46.000
499.480-0.85235.70134.849-11.15146.000664.380-1.91835.69733.779-12.22146.000749.7402.51035.12437.634-8.36646.000	361.740	-3.129	42.192	39.063	-6.937	46.000
664.380-1.91835.69733.779-12.22146.000749.7402.51035.12437.634-8.36646.000	499.480	-0.852	35.701	34.849	-11.151	46.000
749.740 2.510 35.124 37.634 -8.366 46.000	664.380	-1.918	35.697	33.779	-12.221	46.000
	749.740	2.510	35.124	37.634	-8.366	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) (5550MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
344.280	-2.591	31.917	29.327	-16.673	46.000
425.760	-3.093	34.896	31.803	-14.197	46.000
507.240	0.759	32.445	33.204	-12.796	46.000
608.120	4.384	26.575	30.959	-15.041	46.000
747.800	3.296	31.521	34.817	-11.183	46.000
809.880	5.049	31.098	36.147	-9.853	46.000

Vertical

Peak Detector

210.420	-7.882	44.396	36.515	-6.985	43.500
303.540	-6.794	39.563	32.769	-13.231	46.000
450.980	-7.106	40.434	33.329	-12.671	46.000
664.380	-1.918	35.638	33.720	-12.280	46.000
749.740	2.510	35.175	37.685	-8.315	46.000
875.840	1.621	27.030	28.651	-17.349	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

46.000

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
239.520	-6.851	43.823	36.973	-9.027	46.000
350.100	-2.332	42.424	40.092	-5.908	46.000
450.980	-1.756	42.498	40.743	-5.257	46.000
600.360	3.977	30.693	34.670	-11.330	46.000
666.320	2.031	33.283	35.315	-10.685	46.000
800.180	5.141	32.698	37.839	-8.161	46.000
Vertical					
Peak Detector					
146.400	-6.248	35.361	29.113	-14.387	43.500
255.040	-7.648	47.100	39.452	-6.548	46.000
369.500	-2.868	38.069	35.201	-10.799	46.000
450.980	-7.106	40.852	33.747	-12.253	46.000
664.380	-1.918	36.557	34.639	-11.361	46.000

Note:

802.120

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

34.952

-11.048

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

31.791

4. Measurement Level = Reading Level + Correct Factor.

3.161

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: SpectraGuard® Access Point / Sensor							
Test Item	: General	: General Radiated Emission						
Test Site	: No.3 OA	: No.3 OATS						
Test Mode	: Mode 4:	Transmit (802.11	a-6Mbps)(PIFA Ante	nna) (5580MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
346.220	-2.213	39.756	37.543	-8.457	46.000			
418.000	-3.234	39.022	35.788	-10.212	46.000			
532.460	1.957	30.433	32.390	-13.610	46.000			
600.360	3.977	32.153	36.130	-9.870	46.000			
710.940	3.596	30.386	33.982	-12.018	46.000			
809.880	5.049	32.344	37.393	-8.607	46.000			
Vertical								
Peak Detector								
161.920	-6.696	36.734	30.039	-13.461	43.500			
255.040	-7.648	45.221	37.573	-8.427	46.000			
450.980	-7.106	39.748	32.643	-13.357	46.000			
499.480	-0.852	35.277	34.425	-11.575	46.000			
664.380	-1.918	35.638	33.720	-12.280	46.000			
802.120	3.161	32.042	35.203	-10.797	46.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: SpectraGuard® Access Point / Sensor				
Test Item	: General Radiated Emission				
Test Site	: No.3 OATS				
Test Mode	: Mode 5:	Transmit (802.11	n-20BW 21.7Mbps)(PIFA Antenna) (5	300MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
357.860	-2.084	33.316	31.232	-14.768	46.000
499.480	0.048	34.610	34.658	-11.342	46.000
600.360	3.977	30.207	34.184	-11.816	46.000
664.380	2.062	33.132	35.194	-10.806	46.000
712.880	3.569	31.610	35.179	-10.821	46.000
800.180	5.141	32.073	37.214	-8.786	46.000
Vertical					
Peak Detector					
295.780	-7.455	39.852	32.397	-13.603	46.000
499.480	-0.852	36.090	35.238	-10.762	46.000
664.380	-1.918	36.557	34.639	-11.361	46.000
747.800	2.166	35.642	37.808	-8.192	46.000
800.180	2.801	32.255	35.056	-10.944	46.000
918.520	4.126	33.245	37.371	-8.629	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) (5580MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
338.460	-3.925	42.367	38.442	-7.558	46.000
408.300	-2.866	34.815	31.949	-14.051	46.000
499.480	0.048	34.963	35.011	-10.989	46.000
600.360	3.977	30.878	34.855	-11.145	46.000
707.060	2.919	33.936	36.855	-9.145	46.000
800.180	5.141	33.114	38.255	-7.745	46.000
Vertical					

Peak Detector

I can Detector					
224.000	-8.699	46.356	37.657	-8.343	46.000
348.160	-3.458	38.938	35.480	-10.520	46.000
499.480	-0.852	35.593	34.741	-11.259	46.000
664.380	-1.918	35.617	33.699	-12.301	46.000
802.120	3.161	31.812	34.973	-11.027	46.000
899.120	3.063	27.621	30.684	-15.316	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
105.660	-6.673	44.172	37.499	-6.001	43.500
340.400	-3.859	39.137	35.278	-10.722	46.000
425.760	-3.093	35.551	32.458	-13.542	46.000
582.900	3.445	28.894	32.339	-13.661	46.000
714.820	3.562	31.466	35.028	-10.972	46.000
800.180	5.141	32.689	37.830	-8.170	46.000
Vertical					

Pools Dotootor

Peak Delector					
130.880	-4.239	42.454	38.215	-5.285	43.500
286.080	-8.097	44.311	36.214	-9.786	46.000
400.540	-5.156	38.129	32.974	-13.026	46.000
499.480	-0.852	35.055	34.203	-11.797	46.000
664.380	-1.918	36.167	34.249	-11.751	46.000
800.180	2.801	32.197	34.998	-11.002	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) (5550MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
97.900	-7.650	42.583	34.932	-8.568	43.500
373.380	-1.163	36.898	35.735	-10.265	46.000
499.480	0.048	34.843	34.891	-11.109	46.000
600.360	3.977	30.602	34.579	-11.421	46.000
664.380	2.062	32.788	34.850	-11.150	46.000
800.180	5.141	31.561	36.702	-9.298	46.000
Vertical					
Peak Detector					
140.580	-6.241	37.737	31.496	-12.004	43.500
249.220	-7.634	48.498	40.864	-5.136	46.000
386.960	-3.064	37.909	34.845	-11.155	46.000
507.240	-0.471	34.745	34.274	-11.726	46.000
666.320	-1.809	35.868	34.060	-11.940	46.000
802.120	3.161	32.277	35.438	-10.562	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

7. Band Edge

7.1. **Test Equipment**

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2013
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2013
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Fauinment	Manufacturer	Model No /Serial No	Last Cal
		Equipment	Wanutacturer	Woder Wo./Bernar Wo.	Last Cal.
imesSite # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2013
		Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2013
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2012
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2013
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2013
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2013
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

7.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits					
	Frequency MHz	uV/m @3m	dBuV/m@3m		
	30-88	100	40		
	88-216	150	43.5		
	216-960	200	46		
	Above 960	500	54		

Remarks : 1. RF Voltage $(dBuV) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

- \pm 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

7.6. **Test Result of Band Edge**

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) -Channel 64

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
64 (Peak)	5320.800	3.810	107.827	111.637			Pass
64 (Peak)	5350.000	3.716	62.840	66.557	74.00	54.00	Pass
64 (Average)	5320.600	3.810	97.768	101.578			Pass
64 (Average)	5350.000	3.716	42.876	46.593	74.00	54.00	Pass

Figure Channel 64:

Horizontal (Peak)

Figure Channel 64:

Horizontal (Average)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level.
- 1. 2. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) -Channel 64

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
64 (Peak)	5318.000	5.732	96.288	102.020			Pass
64 (Peak)	5350.000	5.691	48.001	53.693	74.00	54.00	Pass
64 (Average)	5318.200	5.731	86.151	91.882			Pass
64 (Average)	5350.000	5.691	32.536	38.228	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) -Channel 100

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
100 (Peak)	5460.000	4.354	45.089	49.443	74.00	54.00	Pass
100 (Peak)	5493.400	4.769	100.976	105.745			Pass
100 (Average)	5460.000	4.354	33.407	37.761	74.00	54.00	Pass
100 (Average)	5493.400	4.769	90.873	95.642			Pass

Figure Channel 100:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) -Channel 100

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
100 (Peak)	5460.000	6.041	43.547	49.588	74.00	54.00	Pass
100 (Peak)	5495.200	6.260	95.490	101.750			Pass
100 (Average)	5460.000	6.041	30.796	36.837	74.00	54.00	Pass
100 (Average)	5495.600	6.261	84.754	91.016			Pass

Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) -Channel 100

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-66.620	-48.286	-21.286	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-68.480	-49.145	-22.145	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna) -Channel 140

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-65.670	-47.021	-20.021	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-68.970	-49.598	-22.598	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) -Channel 64

RF Radiated Measurement (Horizontal):

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
64 (Peak)	5315.200	3.827	106.534	110.362			Pass
64 (Peak)	5350.000	3.716	56.075	59.792	74.00	54.00	Pass
64 (Peak)	5353.600	3.705	57.713	61.418	74.00	54.00	Pass
64 (Average)	5316.200	3.824	94.598	98.422			Pass
64 (Average)	5350.000	3.716	40.303	44.020	74.00	54.00	Pass

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) -Channel 64

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
64 (Peak)	5317.600	5.732	97.612	103.344			Pass
64 (Peak)	5350.000	5.691	49.353	55.045	74.00	54.00	Pass
64 (Average)	5316.200	5.733	85.408	91.142			Pass
64 (Average)	5350.000	5.691	33.986	39.678	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product:SpectraGuard® Access Point / SensorTest Item:Band Edge DataTest Site:No.3 OATSTest Mode:Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) -Channel 100

RF Radiated Measurement (Horizontal):

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Chamler 100.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5456.400	4.305	51.217	55.523	74.00	54.00	Pass
100 (Peak)	5460.000	4.354	49.274	53.628	74.00	54.00	Pass
100 (Peak)	5496.200	4.788	105.852	110.640			Pass
100 (Average)	5460.000	4.354	36.386	40.740	74.00	54.00	Pass
100 (Average)	5496.400	4.789	93.884	98.674			Pass

Horizontal (Peak)

Figure Channel 100:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) -Channel 100

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5460.000	6.041	43.394	49.435	74.00	54.00	Pass
100 (Peak)	5495.000	6.260	95.159	101.419			Pass
100 (Average)	5460.000	6.041	31.253	37.294	74.00	54.00	Pass
100 (Average)	5495.400	6.261	82.886	89.147			Pass

Figure Channel 100:

Vertical (Peak)

Figure Channel 100:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) -Channel 100

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-66.180	-47.846	-20.846	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-68.600	-49.265	-22.265	-27.000	Pass
Product	:	SpectraGuard® Access Point / Sensor					
-----------	---	---					
Test Item	:	Band Edge Data					
Test Site	:	No.3 OATS					
Test Mode	:	Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna) -Channel 140					

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-64.010	-45.361	-18.361	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-68.910	-49.538	-22.538	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) -Channel 62

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
62 (Peak)	5318.600	3.817	101.068	104.885			Pass
62 (Peak)	5350.000	3.716	63.921	67.638	74.00	54.00	Pass
62 (Average)	5321.200	3.809	88.714	92.523			Pass
62 (Average)	5350.000	3.716	43.563	47.280	74.00	54.00	Pass

Figure Channel 62:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) -Channel 62

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
62 (Peak)	5312.000	5.739	91.152	96.891			Pass
62 (Peak)	5350.000	5.691	48.916	54.608	74.00	54.00	Pass
62 (Average)	5317.800	5.732	78.985	84.717			Pass
62 (Average)	5350.000	5.691	33.124	38.816	74.00	54.00	Pass

Figure Channel 62:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Antenna) - Channel 102

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesun
102 (Peak)	5460.000	4.354	57.271	61.625	74.00	54.00	Pass
102 (Peak)	5521.800	4.714	103.016	107.730			Pass
102 (Average)	5460.000	4.354	40.107	44.461	74.00	54.00	Pass
102 (Average)	5521.500	4.717	90.448	95.165			Pass

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) -Channel 102

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
102 (Peak)	5460.000	6.041	44.747	50.788	74.00	54.00	Pass
102 (Peak)	5499.600	6.274	90.931	97.205			Pass
102 (Average)	5460.000	6.041	32.476	38.517	74.00	54.00	Pass
102 (Average)	5498.400	6.270	78.930	85.200			Pass

Figure Channel 102:

Vertical (Peak)

Figure Channel 102:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) -Channel 102

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-61.560	-43.226	-16.226	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-68.280	-48.945	-21.945	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 45Mbps)(Dipole Antenna) -Channel 134

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-66.560	-47.911	-20.911	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-69.070	-49.698	-22.698	-27.000	Pass

P	roduct	:	SpectraGuard® Access Point / Sensor							
T	est Item	:	Band Edge Data							
T	est Site	:	No.3 OATS							
T	est Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dip	pole Antenna)						
	Chain A		-							
	Test Freq	luency	Measurement Level (20dB BW)	Limit	Result					
	(MHz)		(MHz)	(MHz)						
	5580		5589.30	<5600	PASS					
	5660		5650.55	>5650	PASS					

RL # 301	R I	sekseavil	T TERMINIC	12:50:334M Aug 16, 2013	Framuency
enter Freg 5.5800	00000 GHz PNO: Fast C	Trig: Free Run	Avg Type: Log-Pwr	TYPE M WARAN	risqueriey
	#FGsin:Low	#Atten: 30 dB		CEEP SAMAA	Auto Tun
dB/div Ref 20.00	dBm		MKr	2 5.589 30 GHz -23.11 dBm	
10					Center Fre
10		0'			6.58000000 GH
0.0	F				
10	1			20.00	Start Fre
0.0	1. Barrent				5.555000000 GH
and when the second	1			Martin Mal	
10				and the second sec	Stop Fre
0.0					5.60500000 GH
enter 5.58000 GHz			1	Span 50.00 MHz	CETI
Res BW 300 kHz	#VB	W 1.0 MHz	#Sweep	500 ms (1001 pts)	5.000000 M
E MODE TRO 1951	S ETE OD CLUS	200 40 -	NCTION FUNCTION WOTH	RINCHONVALUE	Auto Ma
N f	6.589 30 GHz	-23.11 dBm			
4					Freq Ons
7					
1					
2					

Agilent Spe	ectru	n Anal	rzet - Swo	ept 51.		1 1000	and in the second se			(+2.40.52)	14 may 16, 2012	
Center	Fre	əq 5.	66000	10000 G	Hz PND: Fast /	Trig: Free B	ture	Avg Typ	e: Log-Pwr	IRA IV	DE 1 7 1 4 5 6 PE 14 14 14	Frequency
	IF Gain: Low #After: 30 dB Mkr2 5.650 55 GHz 0.48/6// Ref 20.00 dBm -25.35 dBm											Auto Tune
10 dB/div	v	Ref	20.00	JBm	1	1 1	-	-	-	-20.	35 uBill	
10.0	-					0'						Center Free 5.66000000 GH
30.0	_	-			* ²			1			-1154000	Start Free
40,0 50/0		-	لتحلق	- and a start					~	- Marine		
60.0		1										Stop Fre 5.685000000 GH
enter Res B	5.60 W 3	5000 100 k	GHz Hz	1	#VB	W 1.0 MHz	1		#Sweep	Span 5 500 ms	50.00 MHz (1001 pts)	CF Ste 5 000000 MH
IN MUDE	180	91		×		Y	I FUNC	IUN FU	NCRONVIDIR	PUNCT	INVALUE	<u>Auto</u> Ma
2 N 3 4 5	1	+		5.650	25 GH2 55 GH2	-3.34 dBn -25.36 dBn	2					Freq Offs
6 7 8 9									_			
10 11 12			_				1					-
sà									STATES			

P	roduct	:	SpectraGuard® Access Point / Sensor							
T	est Item	:	Band Edge Data							
T	Test Site : No.3 OATS									
T	est Mode	:	Mode 1: Transmit (802.11a-6Mbps)(Dip	oole Antenna)						
	Chain B									
	Test Frequency		Measurement Level (20dB BW)	Limit	Result					
	(MHz)		(MHz)	(MHz)						
	5580		5589.35	<5600	PASS					
	566	0	5650.80	>5650	PASS					

gilent Spectrum An	alyzer Swept SA		C (1911)	and the second s	125-00-002-004-0-16-00402			
Center Freq	Freq 5.58000000 GHz PNO: Fast		Freq 5.58000000 GHz PNO: Fast Trig: Free Run		Trig: Free Run	Avg Type: Log-Pwr	TBACE 1 2 3 4 5 8 TVTE MYMAMMA Det P SNNNN	Frequency
10 dBldiv Re	f 20,00 dBm	IFGainLow	BALLER. 30 00	Mkr	2 5.589 35 GHz -28.53 dBm	Auto Tum		
000			0 ¹			Center Free 5.58000000 GH		
200 200 200		1		2	(26.25,089	Start Free 5.555000000 GH		
200						Stop Fre 5.60500000 GH		
enter 5.5800 Res BW 300	0 GHz kHz	#VBV	V 1.0 MHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF Ste 5.000000 MF		
	5.5	TO 10 GHz	-6.25 dBm	NCTION FUNCTION WIDTH	FUNCTION WALLIE	Auto Ma		
2 N 1 f 3 4	5.6	89 35 GHz	-28.53 dBm			Freq Offse		
8 9 10								
12]	L		1	status				

Applent spectrum and yzer - Swept SA		LENCE-N	T	STANAL OFF	110-12-00-01	A fresh Strate	
Center Freq 5.66000000	Freq 5.660000000 GHz PND: Fast Trig: Free Ru		Avj	Type: Log-Pwr	1RAC 179	PSNNNN	Frequency
10 dBidiy Ref 20.00 dBm	IFGainsLow	Latten St 66	0.	Mk	r2 5.650 -26.1	80 GHz 29 dBm	Auto Tune
100 100		-	\$ ¹				Center Freq 5.66000000 GHb
263 300 400	\$ ²			St. N		SA UD dem	Start Freq 5.635000000 GHz
50 0 60 0 70 0			-		the second second		Stop Free 5.695000000 GH:
Center 5.66000 GHz #Res BW 300 kHz	#VBW	1.0 MHz	1	#Sweep	Span 5 500 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MH
	62 45 GHz	-6.00 dBm	FUNCTION	RINCTURMENT	H} FONCTO	NWILLIE	Auto Mar
2 N 1 f 5.6 3 4 5 5	50 90 GHz	-26.29 dBm					Freq Offse
7 8 9 10 11							
121 I I I	1		_	1 and	1		4

P	Product : SpectraGuard® Access Point / Sensor								
Te	est Item	:	Band Edge Data						
Te	est Site	:	No.3 OATS						
Te	Cest Mode : Mode 1: Transmit (802.11a-6Mbps)(Dipole Antenna)								
	Chain C								
	Test Frequency		Measurement Level (20dB BW)	Limit	Result				
	(MHz)		(MHz)	(MHz)					
	5580		5589.10	<5600	PASS				
	5660)	5650.75	>5650	PASS				

enter	Fraq	5.58000	0000 GH	łz NO: Fast G	Trig: Free Ru	Avg	Type: Log-Pur	12:51:11/ 78A TV	MA0016,2013 CE 1 2 84 5 8 TE MUMUMUM ET P SNNNN	Frequency
0 dBldiv	R	ef 20.00 c	IBm	GBRICLOW	Water. So up		Mk	2 5.589	10 GHz 41 dBm	Auto Tun
0g 10.0				-	and and an					Center Fre 5,59000000 GH
0.0 m.ii 50.0	_	_	-	de la constante da la constant			+2		3(5) (6)	Start Fre
100 500 500	مساولاتها	and a second						and the second second	Waldensylesu	Stop Fre 5.60500000 GH
enter : Res Bi	5.580 W 300	00 GHz kHz		#VB	V 1.0 MHz	-	#Sweep	Span : 500 ms	50.00 MHz (1001 pts)	CF Ste 5.000000 M
1 N	TRO	3	5.505 0	0 GHz	-1,51 dBm	FUNCTION	FUNCTION WIDTH	FUNCTO	DNIVALUE	Stop Fri 5.60500000 G 2 CP Str 5.00000 M 5.00000 M
2 N 3 4 6	1 f		5.689 1	0 GHz	-23.41 dBm					Freq Offs
7 8 9 10										
2]		1					1	-	1	

lgilent Spectrum Analyzer	Swept S&				
Center Freq 5.66	0000000 GHz	Trig: Free Run	Avg Type: Log-Pu	0. 12321248 20016.2013 TEAC 123456 178 Manual 123456	Frequency
10 dB/div Ref 20.	IFGaincLew	#Atten: 30 dB	М	kr2 5.650 75 GHz -23.10 dBm	Auto Tun
0.00		01	a series and the second se		Center Free 5.65000000 GH
10,0 20,0 a0 0	* ²		1	3% 75 (B a	Start Fre
4011 50.0 pr. (1.5.0 p. lov/11 60.0	in the second			and the family is a monotogent	Stop Free 5.685000000 GH
Center 5.66000 GH Res BW 300 kHz	1z #VB	W 1.0 MHz	#Swee	Span 50.00 MHz p 500 ms (1001 pts)	CF Ste 5.000000 MH
	5,655 00 GHz	-1.75 dBm	UNCTION CONCIONENT	19 CONSTIUN VALUE	Start Fre 5.836000000 GF 5.68500000 GF 5.68500000 GF 5.00000 MF 5.00000 MF 5.00000 MF 5.00000 MF
3 4 5 6					Freq Offs 01
7 8 9 10					
12			578	TUS	

P	roduct	:	SpectraGuard® Access Point / Sensor						
T	est Item	:	Band Edge Data						
Test Site : No.3 OATS									
T	est Mode	:	Mode 2: Transmit (802.11n-20BW 21.7	e 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna)					
	Chain A								
	Test Freq	uency	Measurement Level (20dB BW)	Limit	Result				
	(MHz	z)	(MHz)	(MHz)					
	5580 5660		5590.15	<5600	PASS				
			5650.05	>5650	PASS				

gilent Spectrum Analyzer - Swept SA				Frequency				
Center Freq 5.580000000 GHz PNO: Fast	Trig: Free Run	Avg Type: Log-Pwr	12:51:52 AM Aug 10, 2013 75A(2) 1 2 3 4 5 6 TVTE MYAMAMAN P 5 N M N N	Frequency				
Mkr2 5.590 15 GHz 0 dBidiy Ref 20.00 dBm -23.02 dBm								
00 00				Center Fre 5.58000000 GH				
0.0 min 30.0		2	State of Level	Start Free 5.555000000 GH				
50.0 70.0				Stop Fre 5,605000000 GH				
Center 5.58000 GHz Res BW 300 KHz #VBW	1.0 MHz	*Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF Ste 5.000000 MH				
1 N 1 6 55T3 35 GHz	4.03 dBm	UNCTION RINCTION WIDTH	FUNCTION VALUE	Auto Ma				
2 N 1 7 5,690 16 GHz 3 4 5	23.02 dBm			Freq Offse				
0 1 7 1 9 1 9 1 10 1								
12/		statu						

Agilent Spectrum Analyzer - Swept SA				
Center Freq 5.560000000 GHz	1 700-284820	Avg Type: Log-Pwr	12:52:51:434 July 16, 2013 TRACE 1: 3:3:4:5:6	Frequency
PND: Fast 😱 IFG aint pw	Trig: Free Run #Atten: 30 dB		DET P SNNNN	Frequency Auto Tune Center Free 5.660000000 GH: Start Free 5.83500000 GH: Stop Free 5.68500000 GH: CF Step 5.00000 MH: Auto Mar Free Offse
jo dBidiy Ref 20.00 dBm		Mkr	2 5.650 05 GHz -23.44 dBm	
	<u>, 1</u>			Center Freq 5.66000000 GHb
400 22			ant de la contrada de	Start Free 5.635000000 GHa
50.0 464447			The start	Stop Free 5,685000000 GH:
Center 5.66000 GHz #Res BW 300 kHz #VBW	1.0 MHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF Step 5.000000 MH
1 N 1 T 5.654 95 GHz	-2.15 dBm	RUNCTION RUNCTION WIDTH	FUNCTION WALVE	<u>Auto</u> Mar
2 N 1 f 5.650.05 GHz 3 4	-23.44 dBm			Freq Offse 038
7 8 9 10				
12		status		

P	roduct	:	SpectraGuard® Access Point / Sensor		
T	est Item	:	Band Edge Data		
T	Fest Site : No.3 OATS				
T	est Mode	:	Mode 2: Transmit (802.11n-20BW 21.7	Mbps)(Dipole Ant	enna)
	Chain B			1	
	Test Freq	uency	Measurement Level (20dB BW)	Limit	Result
	(MHz	z)	(MHz)	(MHz)	
	5580 5660		5589.70	<5600	PASS
			5650.25	>5650	PASS

							ept SA	dyzer - Swe	rumi Ama	ntispect	Agile
Frequency	MALQ 16, 2013 CE 1 2 8 4 5 6 TE MULLIOUT	12:45.06/ 78.4 TV	e:Log-Pur	Avg	Trig: Free Run	Hz NO: Fast 😱	00000 GH	58000	req 5	iter F	Cer
Auto Tune	70 GHz 79 dBm	2 5.589	Mkr	-	#Atten: 30 dB	GaintLow	IBm	20.00 c	Ref	Bidiy	10 0
Center Freq 5.58000000 GHz				Q1	-Les Aging physics	- Not					10.0 0.00
Start Freq 5.55500000 GHz	24 AU (1276		2			1	1				-10.0 20.0 -30.0
Stop Free 5.605000000 GH:		and the second second								-	50.0 -70.0
CF Step 5.000000 MH	0.00 MHz (1001 pts)	Span : 500 ms	#Sweep	2	.0 MHz	#VBW		8 GHz KHz	5800	nter 5 Is BW	Cer #Re
Auto Mar	IN VALUE	FUNCTO	INCTION WIDTH	EUNCTION	4.59 dBm	0 GHz	5.503 7			N	1
Freq Offset 0 Ha					-26.79 dBm	UGHZ	5.5897	-		N	3466
											7 8 9 10 11
]			STATUS						-	-	Arisis

Agilent Spectrum Analyzer - Swept SA				and another states and	
Center Freq 5.660000000 GHz	The Free Shin	Avg	Type: Log-Pwr	12-13-57 AM Aug 16, 2013 18405 1 2 3 4 5 5	Frequency
PND: Fast 😱 IFGain:Low	EAtten: 30 dB	<u>-</u>		OF PRNNN	Auto Turo
10 dB/div Ref 20.00 dBm			Mkr	2 5.650 25 GHz -26.51 dBm	Hato rune
	At	Lo co franka			Center Freq 5.660000000 GHb
26 G 300 400				-21101 (191	Start Free 5.635000000 GH
-50.0		+		-	Stop Fred 5,685000000 GH:
Center 5.66000 GHz #Res BW 300 kHz #VBW	1.0 MHz	1	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF Step 5.000000 MH
1 N 1 F 5.655 60 GHz	-3.93 dBm	FUNCTION	RUNCTION WIDTH	RUNERUN WILLIE	Auto Mar
8 N 1 f 5.650.25 GHz 3 4 5 5	-26.51 dBm				Freq Offse 018
7 8 9 10					
12			_		

Pı	roduct	:	SpectraGuard® Access Point / Sensor						
Te	est Item	:	Band Edge Data						
Te	est Site	:	No.3 OATS	No.3 OATS Mode 2: Transmit (802.11n-20BW 21.7Mbps)(Dipole Antenna)					
Te	est Mode	:	Mode 2: Transmit (802.11n-20BW 21.7						
	Chain C								
	Test Freq	uency	Measurement Level (20dB BW)	Limit	Result				
	(MH)	Z)	(MHz) (MHz)						

(MHz)	(MHz)	(MHz)	
5580	5589.65	<5600	PASS
5660	5650.20	>5650	PASS

	A Starth Start H	12-24-50-6	CONCEPTO -	-	ISE-ANTE	100410		1912	50.0	-	parts.	81
Mailgare Second 64 Second 64 Marker Marker 5589650000000 GHz Frig: Free Run Broand and and and and and and and and and	5.58	ar 2	ark									
Select Marker	ET PSNNNN	04		_	dB	#Atten: 30	ainclaw	ING			-	
2	65 GHz 78 dBm	2 5,589	Mkr	-				Bm	20.00 d	Ref	div	dB
Norm		-		-						-	1	0.0
NOTINE			-	-		- warden	-			1	-	m.
×	-2460	_	2		_		1	_		-	_	10
Dett			1 Mar	-		-		~		-	-	10
	Million Jack	A ANALA		-					Ale distant	sech.	Alter	1.0 4
Fixed			-					_		-	-	50
		1	-							1	1	19
01	0.00 MHz 1001 pts)	Span 5 500 ms (#Sweep			1.0 MHz	#VBW		GHz	8000 300 H	r 5.5 BW	entes
	INVALUE	FUNCTION	CRUNINDER	TION R	FUN	0.44 40	CUp)	27 E EQA 28			DE TR	E M
16.55			-		im .	23.79 dB	5 GHz	5.589 68		1	4	
Properties											-	5
-				-			-			11	+	7
Mon			-							11	T	9
1.01			1							$\left\{ \right\}$	1	1
	3	1	STATIO									6

Printing and	H Jung 16, 20/13	12233524	見い対応の	1 2 3	AL-REMARK		#	50.0	194-	11	装計
Frequency	TIZSASS CMUMMAN	TEAL TY	:Log-Pwr	Avg	Trig: Free Run	Z D: Fast 😱	0000 GH	660000	eq 5.	r Fr	nt
Auto Tur	20 GHz	2 5.650	Mkr		KAtten: 30 dB	aincl. aw	IFG		-	-	
	90 dBm	-22.			_	_	Bm	20.00 di	Ref	liv	dB
Center Fre		_	-	1T		-			+	_	0
6.660000000 GH			-	0.	-	-	_	-	+	-	n
	a traine					2			1		0
Start Fre			Sec.			-	1		1		Ū.
5.53900000 Gr	Later -	Part Marting will	and and a	-1			aller	197 AN	-		ų.
Stop Fre			1	1					T	and the second	2
6.685000000 GH						_				_	0
	0.06 MHZ	Spap 5	-	1				GHZ	6000	r 5.6	L
5.000000 MF	1001 pts)	500 ms (#Sweep	-	1.0 MHz	#VBW	_	Hz	00 k	BW :	es
Auto Ma	N VALUE	FRINE, DA	UCTORE IN CALIFORNIA DE LA	FUNCTION.	.171 dBm	GHz	5 665 00		501) F	DE TH	
Eren Offe			-		22.90 dBm	GHz	5.660 20		1	1	P
01						-			$\left \right $	-	-
		_						-			
						-				-	
										+	1
			3							1	1

Product :			SpectraGuard® Access Point / Sensor								
Te	Test Item :		Band Edge Data								
Te	est Site	:	No.3 OATS								
Te	est Mode	:	Mode 3: Transmit (802.11n-40BW 45M	lbps)(Dipole Anter	nna)						
	Chain A										
	Test Freq	uency	Measurement Level (20dB BW)	Limit	Result						
	(MH	z)	(MHz)	(MHz)							
	5550	0	5570.40	<5600	PASS						
	5670	0	5650.10 >5650 PA								

enter Freq 5.55	0000000 GHz PNO: Fast	Trig: Free Run	Avg Type: Log-Pwr	1254.04 AM Aug 10, 2013 784.05 1 2 3 4 5 6 TV/FE MYMANA	Frequency
dBidiy Dat 20 (IFGain:Lew	#Atten: 30 dB	M	r2 5.570 4 GHz -24,46 dBm	Auto Tun
		Qr			Center Fre
	worked and		2	N AN AND AND AND AND AND AND AND AND AND	Start Fre 5.50000000 GH
10					Stop Fre 5.60000000 Gł
enter 5.55000 GH Res BW 300 KHz	z #VI	SW 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF Ste 10,000000 M
	5.541 5 GHz	-1.00 dBm	INCTION RINCTION WOTH	FUNCTION VALUE	Auto Mi
	0.070 - 0.12	24.40 0.514			Freq Offs 01
7 3 3 0					
2			-	1	

Agilant Spectrum	n Analyzer - 5	wept SA	LEANCE	ANTT	- 201114 2070 D	10-55-554	In Acres 6 1912	
Center Fre	q 5.6700	000000 GHz	rst 🕞 Trig: Free Ro	AvgT	ype: Log-Pwr	1Rai 1Y	CE 123456	Frequency
10 dB/div	Ref 20.00	dBm	pw EAtten: 30 di		M	kr2 5.65 -23.	0 1 GHz 10 dBm	Auto Tune
10.0 0.00		-	Q1		4			Center Freq 5.670000000 GHz
-26.0 -26.0 -20.0 -20.0 -40.0	Nillin Braynerick					-	2666	Start Freq 5.62000000 GHa
-50.0 -70.0	-							Stop Free 5.72000000 GH:
Center 5.67 #Res BW 3	7000 GHz 00 KHz		WBW 1.0 MHz	1	#Sweep	Span 1 500 ms (100.0 MHz (1001 pts)	CF Step 10.000000 MH
	SUL)	5.655 2 GH	z -2.45 dBm	FUNCTION	RUNCTRUN WIDTH	ECINE. PU	IN WILLIE	<u>Auto</u> Mar
2 N 1 3 4 5 6	1	5.650 1 GH	z -23.10 dBm					Freq Offse
7 8 9 10 11) III III
121			-	1	state	1		4

Product :			SpectraGuard® Access Point / Sensor								
T	est Item	:	Band Edge Data								
T	est Site	:	No.3 OATS								
T	est Mode	:	Mode 3: Transmit (802.11n-40BW 45M	(bps)(Dipole Anter	nna)						
	Chain B										
	Test Freq	uency	Measurement Level (20dB BW)	Limit	Result						
	(MHz	z)	(MHz)	(MHz)							
	555()	5569.20	<5600	PASS						
	5670)	5650.40	>5650	PASS						

igilent Spectrum	Analyzer Swe	ept SA							
Center Fre	q 5.55000	10000 GHz FRC	t Fast G	Trig: Free Ro	AV AV	g Type: Log-Pwr	12:42:24/ 784	M/ug16.2013 EE 1 2 3 4 5 5 PE MWWWWW	Frequency
10 dB/div 1	Ref 20.00 c	iFGe iBm	ind our	AAtten: 30 bi	8	M	kr2 5.56 -25.	9 2 GHz 78 dBm	Auto Tune
10.00			-	¢1		2			Center Frei 5.650000000 GH
-20.6 -31.0 -40.0		-				2		-25.25 dRm	Start Free 5.50000000 GH
50.6 sn.n 70.0	And the second second						Hallow Hall work	Circles yes	Stop Fre 5.50000000 GH
Center 5.55 Res BW 30	000 GHz 0 kHz	1	#¥63	N 1.0 MHz	-	#Sweep	Span 1 500 me	100.0 MHz (1001 pits)	CF Ste
INF MODE SHE	f	5.540 8	GHz	-5.23 dBm	FUNCTION	FRANCTION WROTH	FUNCTR	IN VALUE	Auto Ma
3 4 5 6	f.	5.569 2 -	GHz	-25.79 dBm					FregOffse 0H
7 8 9 10 11									
12	1		1			1 STATU	5]	

n s Dis	splay Line -24.47 dBm						Tria: From	SEANT	Avg Type: Log-Pwr		1 12-10-54 4 TEA	# Aug 15.2013 # 1 2 3 4 5 6		Display
		-			15	Gainclew	#Atten: 30	dB		_	9	ET PSNNNN		Anuntations
10 d	Bidis		Ref	20.00 0	IBm					M	r1 5.66	0 0 GHz 47 dBm		Annotation
10.0	F		+		-		1			-	-			-
0.00	-	_	+	-		-	-		u land marking in	-	-			Title
26.0		_		_		2				-		205.000	-	
30 0	F	_	-	_		1	1		1	-		-	Un	Graticul
40 () 50.0		-	de	Auret	-				1	240	action for	- ale		
68.0	-		-			-	-		-		-	-		Display Lin -24.47 dBr
an			1						1		1		On	01
Re	s B	5.67 W 3	7000 00 ki	GHz Hz		#VB	N 1.0 MHz			#Sweep	Span 1 500 ms	00.0 MHz 1001 pts)		
	Marga	THE	500		5.660	0.045	1 47 48) - FUR	KCTIGIN C PC	NCOUNWERD	(GNC III	IN VALUE		
23	N	1	f		5.650	4 GHz	-28.339 dB	m	-					System
4 6						-		-						Display Settings
78	_					-		1	-	-				
9											-			
11	_			_		-			-					
G										STATU	E .		-	

Product :		:	SpectraGuard® Access Point / Sensor								
Test Item :		:	Band Edge Data								
T	est Site	:	No.3 OATS								
T	est Mode	:	lbps)(Dipole Anter	nna)							
	Chain C										
	Test Freq	uency	Measurement Level (20dB BW)	Limit	Result						
	(MHz	z)	(MHz)	(MHz)							
	5550	0	5569.20	<5600	PASS						
	5670	0	5650.40 >5650 PAS								

Agilent Spi	entren des	lyzer Swe	pt SA								
Center	Freq 5	55000	0000 GH	lz 10: Fast 🔾	Trig: Free F	Run	vg Type	Log-Pwr	12:36:07 A	MA0916,2013 (# 1 2 3 4 5 6 TE MYANNAMA AT P SNNNN	Frequency
10 dBidi	Ref	20.00 d	IFG	iain:Lew	BAtten: 30 G	18		Mł	r2 5.56 -24.	9 2 GHz 84 dBm	Auto Tune
10.0 0.00							\Diamond^1	1			Center Free 5.55000000 GHz
-10.0 Jn a -30.0	-		harman				-	2		-5100,000	Start Freq 5.50000000 GHz
-100 300 -200 -700	letter and	and the second							11-11-11-11-11-11-11-11-11-11-11-11-11-	WYNERS	Stop Free 5,60000000 GH
Center #Res B	5.5500 W 300 I) GHz KHz	_	#VBV	1.0 MHz			#Sweep	Span ' 500 ms	100.0 MHz (1001 pts)	CF Ster 10.000000 MH
1 N	IEC EC		5.564	GHz	-3.09 dBn	FUNCTION	RA	CTION WIDTH	FUNCTO	IN VALUE	Auto Ma
2 N 3 4 5	1 1		6.669 :	2 GHz	-24.84 dBn	n					Freq Offse 0 H
7 8 9 10											
12) wsis		_		1				STATUS			

							rept SA	lyzer - Swe	rum Ana	I Speci	Ağılar
Frequency	18405 1 2 3 4 5 5 1920 Manual 193 4 5 5	Log-Pwr	Avg Ty	ig: Free Run	1	SHZ	00000 G	.67000	req 5	ter F	Сел
Auto Tune	5.650 4 GHz -24.55 dBm	Mkr		tten: 30 dB	*	IFG ainst ow	dBm	20.00 0	Ref	Ridiu	10 d
Center Freq 5.670000000 GHz				merci putte	0'			20.000			100 100
Start Freq 5.62000000 GHa	and a star	- made				2	warman a	estatus.	-	-	-26 3 30 U 40 0
Stop Free 5.720000000 GH:						-		_		-	-50.0 50.0 -70.0
CF Ster 10.000000 MH	Span 100.0 MHz 0 ms (1001 pts)	#Sweep :	1	MHz	BW 1.	#VE	-) GHz (Hz	6700 300 i	ter 5. s BW	Cen #Re
<u>Auto</u> Mar	FORCEUN WILLIE	CIRUN WIDTR }	FUNCTION	2.38 dBm		06 GHz	5,660	-	10 500	N	1
Freq Offse				1.55 dBm		0 4 GHz	5.650		f	N	2 3 4 5 6 7 8 9 10 11 12
		STATUS		1	-	-			-	-	MSG

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) -Channel 64

RF Radiated Measurement (Horizontal):

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Recult
Channel NO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5325.200	3.796	108.893	112.689			Pass
64 (Peak)	5350.000	3.716	64.986	68.703	74.00	54.00	Pass
64 (Average)	5325.600	3.795	99.249	103.044			Pass
64 (Average)	5350.000	3.716	45.929	49.646	74.00	54.00	Pass

Figure Channel 64:

Horizontal (Peak)

Horizontal (Average)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 1.
- 2. 3. 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) -Channel 64

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
64 (Peak)	5323.000	5.725	110.067	115.792			Pass
64 (Peak)	5350.000	5.691	65.125	70.817	74.00	54.00	Pass
64 (Average)	5312.800	5.738	99.862	105.600			Pass
64 (Average)	5350.000	5.691	46.894	52.586	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

Figure Channel 64:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) -Channel 100

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5460.000	4.354	62.267	66.621	74.00	54.00	Pass
100 (Peak)	5502.000	4.829	109.484	114.312			Pass
100 (Average)	5460.000	4.354	43.623	47.977	74.00	54.00	Pass
100 (Average)	5502.200	4.830	99.492	104.322			Pass

Figure Channel 100:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) -Channel 100

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5458.000	6.027	64.418	70.445	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	62.119	68.160	74.00	54.00	Pass
100 (Peak)	5497.600	6.267	111.172	117.440			Pass
100 (Average)	5460.000	6.041	44.401	50.442	74.00	54.00	Pass
100 (Average)	5507.200	6.276	101.015	107.291			Pass

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) -Channel 100

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-61.570	-43.236	-16.236	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-59.770	-40.435	-13.435	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna) -Channel 140

<u>RF</u> Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-55.490	-36.841	-9.841	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-58.960	-39.588	-12.588	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) -Channel 64

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Pacult
Channel NO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5324.400	3.798	107.917	111.716			Pass
64 (Peak)	5350.000	3.716	68.999	72.716	74.00	54.00	Pass
64 (Average)	5326.400	3.792	95.428	99.220			Pass
64 (Average)	5350.000	3.716	49.712	53.429	74.00	54.00	Pass

Figure Channel 64:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) -Channel 64

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Posult
Channel NO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5314.200	5.737	106.619	112.356			Pass
64 (Peak)	5350.000	5.691	65.669	71.361	74.00	54.00	Pass
64 (Average)	5325.800	5.722	94.662	100.384			Pass
64 (Average)	5350.000	5.691	44.869	50.561	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product:SpectraGuard® Access Point / SensorTest Item:Band Edge DataTest Site:No.3 OATSTest Mode:Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) -Channel 100

RF Radiated Measurement (Horizontal):

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5460.000	4.354	60.198	64.552	74.00	54.00	Pass
100 (Peak)	5492.200	4.761	108.243	113.004			Pass
100 (Average)	5460.000	4.354	43.761	48.115	74.00	54.00	Pass
100 (Average)	5493.600	4.770	96.101	100.871			Pass

Figure Channel 100:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) -Channel 100

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
100 (Peak)	5457.400	6.023	62.002	68.024	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	60.917	66.958	74.00	54.00	Pass
100 (Peak)	5493.000	6.253	109.624	115.878			Pass
100 (Average)	5460.000	6.041	44.924	50.965	74.00	54.00	Pass
100 (Average)	5506.800	6.279	98.068	104.347			Pass

Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) -Channel 100

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-59.660	-41.326	-14.326	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-59.680	-40.345	-13.345	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna) -Channel 140

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-53.870	-35.221	-8.221	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-56.320	-36.948	-9.948	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) -Channel 62

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
62 (Peak)	5319.600	3.814	101.945	105.759			Pass
62 (Peak)	5350.000	3.716	67.343	71.060	74.00	54.00	Pass
62 (Average)	5324.200	3.799	89.275	93.074			Pass
62 (Average)	5350.000	3.716	48.709	52.426	74.00	54.00	Pass

Figure Channel 62:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) -Channel 62

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
62 (Peak)	5327.000	5.720	101.261	106.981			Pass
62 (Peak)	5350.000	5.691	64.748	70.440	74.00	54.00	Pass
62 (Peak)	5351.400	5.690	67.184	72.874	74.00	54.00	Pass
62 (Average)	5326.000	5.721	88.760	94.482			Pass
62 (Average)	5350.000	5.691	46.470	52.162	74.00	54.00	Pass

Figure Channel 62:

Vertical (Peak)

Figure Channel 62: 120.0

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average

detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) -Channel 102

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
102 (Peak)	5460.000	4.354	61.468	65.822	74.00	54.00	Pass
102 (Peak)	5496.600	4.792	102.335	107.126			Pass
102 (Average)	5460.000	4.354	43.992	48.346	74.00	54.00	Pass
102 (Average)	5495.400	4.782	90.195	94.978			Pass

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) -Channel 102

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
102 (Peak)	5460.000	6.041	64.229	70.270	74.00	54.00	Pass
102 (Peak)	5526.300	6.155	103.051	109.205			Pass
102 (Average)	5460.000	6.041	45.671	51.712	74.00	54.00	Pass
102 (Average)	5523.900	6.170	91.320	97.489			Pass

Figure Channel 102:

Vertical (Peak)

Figure Channel 102:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) -Channel 102

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-60.720	-42.386	-15.386	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-59.150	-39.815	-12.815	-27.000	Pass

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna) -Channel 134

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-61.880	-43.231	-16.231	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-64.690	-45.318	-18.318	-27.000	Pass

ess Point / Sensor
02.11a-6Mbps)(PIFA Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5592.15	<5600	PASS
5660	5650.55	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

				111112	220							
								opt SA	alyzer Sw	trum An	n Spec	giler
Frequency	07M1Nov 21, 2012 SACE 1 2 0 4 5 6 IVHL M WHITE	01:06:00 T TRA/ 1V	ALIGN NUTC e: Log-Pwr	Avg Ty	SENSE 217	Trig:F	lz 0: Fast 🖕	40 00000 GH PN	5.5800	Freq	ter	er
Auto Tun	7 55 GHz	2 5.597	Mkr2		20 dB	#Atten	ain:Low	II G	-	-	-	1
	5.35 dBm	-16.		-				dBm	F 20.00	Re	B/div	0 d
Center Fre				- Him.	-	Lord Provinger	\Diamond^1					0.0
5.58000000 GH	14.8.j d.Ja		- Conference	1	-		1	-				.00 U.U
Start Fre	Wester and all and and	Conversion of							playment	well	andi	0.0 0.0
5.555000000 GH					-	-	-					nn
Stop Fre						1						nn nn
5.60500000 GH					-	-						u.u
CF Ste	50.00 MHz (1001 pts)	Span 5 500 ms (#Sweep		Hz	V 300 kł	#VBV		0 GHz kHz	.5800 V 100	ter 5 s BV	en Re
Auto Ma		FUNCTI	UNCTION WIDTH	FUNCTION	dBm	5.068	GHz	5.573 15		1 f	N	921 1
Freq Offs		-			dBm	-16.35	GHZ	6.697 66		1 at	N	234
0+										-		5
				-	_		-					8
	-											1 2
			STATUS									10

JUUUIVIIIZ

Agilent Sp	-	n Analyzer	Swept	54								
Center	Fre	q 5.60	50000	000 G	Hz	Tria: F	sel/secili	Avg Typ	ie: Log-Pwr	01:06:58	ACE 1 2 3 4 5 6 VR. Metalation	Frequency
-	-	2			Gain:Low	#Atten	30 dB	_	- Sec. 1	11.2	DELIK NNNNN	Auto Tuno
10 dB/d	v	Ref 20.	00 dBi	m					Mkr	2 5.65	25 GHz	Adto Tulle
10.0					-	1	-	_				Center Free
0.00	-	-	-	_	1000	4	-	-	-	-	-	5.66000000 GH
10.0					2		1	1 1		1	18/81 (200	1
20,0		- Ander	Lun Sur	wellow.	-	-		-	Whiteman	Allian		StartFree
ina	REA	all the second s			i	-					The Law	5.635000000 GHz
san	-	-				-	-	-		-	COVIC .	
60.0	-	-	-		-	1	1	-	-		-	Stop Free
-/0,0					· · · · · · ·				1	1.000	1.00	5.585000000 GH
Center Res B	5.66 W 1	6000 GH 00 kHz	łz		#VB	W 300 kH	iz		#Sweep	Span 500 ms	50.00 MHz (1001 pts)	CF Step
IN MAN		563		8		8		UNCTION	UNCTION WIDTH	TUNC	TION VALUE	Auto Mar
1 N 2 N		+		5.654 6	5 GHz	-20.21	dBm					1
4			_	_				-	-			Freq Offse
5			_					-				0 Ha
8			-		-				_			
9		-			-				-	-		
11		-										
ISC.									STATUS	-	-	

:	SpectraGuard® Access Point / Sensor
:	Band Edge Data
:	No.3 OATS
:	Mode 4: Transmit (802.11a-6Mbps)(PIFA Antenna)
	: : :

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5589.10	<5600	PASS
5660	5650.85	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

			VII 12	200	5						
							pt SA	lyzer Swe	trum Ana	n Speci	giler
Frequency	01:00:37 PMNuy 21, 2012 TRACE 1 2 3 4 5 6	ALIGNAUTO e: Log-Pwr	Avg Ty	GEDIT	I SEM	-lz	00000 GH	5.5800	Frég	ter F	e Cen
175.55	DEI PNNNNN			Run	Trig: Free #Atten: 30	il): Fast i ain:Low	PN II G				
Auto Tun	Mkr2 5.591 60 GHz Bidiv Ref 20.00 dBm -18.74 dBm									0 d	
			10	-							0g
5 59000000 GH	1		V		and the second	asteribio				1.1	
		12	1	-		1				11	N.U
	10.40 dEim	- ANGINA DA					aparta Mark			1	
Start Fre	ALL DATE ALL		-	_	-			A Participant	Arrest	-	รม.บ
0.00000000 GP		-	-	_			_	-		MUIN	Inn
			-	-					-		2n m
Stop Fre			-	-		-			-	-	n n
5.50500000 GH	1.1.1			-		-		1		1.1	10.0
CF Ste	Span 50.00 MHz			97	200		-	GHz	.58000	ter 5	en
5.000000 MH	oo ms (roo r prs)	жомеер з		-	300 KH2	#VD		NH2	1001	2 000	ne
<u>Auto</u> Ma	FUNCTION VILLE	INCTION WIDTH	INGTION	3m	3.52 dB	GHz	5.586 85		1 F	N	4
1.200.20				3m	-18.74 dB	GHZ	6.691 60		1 (1)	N	23
FreqOffs				-							4
			-							1	6
											8
		-		-				-		-	9
											12
· · · · · · · · · · · · · · · · · · ·		STWTUS	-	-						-	50

JUUUIVIIIZ

gilent Sp		Analyzer	Swept SA		1.000	200		N. J. Dahran	10-18-521	Mile Contractor	
enter	Fre	9 5.66	00000000	SHZ	Trig: Free	Run	Avg Type	: Log-Pwr	01,05,521 1754 17	CE 1 2 3 4 5 6 R. M.W.N.N.N.	Frequency
	-			Gain:Low	#Atten: 30	dB		Mkr	2 5.650	90 GHz	Auto Tune
0 dB/dl	v F	lef 20.0	0 dBm		_				-21.	86 dBm	
0.0	_	-		-	1 1	_	-		-		Center Fre
	-	-	-	(MARY)	Non and	-	Parent Pila	-	-		5,66000000 GH
U.U.				12	1		5		12.22		1000 C
9.U		1		and a			1			-10.6/ dBes	StartFre
<u></u>		ALAN	abel and a state of the state					THE WAY	Anna Ballan	to the	5.635000000 GH
in a system	and and	and the second				_		· · · · · ·	- Tran	Thinky Ada	
200		-						1.2			Stop Fre
10.0				1	11 11						5.685000000 GH
	5.00	000 011	_	-		-	-		0.000	0.00 8814	1 = 7
Res B	W 10	0 kHz	2	#VB	W 300 kHz			#Sweep	500 ms	1001 pts)	CF Ste
KI MOOS		62	8		¥.	n n	NGTION	NGTION WIDTH	TUNCTI	ON WALKE	Auto Ma
1 N	+++		5.657	50 GHz 90 GHz	0.33 dB -21,86 dB	m					<u></u>
3		-	10,000		1000	-	-	_			Freq Offse
5		-		-		-	-				OH
7		-								_	
8											
0		-		-		-	-			-	
2	11	-									
jc.		-						STATUS			
ess Point / Sensor											

02.11a-6Mbps)(PIFA Antenna)											

Chain C

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5589.10	<5600	PASS
5660	5650.95	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

eetrum	Analyzer 5	iwept 5A							
r Fre	q 5,580	0000000 G	Hz NO: Fast 🔾	Trig: Free Run	۳) Avg	allignaumo Type: Log-Pwr	D1:11:09 PM/Nov TRACE [] IVHL MA	21,2012 2.0.4.5.6 NNNNN	Frequency
	17		Gain:Low	PAREN: 20 0B	-	Mkr	2 5.593 70	GHz	Auto Tun
iv I	Ref 20.00	dBm	_		-		-17.57	dBm	
		-	U.S. Market	with the second second	¢1				Center Fre
			1 de	1		↓ ²		14.81 dBio	5.58000000 GF
apite	ren Maxim	a. Contraction				and the second distance	- and an and	-	Start Fre
	-	-	-					196	6.555000000 GH
	-		_						Stop Fre
						-			5.60500000 G
5.58 W 10	000 GHz 10 kHz		#VBN	V 300 kHz		#8weep	Span 50.0 500 ms (100	0 MHz 1 pts)	CF Ste
	500	5.584 9	5 GHz	4,70 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION WA		Auto Ma
1	1	6.693 7	0 GHZ	-17.67 dBm		-			Freq Offs
			-						01
	-		-					_	
-	1								
	-		-			STATUS			
	5.58 5.58	x Clean Analyzer x Ref 20.00 x Ref 20.00	Clicon Analyzer Swept SA R2 1907 40 Freq 5.580000000 G P B W Ref 20.00 dBm 5.58000 GHz W 100 kHz 1 f 5.584 9 1 f 5.584 9	Current Analyzer Security 200 FF: FS:0 SC 'Freq 5.580000000 GHz 'W Ref 20.00 dBm In Gaint box 'V Ref 20.00 dBm In Gaint box S.58000 GHz SC SC W 100 kHz #VBb S.58000 GHz YVBb S.58000 GHz YVBb S.58000 GHz YVBb	Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Trig: Free Rur Hitten: 30 dB v Ref 20.00 dBm Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB v Ref 20.00 dBm Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB statistics Statistics Statistics Trig: Free Rur Hitten: 30 dB statistics Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB v Ref 20.00 dBm Trig: Free Rur Hitten: 30 dB statistics Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB statistics Statistics Trig: Free Rur Hitten: 30 dB statistics Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB statistics Ref 20.00 dBm Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB statistics Ref 20.00 dBm Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB statistics Ref 20.00 dBm Trig: Free Rur Hitten: 30 dB Trig: Free Rur Hitten: 30 dB statistics Ref 20.00 dBm Trig: Free Rur Hitten: 30 dB	State State State State State State Avg Freq 5.580000000 GHz IstainLow PR0: Fast Trig: Free Run #Atten: 30 dB Avg v Ref 20.00 dBm 1 1 1 stainLow Trig: Free Run #Atten: 30 dB 1 1 stainLow #Atten: 30 dB 1 1 stainLow #Atten: 30 dB 1 1 stainLow #Atten: 30 dB 1 1 state 1 1 1 1 1 state 1 1 1 1 1 1	Statistics Statist	Statistics Statist	Statistics Statist

JUUUIVIIIZ

							epi SA	alyzer Swi	rum An	n Speer	Agiles
Frequency	211/MNOV 23,2012 TRACE [1 2 3 4 5 6 TVHL MONTHAN	og-Pwr	Avg Type	e Run	Trig: Free	Hz	00000 G	5.6600	réq	ter F	Cer
Auto Tup	DETPNNNNN	Sec. A.		e dB	#Atten: 30	Gain:Low	6	_			
	50 85 GHz 20.47 dBm	Mkr2 5					dBm	20.00	Ref	Bidly	10 d
Center Fre		-		-	01	-		-	-	-	10.0
5.660000000 GH			proved .	- Astrony	- View	wents				-	0.00
	-19.08 dem		1			♦ ²				1	-310
StartFree		tour wanter				e ^w	- Sugar	1.0000		1.1	20.0
6.636000000 GH	WALL ROUTING			-		-		And the same	ALL VOY	ranks	-10.0
Stop Fre											50.0 -01.0
5.685000000 GH			-						-		-/0.0
CF Ste	n 50.00 MHz	Sween 500			/ 300 kHz	#VB	-	0 GHz	6600	ter 5	Cen #Re
5.000000 MH Auto Ma	NETONWALD	ISN WIDTIN	CTION TUN	Nu			8		INE ISCU	MODE	
				Bm	0.92 de	50 GHz	5.657 5		I I	N	1
Freq Offse					0.12.30		10201	-			3
OH		-		-		-		-	-	-	5
				-				-	-		7
		-		-		-			-	-	9 10
		-	-	1				-			11 12
		STATUS									Jan

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5590.40	<5600	PASS
5660	5650.20	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

gilent Spectrum Analyzer Swept SA	
enter Freq 5.580000000 GHz P80: Fast U Trig: Free Run	requency
Mkr2 5.598 65 GHz	Auto Tun
0 dB/div Ref 20.00 dBm -18.65 dBm	_
	Center Fre
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.58000000 GHz
	Start Fre
6.60	5500000 GH
an	Cton Er
5.60	5.605000000 GH
enter 5.58000 GHz Span 50.00 MHz Res BW 100 kHz #VBW 300 kHz #Sweep 500 ms (1001 pts)	CF Ste
A MODE TRE SEL X	6.000000 MH
1 N 1 f 5.576 45 GHz 494 dBm 2 N 1 f 6.698 66 GHz -18.66 dBm	200
5	Freq Offs
за этитиз	

JUUUMINZ	5	6	6	0	N	Iŀ	Ηz
----------	---	---	---	---	---	----	----

								pi 54	lyzer Swe	m Ana		n Spe	4gile
Frequency	111160y 23, 2012 ICE 1 2 3 4 5 6 IFE MINIMUM	01:14:22	activities of the second se	Avg	Free Run	Tr	Hz	00000 G	5.66000	eq !	Fre	nter	Cer
Auto Tun	05 GHz	2 5.65	Mkr	-	n: 30 dB	#A	Gain:Low		E.J. IS	5	-	-	1
	01 dBm	-22	-			_	-	Bm	20.00 d	Ref	v .	Bidh	10 d
Center Fre							01			1			10.0
3.00000000 GH	in sector			and phones	The state of the s		2						IU.L
Start Fre	-10-21 10-11	Non	- Address				1 · · ·	Search of Cal	11000 MILTER				20,6 20,6
6.636000000 GH	State Bag					-	_				100	- au	
Stop Fre		-			-	+				+	-	-	20.0
5.68500000 GH		1		Ĩ		Ľ	1	-					10.0
CF Ste 5.000000 MH	(1001 pts)	500 ms	#Sweep		Hz	V 30	#VBV	-	Hz	100	5.61 W 1	s B	Re
<u>Auto</u> Ma	ION VALUE	TUNC	UNCTION WIDTH	TUNCTION		-	o clus				TINE	MENE	
	F				n dBm	-2	5 GHz	5.650 0		+	1	N	2
Freq Offse 0 H													545
	-	-	_										78
	-	-			-		-						9
_		-					-		_	1 1		-	12
		5	STATUS										30

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna)

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5589.70	<5600	PASS
5660	5650.20	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

Agilant Spectrum	n Analyzer - Swapt Si	Ň						
Center Fre	q 5.5800000	000 GHz	Trid: Free Bun	Avg Type	Log-Pwr	TIN: 1301111 TRAC TV	MNN 21, 2112 F 1 2 3 4 5 6 REMULTION	Frequency
		IFGain: I nw	#Atten: 30 dB			0	TPNNNNN	1.5.5
10 dB/dlv	Ref 20.00 dBn	n			Mkr	2 5.591 -18.	65 GHz 10 dBm	Auto Tune
100 100 100		and	and the second second	¢1	2			Center Fred 5.580000000 GHa
20.0 -20.0 -40.0	Martin Martin Contraction	A pate large				NHI DE N	Million and Works	Start Free 5.555000000 GHz
-50.0 -50.0 70.0								Stop Free 5.60600000 GH
Center 5.58 #Res BW 1	3000 GHz 00 kHz	#VB	V 300 kHz	. T = 0	#Sweep	Span 5 500 ms (0.00 MHz 1001 pts)	CF Step
HIST MODE THE			202 12-	FUNCTION TO	NCTION WIDTH	TUNCTI		Auto Mar
2 N 1	f d	5.591 65 GHz	-18.10 dBm		_	-		
346			1.1					Freq Offsel 0 Hz
8					_	-		
10 11 12								
MEC:		*			STATUS			

5580MHz

Ellent Spectrum Analyzer - Swept SA	SRIGENT	(4 T3N//1/715)	0.015:36 PMNtw 28, 2012	
Center Freq 5.66000000 GHz PNO: Fast G	Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 h TYTE MWWWWW DET C NN NN N	Frequency
IFGalicLiew	SAREN: JU dB	Mkr	2 5.650 35 GHz -21.75 dBm	Auto Tune
-09 11/0 0 m		Q1		Center Fred 5.660000000 GH:
2 200 400		and the start while	-20 St dêm	Start Free 5.635000000 GH
มมข ป_{ี่สำนักที่ใน} อบป ภาก			(((((((((((((((((((Stop Free 5.685000000 GH
Center 5.66000 GHz Res BW 100 kHz #VBI	W 300 kHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF Step
1 N 1 f 6.666 60 GHz	-0.61 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mar
3 4 6 8	-21.75 dBm			Freg Offse 0 H
7 8 9				
		STATUS		

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11n-20BW 21.7Mbps)(PIFA Antenna)

Chain C

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5589.55	<5600	PASS
5660	5650.20	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

SSOONIE				550						
						ept SA	alyzer Swe	trum Ana	a Spece	Igilar
SENSE 241 410141/70 01:12:27/74/10/21,2012 Avg Type: Log-Pwr 174/02/21.2012 free Run 1/74, Maximum	PMNuv 21,2012 ACC [2 3 4 5 6 VIL MANNAN	ацовијацито 01:12:27 М г у Туре: Log-Pwr пвас IVH	Avg Ty	SENSE 24 Trig: Free Run	Hz NO: Fast 🛶	40 00000 GI	5,5800	Freq	ter F	Cen
n 30 dB	DELI- HARRING ALLES	DE		#Atten: 30 dB	Gain:Low	11 G		_	_	_
Mkr2 5.593 80 GHz -18.20 dBm	20 dBm	Mkr2 5.593 -18.2				dBm	20.00 0	Ref	B/div	10 di
					1		_			.og
	Center				Q.					10.0
5/	5.58000000	-42		toto site war	- Charlestand			-	1	8,00
A2	1500 000	A2-	-		1	-		-		-10.0
- TO US DENI	-1002 000	The second second second second		-	1	With Martin	1			21.0
This Company	Start Start							(market 1	ad as	3111
5/	5.55500000				i				1	
					1				1	
	1							-	1.2	50.0
	Stop			-	-			-	-	กก
5/	5.605000000				<u> </u>	-		+	_	10.0
Span 50.00 MHz Hz #Sweep 500 ms (1001 pts)	50.00 MHZ (1001 pts) CF 5 000000	Span 5 #8weep 500 ms (*	1.1	300 kHz	#VBW		0 GHz kHz	.58000 1001	ter 5. s BW	Cen #Re
FUNCTION FUNCTION WIDTH FUNCTION VILLE	Auto	FUNCTION WIDTH FUNCTION	FUNCTION			X		THE SEE		
I dBm				3.91 dBm	0 GHz	5.572 5		<u>1</u> f	N	1
, dBin	From			-16.20 0.010	0 GHZ	0.050 84	-	1 M.	1.4	3
	riego						-	-		4
			-				-	-	-	6
										7
								-	-	8
									1	10
				1						11
								-	-	161
STATUS		STATUS								50

JUUUMINZ	5	6	6	0	N	Iŀ	Ηz
----------	---	---	---	---	---	----	----

gilen Spe	erron Analyza	r Swept SA							
enter	Freq 5.6	60000000	GHZ	Trig: Free Run	Avg Type:	Log-Pwr	01;16;211M TRACE 17H	100 23,2012 1 2 3 4 5 6	Frequency
0 dB/dlv	Ref 20	.00 dBm	l Gain:Low	#Atten: 30 dB		Mkr	1 5.652 (5 dBm	Auto Tune
0g 10.0			•1-						Center Fre
10.0 20.0			1 ²		1			-20.27 cOm	
inin Inin	where the sort	See Buy Production in the				All Shirts	Wymaling	Mar and Andrews	Start Fre 5.635000000 GH
0.0									Stop Fre 5.68500000 GH
enter : Res Bl	5.66000 G N 100 kHz	Hz	#VB	W 300 kHz	1	#Sweep	Span 50 500 ms (1	.00 MHz 001 pts)	CF Ste
	1102 582	8		Westerney Long	UNCTION TUN	CTUON WIDTH	TUNCTION	PVALUE	Auto Me
2 N 3	1-1	5.652	50 GHz 35 GHz	-0.25 dBm -20.723 dBm					Freq Offs
567				_		_		_	OH
8 9 0						-			
12						_	_		

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5550	5572.90	<5600	PASS
5670	5650.30	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

				111112	555							
								pt SA	lyaer Swe	rum Ana	n Spee	giler
Frequency	Nov 21, 2012 1 2 3 4 5 6 M	01:59:01 PM TRACE 1VHL	attenation e: Log-Pwr	Avg T	severan g: Free Run	لي ا	Hz NO: Fast	40 00000 G	5.5500	req !	iter F	er
Auto Tun	0 GHz	2 5.588	Mk		ten: 20 dB		Sain:Low	nc	1.0	-	-	
	4 dBm	-20.1						Bm	10.00 0	Ref	B/div	0 d
-			0		VI				1		10	09
Center Fre	- H.						1				1.0	
5.55000000 GF	-17.97 200	investor 1	Profession and			1	Ĩ		and of the second	-		
	To pue							_	1		and a	
Start Fre												0.0
5.50000000 GH			1				-					10,0
			-				· · · · ·			- 1-	1.6.	
0449 5-1				1							12	nŋ
StopFre						1						nn
5.80000000 GP			1	-	-		-		S			ສມຸມ
1234	0.0 MHz	Span 10		-	1.4	-			GHz	55000	ter 5	en
CF Ste	001 pts)	500 ms (1	#Sweep) kHz	BW 3	#VE		Hz	100 k	s BW	Re
Auto Ma	WALKE	FUNCTION	UNCTION WIDTH	UNCTION	2			X		RE SEL	MODE	12
					2.03 dBm	-	6 GHz	5.546		f	N	1
Fren Offs			-	-	. 14 0010	-	0 GHZ	0.000	-	1.0	14	3
0 H			-		-	-				-	-	4
									_		1	6
						-						8
			_		_	_	-					9
			-			-	- 1		-			1
		-				-	_			1	-	2
			STATUS									SG

5550MHz

gileni Spenron Analyzer Swept SA				
enter Freq 5.670000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	01:21:3517MN0y 23;2012 TRACE 1 2 0 4 5 6 IVHL MICHARD	Frequency
Il Gain:Low	#Atten: 30 dB	Mk	r2 5.650 4 GHz -22.28 dBm	Auto Tune
	01			Center Fre
200			2012/2 0214	5,67000000 611
in a gen			Man wanter of the other	Start Free 6.620000000 GH
nn 00:				Stop Fre 5.720000000 GH
enter 5.67000 GHz Res BW 100 kHz #VB	W 300 kHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF Ste
1 N 1 f 5.663 5 GHz	-0.52 dBm	INCTION FUNCTION WIDTH	TUNCTION VALUE	Auto Ma
2 N 1 T 5,650 4 GHz 4 5	-22.28 dBm			Freq Offse o H
7 8 9 0				

:	SpectraGuard® Access Point / Sensor
:	Band Edge Data
:	No.3 OATS
:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna)
	: : :

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5550	5569.10	<5600	PASS
5670	5650.80	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

Agilant Spantrum Analyzar - Swapt SA						
Center Freq 5.550000000 GHz	Trig: Free Run	Avg Type:	Log-Pwr	10:2721119 TRAC TVI	MMW21, /112 F 1 2 3 4 5 6 MMW/W/W	Frequency
IFGaincline IFGaincline	#Atten: 20 dB		Mkr	2 5.57	2 3 GHz 32 dBm	Auto Tune
		-	• ²	11	-1916 dum	Center Fred 5.550000000 GHa
30.0 - มก์กิ ใ <mark>น สารณ์ไม่ปะโยสมให้เป็น (1</mark>				****	n h	Start Fred 5.500000000 GHa
-00.0 -/U.U 190.0				i i		Stop Fred 5.60000000 GH;
Center 5.55000 GHz #Res BW 100 kHz #VBM	/ 300 kHz	4	#Sweep :	Span 1 500 ms (00.0 MHz 1001 pts)	CF Step
HKT MODE THE SEL X	0.34 dBm	TUNCTION IN TUN	ICTION WIDTH	TUNCTION		Auto Mar
2 N) T 5.5/23 GHZ 3 4 6 6	-22.32 dBm					Freq Offse 0 Ha
7 8 9 10						
12			STATUS			

5550MHz

Aplient Spectrum Analyzer - Swept SA				
Center Freq 5.67000000 GHz	Trid: Free Run	Avg Type: Log-Pwr	10:22:37 PMNW:23,2012 TRACE 1 2 3 4 5 h TYTE MWWWWW	Frequency
FGalaci	nw #Atten: 30 dB	M	ret 0 NNNN N	Auto Tune
10 dB/div Ref 20.00 dBm		1	-2.41 dBm	-
100	•	and the local division in the local division		Center Fred 5.670000000 GH:
-30.0		The same	1249 644	Start Fred 5.620000000 GHz
-50.0			and the second second second	Stop Fred
70.0			1	6.720000000 GH
Center 5.67000 GHz #Res BW 100 kHz #	WBW 300 kHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF Step
HKE MODE THE BOA	y 2.11.12m	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mar
2 N 1 f 5.650 4 GF 3 4 5	iz -26.126 dBm			Freq Offsel 0 H
7 8 9				
10 11 12				
usa:		STATIS	e'	

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6 Transmit (802.11n-40BW 45Mbps)(PIFA Antenna)

Chain C

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5550	5569.10	<5600	PASS
5670	5650.90	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

					55.		-		
Agilent Sp	eerre	m Analyzer Su	rept SA						
Center	r Fr	eq 5,5500	000000 G	Hz	SDASE 2	Avg	ALIGN AUTTO Type: Log-Pwr	02:00:27 PM/N/v 21, 201 15405 [2 3 4 5 1741 M	Frequency
		-		Gain:Low	#Atten: 20 dB			DELIPINININ	N Contraction
10 dBid	iv	Ref 10.00	dBm		1.1		Mk	2 5.573 5 GH -20.76 dBn	z Auto Tune
Log	-			1	()1		_		
100	-				No. of the second secon		-		Center Fre
10,0	-	-		10	+ +		12		5.550000000 GH
20.0	-	di anati Ulir	Arran	-	+		AL CONTRACTOR	-18 85 09	m
suu "	anited.							and a state of the	Start Fre
40.0	_			-	1				5.50000000 GH
60 A	-	-	-	-		-	-		1
nn -	-	-	-	-					
zń n	-	-	-	-	-		-		Stop Fre
SU.U	-	-	-	-					5.60000000 GH
Res E	5.5 SW 1	5000 GHz 100 kHz		#VB	W 300 kHz		#8weep	Span 100.0 MH 500 ms (1001 pts	CF Ste
KE MOO	E TRE	SCL	X	-	×	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
1 N	11	f	5.539	3 GHz	1.14 dBm				
3 1		1	0.073	GHZ	-20.76 dBm				Eron Offer
4	-			-					Frequisi
6				-					
7									
9				-					
10	-								
12	1								
(a)	-						STATUS		
-							Sterbs		

201011112

Agilent Spentrum Analyzer Swept SA				
Center Freq 5.670000000 GI	12 0:1 ast 👝 Trig: Free Run	Avg Type: Log-Pwr	01/23/301/MN0/23/2012 1R405 1 2 0 4 5 6 17/HL Mediation	Frequency
10 dB/dly	ain:Low #Atten: 30 dB	Mk	2 5.650 7 GHz -23.25 dBm	Auto Tune
	0 ¹			Center Fre
10.0	2		-21 % a.m	StartEra
20.0		The second s	- Muginalium to al	5.620000000 GH
200 200				Stop Fre 5.72000000 GH
Center 5.67000 GHz Res BW 100 kHz	#VBW 300 kHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF Ste
1 N f 5,6651	GHz -1.26 dBm	UNGTION TO FUNCTION WIDTIN	TUNGTON VALUE	Auto Ma
2 N 1 f 5.650 3 4 5 6	GHz -23.25 dBm			Freq Offse o H
7 8 9				

8. Frequency Stability

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2013
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2013
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

8.4. Test Procedure

The EUT was setup to ANSI C63.10, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

± 150 Hz

8.6. Test Result of Frequency Stability

Product	:	SpectraGuard® Access Point / Sensor
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (Dipole Antenna)

Chain A

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0096	-0.0096
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0100	-0.0100 -0.0100 -0.0099 -0.0100
		116	5580.0000	5580.0099	
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
	Vmax (138)V	54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0085	-0.0085
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmax (50) °C		100	5500.0000	5500.0068	-0.0068
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0098	-0.0098
		116	5580.0000	5580.0087	-0.0087
		134	5670.0000	5670.0099	-0.0099
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0085	-0.0085
Tmax (50) °C		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
	Vmin (102)V	100	5500.0000	5500.0068	-0.0068
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0580	-0.0580
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0099	-0.0099
		140	5700.0000	5700.0095	-0.0095

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	260.0085 -0.0085 270.0098 -0.0098 300.0089 -0.0089 310.0100 -0.0100 320.0100 -0.0093 500.0093 -0.0093 510.0096 -0.0096 550.0100 -0.0100 580.0098 -0.0098 670.0100 -0.0100 700.0095 -0.0095 260.0085 -0.0098 300.0089 -0.0098 300.0089 -0.0098 300.0089 -0.0098 300.0089 -0.0098 300.0089 -0.0098 300.0089 -0.0098 300.0089 -0.0093
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0093	
		102	5510.0000	5510.0096	-0.0096
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0098	-0.0098
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	Thannel Frequency (MHz) Frequency (MHz) 52 5260.0000 1 54 5270.0000 1 60 5300.0000 1 62 5310.0000 1 64 5320.0000 1 100 5500.0000 1 102 5510.0000 1 110 5550.0000 1 116 5580.0000 1 134 5670.0000 1 52 5260.0000 1 54 5270.0000 1 60 5300.0000 1 61 5320.0000 1 62 5310.0000 1 62 5310.0000 1 64 5320.0000 1 64 5320.0000 1 100 5550.0000 1 110 5550.0000 1 110 5550.0000 1 116 5580.0000 1 134 5670.0000 <td>5310.0100</td> <td>-0.0100</td>	5310.0100	-0.0100
		64	5320.0000	y (MHz) Frequency (MHz) △ 0000 5260.0085 - 0000 5270.0098 - 0000 5300.0089 - 0000 5310.0100 - 0000 5320.0100 - 0000 5320.0100 - 0000 5500.0093 - 0000 5550.0100 - 0000 5550.0100 - 0000 5570.0098 - 0000 5670.0100 - 0000 5260.0085 - 0000 5270.0098 - 0000 5270.0098 - 0000 5270.0098 - 0000 5310.0100 - 0000 5310.0100 - 0000 5310.0100 - 0000 5550.0100 - 0000 5550.0100 - 0000 5550.0100 - 0000 5550.0100 - 0000 5550.0100 - 0000 5550.0100 -	-0.0100
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0096	-0.0096
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0090	-0.0090
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0098	-0.0098
		102	5510.0000	5510.0103	-0.0103
		110	5550.0000	5550.0102	-0.0102
		116	5580.0000	5580.0102	-0.0102
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0086	-0.0086
		62	5310.0000	5310.0103	-0.0103
	Vmax (138)V	64	5320.0000	5320.0102	-0.0102
Tmax (50) °C		100	5500.0000	5500.0070	-0.0070
		102	5510.0000	5510.0103	-0.0103
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0101	-0.0101
		140	5700.0000	5700.0097	-0.0097
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0086	-0.0086
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tmax (50) °C	Vmin (102)V	100	5500.0000	5500.0070	-0.0070
		102	5510.0000	5510.0103	-0.0103
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0101	-0.0101
		140	5700.0000	5700.0097	-0.0097

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0090	-0.0090
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0095	-0.0095
		102	5510.0000	5510.0099	-0.0099
		110	5550.0000	5550.0102	-0.0102
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0090	-0.0090
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0095	-0.0095
		102	5510.0000	5510.0099	-0.0099
		110	5550.0000	5550.0102	-0.0102
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0096	-0.0096
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0099	-0.0099
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
	Vmax (138)V	54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0085	-0.0085
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmax (50) °C		100	5500.0000	5500.0068	-0.0068
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0098	-0.0098
		116	5580.0000	5580.0087	-0.0087
		134	5670.0000	5670.0099	-0.0099
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0085	-0.0085
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmax (50) °C	Vmin (102)V	100	5500.0000	5500.0068	-0.0068
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0580	-0.0580
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0099	-0.0099
		140	5700.0000	5700.0095	-0.0095

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0096	-0.0096
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0098	-0.0098
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0096	-0.0096
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095

- Product : SpectraGuard® Access Point / Sensor
- Test Item : Frequency Stability
- Test Site : Temperature Chamber
- Test Mode : Carrier Wave (PIFA Antenna)

Chain A

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0096	-0.0096
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0099	-0.0099
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
	Vmax (138)V	54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0085	-0.0085
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmax (50) °C		100	5500.0000	5500.0068	-0.0068
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0098	-0.0098
		116	5580.0000	5580.0087	-0.0087
		134	5670.0000	5670.0099	-0.0099
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0085	-0.0085
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmax (50) °C	Vmin (102)V	100	5500.0000	5500.0068	-0.0068
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0580	-0.0580
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0099	-0.0099
		140	5700.0000	5700.0095	-0.0095

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0096	-0.0096
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0098	-0.0098
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0096	-0.0096
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0090	-0.0090
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0098	-0.0098
		102	5510.0000	5510.0103	-0.0103
		110	5550.0000	5550.0102	-0.0102
		116	5580.0000	5580.0102	-0.0102
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0086	-0.0086
		62	5310.0000	5310.0103	-0.0103
	Vmax (138)V	64	5320.0000	5320.0102	-0.0102
Tmax (50) °C		100	5500.0000	5500.0070	-0.0070
		102	5510.0000	5510.0103	-0.0103
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0101	-0.0101
		140	5700.0000	5700.0097	-0.0097
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0086	-0.0086
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tmax (50) °C	Vmin (102)V	100	5500.0000	5500.0070	-0.0070
		102	5510.0000	5510.0103	-0.0103
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0101	-0.0101
		140	5700.0000	5700.0097	-0.0097

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0090	-0.0090
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0095	-0.0095
		102	5510.0000	5510.0099	-0.0099
		110	5550.0000	5550.0102	-0.0102
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
		60	5300.0000	5300.0090	-0.0090
		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0095	-0.0095
		102	5510.0000	5510.0099	-0.0099
		110	5550.0000	5550.0102	-0.0102
		116	5580.0000	5580.0100	-0.0100
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097

Chain (С
---------	---

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tnom (20) °C	Vnom (120)V	100	5500.0000	5500.0096	-0.0096
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0099	-0.0099
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
		52	5260.0000	5260.0089	-0.0089
	Vmax (138)V	54	5270.0000	5270.0100	-0.0100
		60	5300.0000	5300.0089	-0.0089
		62	5310.0000	5310.0106	-0.0106
		64	5320.0000	5320.0100	-0.0100
Tmax (50) °C		100	5500.0000	5500.0099	-0.0099
		102	5510.0000	5510.0105	-0.0105
		110	5550.0000	5550.0099	-0.0099
		116	5580.0000	5580.0104	-0.0104
		134	5670.0000	5670.0101	-0.0101
		140	5700.0000	5700.0098	-0.0098
		52	5260.0000	5260.0089	-0.0089
		54	5270.0000	5270.0099	-0.0099
		60	5300.0000	5300.0091	-0.0091
		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
Tmax (50) °C	Vmin (102)V	100	5500.0000	5500.0101	-0.0101
		102	5510.0000	5510.0105	-0.0105
		110	5550.0000	5550.0101	-0.0101
		116	5580.0000	5580.0104	-0.0104
		134	5670.0000	5670.0103	-0.0103
		140	5700.0000	5700.0095	-0.0095

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		52	5260.0000	5260.0088	-0.0088
		54	5270.0000	5270.0099	-0.0099
		60	5300.0000	5300.0091	-0.0091
		62	5310.0000	5310.0106	-0.0106
		64	5320.0000	5320.0100	-0.0100
Tmin (0) °C	Vmax (138)V	100	5500.0000	5500.0099	-0.0099
		102	5510.0000	5510.0105	-0.0105
		110	5550.0000	5550.0101	-0.0101
		116	5580.0000	5580.0103	-0.0103
		134	5670.0000	5670.0104	-0.0104
		140	5700.0000	5700.0094	-0.0094
		52	5260.0000	5260.0083	-0.0083
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0091	-0.0091
		62	5310.0000	5310.0102	-0.0102
		64	5320.0000	5320.0104	-0.0104
Tmin (0) °C	Vmin (102)V	100	5500.0000	5500.0097	-0.0097
		102	5510.0000	5510.0105	-0.0105
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.0105
		134	5670.0000	5670.0105	-0.0105
		140	5700.0000	5700.0094	-0.0094

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.