

Report No. : FR641226-23AA

FCC RADIO TEST REPORT

FCC ID		TOR-C130
Equipment	:	802.11a/b/g/n/ac AP
Brand Name		MOJO, ARISTA
Model Name		C-130E
Applicant		
		5453 Great America Parkway Santa Clara, CA 95054 United States
Manufacturer	:	Mojo Networks, Inc.
		5453 Great America Parkway Santa Clara, CA 95054 United States
Standard		47 CFR FCC Part 15.247

The product was received on Jun. 04, 2019, and testing was started from Jun. 04, 2019 and completed on Jul. 01, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Cintos CA

Approved by: Cliff Chang

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB Ver1.0

Page Number : 1 of 25 Issued Date : Jul. 19, 2019 Report Version : 01

Table of Contents

History of this test report					
Summ	ary of Test Result4				
1	General Description				
1.1	Information5				
1.2	Applicable Standards9				
1.3	Testing Location Information9				
1.4	Measurement Uncertainty				
2	Test Configuration of EUT10				
2.1	Test Channel Mode				
2.2	The Worst Case Measurement Configuration11				
2.3	EUT Operation during Test11				
2.4	Accessories				
2.5	Support Equipment				
2.6	Test Setup Diagram				
3	Transmitter Test Result14				
3.1	DTS Bandwidth14				
3.2	Maximum Conducted Output Power15				
3.3	Power Spectral Density				
3.4	Emissions in Non-restricted Frequency Bands				
3.5	Emissions in Restricted Frequency Bands21				
4	Test Equipment and Calibration Data24				
Appen	dix A. Test Results of DTS Bandwidth				
Appendix B. Test Results of Maximum Conducted Output Power					
Appen	Appendix C. Test Results of Power Spectral Density				
Appen	Appendix D. Test Results of Emissions in Non-restricted Frequency Bands				

Appendix E. Test Results of Emissions in Restricted Frequency Bands

Appendix F. Test Photos

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FR641226-23AA	01	Initial issue of report	Jul. 19, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.247(a)	DTS Bandwidth	PASS	-
3.2	15.247(b)	Maximum Conducted Output Power	PASS	-
3.3	15.247(e)	Power Spectral Density	PASS	-
3.4	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.5	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Cliff Chang Report Producer: Vicky Huang

1 General Description

1.1 Information

1.1.1 **RF General Information**

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20), VHT20	2412-2462	1-11 [11]
2400-2483.5	n (HT40), VHT40	2422-2452	3-9 [7]

For Radio 1

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.11b	20	4TX
2.4-2.4835GHz	802.11g	20	4TX
2.4-2.4835GHz	802.11n HT20	20	4TX
2.4-2.4835GHz	802.11n HT20-BF	20	4TX
2.4-2.4835GHz	VHT20	20	4TX
2.4-2.4835GHz	VHT20-BF	20	4TX
2.4-2.4835GHz	802.11n HT40	40	4TX
2.4-2.4835GHz	802.11n HT40-BF	40	4TX
2.4-2.4835GHz	VHT40	40	4TX
2.4-2.4835GHz	VHT40-BF	40	4TX

For Radio 3

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.11b	20	2TX
2.4-2.4835GHz	802.11g	20	2TX
2.4-2.4835GHz	802.11n HT20	20	2TX
2.4-2.4835GHz	VHT20	20	2TX
2.4-2.4835GHz	802.11n HT40	40	2TX
2.4-2.4835GHz	VHT40	40	2TX

Note:

- 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11g, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- VHT20, VHT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., 2(2,3) means have 2 outputs for port 2 and port 3. 2 means have 2 outputs for port 1 and port 2.

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB Ver1.0 Page Number : 5 of 25 Issued Date : Jul. 19, 2019 Report Version : 01

1.1.2 Antenna Information

Ant.	Port	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	1	WNC	XKAJ-N04	Dipole antenna	Reversed-SMA	
2	2	WNC	XKAJ-N04	Dipole antenna	Reversed-SMA	
3	3	WNC	XKAJ-N04	Dipole antenna	Reversed-SMA	Noto 1
4	4	WNC	XKAJ-N04	Dipole antenna	Reversed-SMA	Note 1
5	1	WNC	XKAJ-N04	Dipole antenna	Reversed-SMA	
6	2	WNC	XKAJ-N04	Dipole antenna	Reversed-SMA	

Note 1:

		4	Antenna Gain (dBi)			Cable Loss (dB)			True Gain (dBi)				
Ant.	Port	Radio 1	Radio 2	Radio 3	Radio 3	Radio 1	Radio 2	Radio 3	Radio 3	Radio 1	Radio 2	Radio 3	Radio 3
		(2.4G)	(5G)	(2.4G)	(5G)	(2.4G)	(5G)	(2.4G)	(5G)	(2.4G)	(5G)	(2.4G)	(5G)
1	1	4.32	5.04	-	-	1.5	3.5	-	-	2.82	1.54	-	-
2	2	4.32	5.04	-	-	1.5	3.5	-	-	2.82	1.54	-	-
3	3	4.32	5.04	-	-	1.5	3.5	-	-	2.82	1.54	-	-
4	4	4.32	5.04	-	-	1.5	3.5	-	-	2.82	1.54	-	-
5	1	-	-	4.32	5.04	-	-	1.0	1.8	-	-	3.32	3.24
6	2	-	-	4.32	5.04	-	-	1.0	1.8	-	-	3.32	3.24

Note 2: The above information was declared by manufacturer.

Note 3:

For radio 1 and radio 2 (4TX/4RX)

Port 1, Port 2, Port 3 and Port 4 can be used as transmitting/receiving antenna.

Port 1, Port 2, Port 3 and Port 4 could transmit/receive simultaneously.

For radio 3 (Scan radio) (2TX/2RX)

Port 1 and Port 2 can can be used as transmitting/receiving antenna.

Port 1 and Port 2 can could transmit/receive simultaneously.

1.1.3 Mode Test Duty Cycle

For Radio 1

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
VHT20-BF	0.987	0.06	n/a (DC>=0.98)	n/a (DC>=0.98)
VHT40-BF	0.974	0.11	2.44m	1k

Note:

DC is Duty Cycle.

DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	Fro	From Power Adapter or PoE				
	\boxtimes	With beamforming		Without beamforming		
Beamforming Function	The product has beamforming function for 802.11HT/VHT in 2.4GHz and 5GHz for Radio 1 and Radio 2.					
Function	\boxtimes	Point-to-multipoint Point-to-point				
Test Software Version	QC	QCARCT Ver3.0.211.0				

Note: The above information was declared by manufacturer.

1.1.5 Table for Multiple Listing

The brand names in the following table are all refer to the identical product.

Model Name	Brand Name	Description
C-130E	MOJO	The EUT has two brand names, the difference brand name served as
C-130E	ARISTA	marketing strategy.

1.1.6 Table for Radio Information

Radio	Function
Radio 1	2.4GHz
Radio 2	5GHz
Radio 3	2.4GHz / 5GHz (Scan Radio)

1.1.7 Table for Class II Change

This product is an extension of original one reported under Sporton project number: 641226-21AA Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking	
1. Adding 5GHz band 2 and band 3 (5250~5350		
MHz, 5470~5725 MHz) for this device.	No foot and a day to footbin to the second	
2. Adding the 80+80 mode for Radio 2.	No test case need redo for this test report.	
3. Adding the beam-forming function for Radio 2.		
	1. DTS Bandwidth	
	2. Maximum Conducted Output Power	
4 Adding the been forming function for Dadie 1	3. Power Spectral Density	
4. Adding the beam-forming function for Radio 1.	4. Emissions in Non-restricted Frequency Bands	
	5. Emissions in Restricted Frequency Bands	
	>1GHz	

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 558074 D01 v05r02
- FCC KDB 662911 D01 v02r01

1.3 Testing Location Information

	Testing Location				
	HWA YA	ADD	:	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)	
		TEL	:	886-3-327-3456 FAX : 886-3-327-0973	
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.	
		TEL	:	886-3-656-9065 FAX : 886-3-656-9085	

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-CB	Lance Wu	22~24°C / 53~55%	Jun. 10, 2019~Jun. 19, 2019
Radiated	03CH01-CB	Stim Sung	22~24°C / 50~60%	Jun. 04, 2019~Jul. 01, 2019

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086B with Industry Canada.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Radiated Emission (1GHz ~ 18GHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	5.1 dB	Confidence levels of 95%
Conducted Emission	2.4 dB	Confidence levels of 95%
Output Power Measurement	1.5 dB	Confidence levels of 95%
Power Density Measurement	2.4 dB	Confidence levels of 95%
Bandwidth Measurement	2%	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Channel Mode

For Radio 1

Mode	Power Setting
VHT20-BF_Nss1,(MCS0)_4TX	-
2412MHz	10.5
2417MHz	15
2437MHz	15
2462MHz	12.5
VHT40-BF_Nss1,(MCS0)_4TX	-
2422MHz	8.5
2437MHz	10.5
2452MHz	11.5

Note:

٠

VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than VHT20 and VHT40.

2.2 The Worst Case Measurement Configuration

Th	The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands		
Test Condition	Conducted measurement at transmit chains		
1	Radio 1		

The Worst Case Mode for Following Conformance Tests		
Tests Item	Emissions in Restricted Frequency Bands	
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.	
Operating Mode > 1GHz	CTX	
	at Y axis and Z axis position and the worst case was found at Z axis for harmonic found at Y axis for bandedge. So the measurement will follow this same test	

and the worst case was found at Y axis and Z axis position and the worst case was found at Z axis for harmonic and the worst case was found at Y axis for bandedge. So the measurement will follow this same test configuration.

1	Radio 1 (2.4GHz) - EUT in Z axis for harmonic and EUT in Y axis for bandedge
	The Worst Case Mode for Following Conformance Tests
Tests Item	Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation
Operating Mode	
1	Radio1 (2.4G) + Radio2 (5G) + Radio3 (2.4G)
2	Radio1 (2.4G) + Radio2 (5G) + Radio3 (5G)
Refer to Sporton Test Re	port No : E46/1226-23 for Co-location RE Exposure Evaluation

Refer to Sporton Test Report No.: FA641226-23 for Co-location RF Exposure Evaluation.

2.3 EUT Operation during Test

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

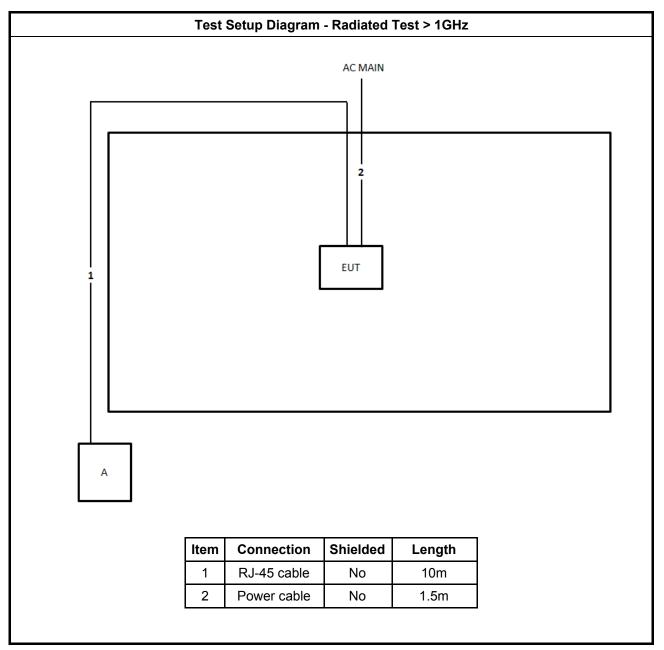
The measured result was added array gain 10*log(4)=6.02dBi as worse case in beamforming mode.

For Radiated Mode:

The EUT was programmed to be in continuously transmitting mode.

The measured result was added array gain 10*log(4)=6.02dBi as worse case in beamforming mode.

2.4 Accessories


		Accessories	
Equipment Name	Brand Name	Model Name	Rating
Adapter	APD	WA-24Q12R	INPUT: 100-240V~,50-60Hz, 0.7A Max OUTPUT: 12V, 2A
Other			
US Plug*1			

2.5 Support Equipment

Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID
А	NB	DELL	E4300	N/A

2.6 Test Setup Diagram

3 Transmitter Test Result

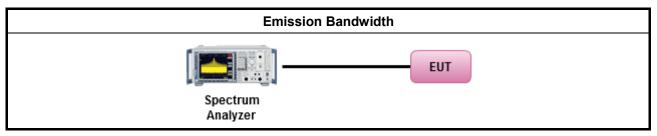
3.1 DTS Bandwidth

3.1.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

■ 6 dB bandwidth ≥ 500 kHz.


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

		Test Method	
•	 For the emission bandwidth shall be measured using one of the options below: 		
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.	
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.	
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.	

3.1.4 Test Setup

3.1.5 Test Result of Emission Bandwidth

Refer as Appendix A

3.2 Maximum Conducted Output Power

3.2.1 Maximum Conducted Output Power Limit

Maximum	Conducted	Output	Power Limit
maximani	Conductod	Suput	

•	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)	
-	II $G_{TX} \ge 0$ ubl, lifeli $F_{Out} \ge 30$ ublit (1 W)	

• Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm

Smart antenna system (SAS):

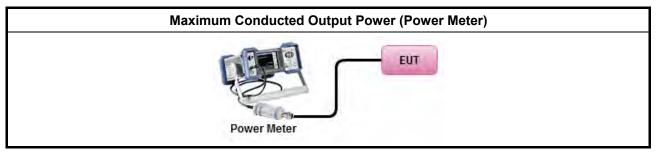
- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm

- Overlap beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$

- Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dB dBm}$

 P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.

3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method				
•	Max	imum Peak Conducted Output Power				
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).				
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).				
•	Max	imum Conducted Output Power				
	[duty	/ cycle ≥ 98% or external video / power trigger]				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)				
	duty	cycle < 98% and average over on/off periods with duty factor				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)				
Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3						
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)				
	Mea	surement using a power meter (PM)				
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).				
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).				
	For	conducted measurement.				
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.				
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG				

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Refer as Appendix B

3.3 **Power Spectral Density**

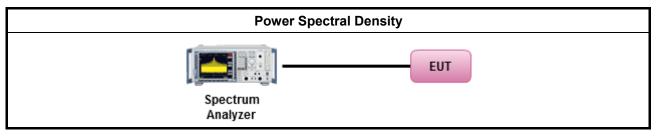
3.3.1 Power Spectral Density Limit

Power Spectral Density Limit

■ Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.3.3 Test Procedures

		Test Method
•	outp the c conc of th	k power spectral density procedures that the same method as used to determine the conducted ut power. If maximum peak conducted output power was measured to demonstrate compliance to output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one e average PSD procedures shall be used, as applicable based on the following criteria (the peak procedure is also an acceptable option).
	\square	Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.2 Method PKPSD.
	[duty	/ cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.3 Method AVGPSD-1.
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.5 Method AVGPSD-2.
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.7 Method AVGPSD-3.
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.4 Method AVGPSD-1A. (alternative).
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.6 Method AVGPSD-2A. (alternative)
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.8 Method AVGPSD-3A. (alternative)
-	For	conducted measurement.
	•	If The EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,
TEL	: 886-3	3-656-9065 Page Number : 18 of 25

Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Refer as Appendix C

3.4 Emissions in Non-restricted Frequency Bands

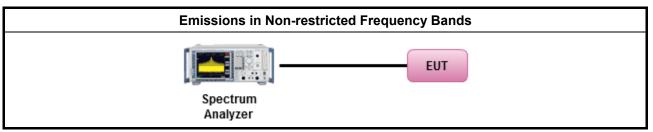
3.4.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit						
RF output power procedure Limit (dBc)						
Peak output power procedure	20					
Average output power procedure	30					

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Test Method

Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands.

3.4.4 Test Setup

3.4.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix D

3.5 Emissions in Restricted Frequency Bands

3.5.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit								
Frequency Range (MHz) Field Strength (uV/m) Field Strength (dBuV/m) Measure Distance (r								
0.009~0.490	0.009~0.490 2400/F(kHz)		300					
0.490~1.705 24000/F(kHz)		33.8 - 23	30					
1.705~30.0 30		29	30					
30~88 100		40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

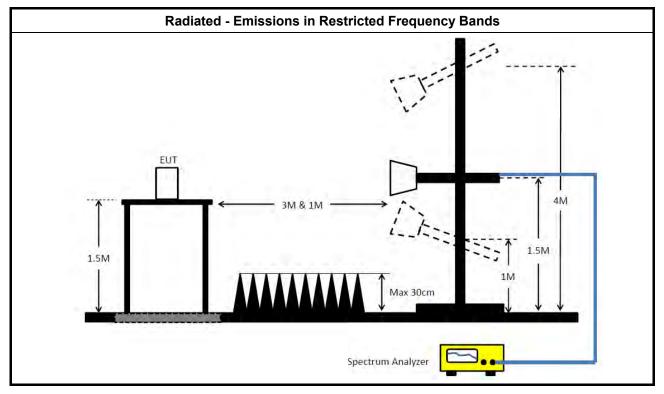
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

	Test Method							
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.							
•	For the transmitter unwanted emissions shall be measured using following options below:							
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands. 							
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for d cycle ≥98%).							
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).							
	☐ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).							
	□ Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.							
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.							
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.							
•	For the transmitter band-edge emissions shall be measured using following options below:							
	 Refer as FCC KDB 558074 clause 8.7 & C63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below. 							
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements. 							
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). 							
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB 							
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred. 							

3.5.4 Test Setup

3.5.5 Measurement Results Calculation

The measured Level is calculated using: Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.5.6 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix E

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 13, 2018	Nov. 12, 2019	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jun. 28, 2018	Jun. 27, 2019	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jun. 27, 2019	Jun. 26, 2020	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 08, 2019	Jan. 07, 2020	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 04, 2018	Jul. 03, 2019	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Jan. 31, 2019	Jan. 30, 2020	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16	1 GHz ~ 18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16+17	1 GHz ~ 18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Feb. 25, 2019	Feb. 24, 2020	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-28	1 GHz –26.5 GHz	Nov. 19, 2018	Nov. 18, 2019	Conducted (TH01-CB)

Power Sensor	Agilent	E9327A	US40442088	50MHz~18GHz	Jan. 15, 2019	Jan. 14, 2020	Conducted (TH01-CB)
Power Meter	Agilent	E4416A	GB41291199	50MHz~18GHz	Jan. 15, 2019	Jan. 14, 2020	Conducted (TH01-CB)

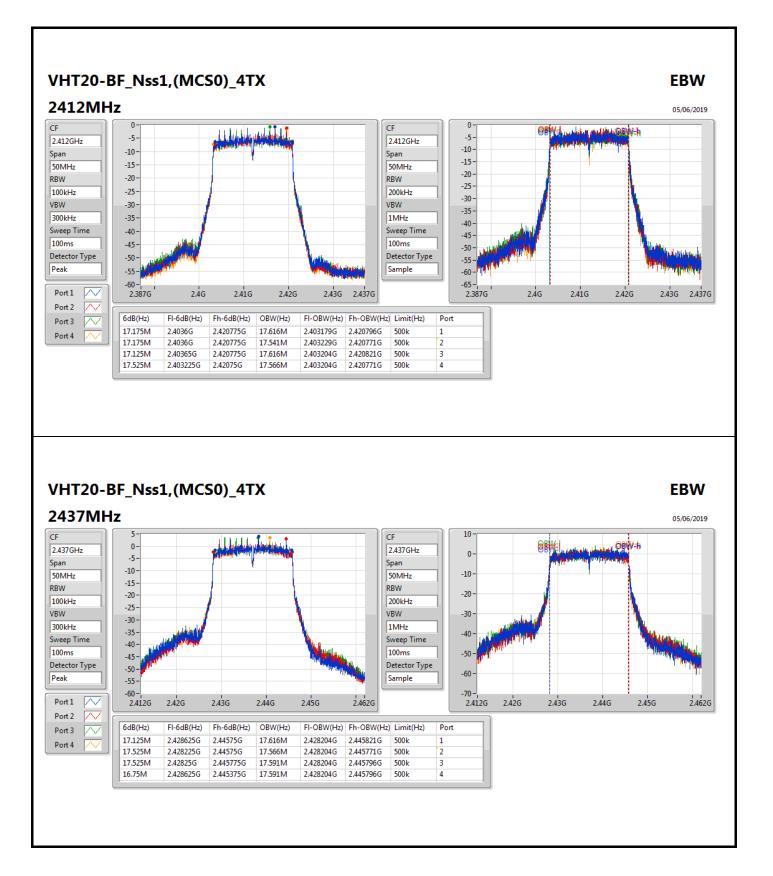
Note: Calibration Interval of instruments listed above is one year.

For Beamforming mode

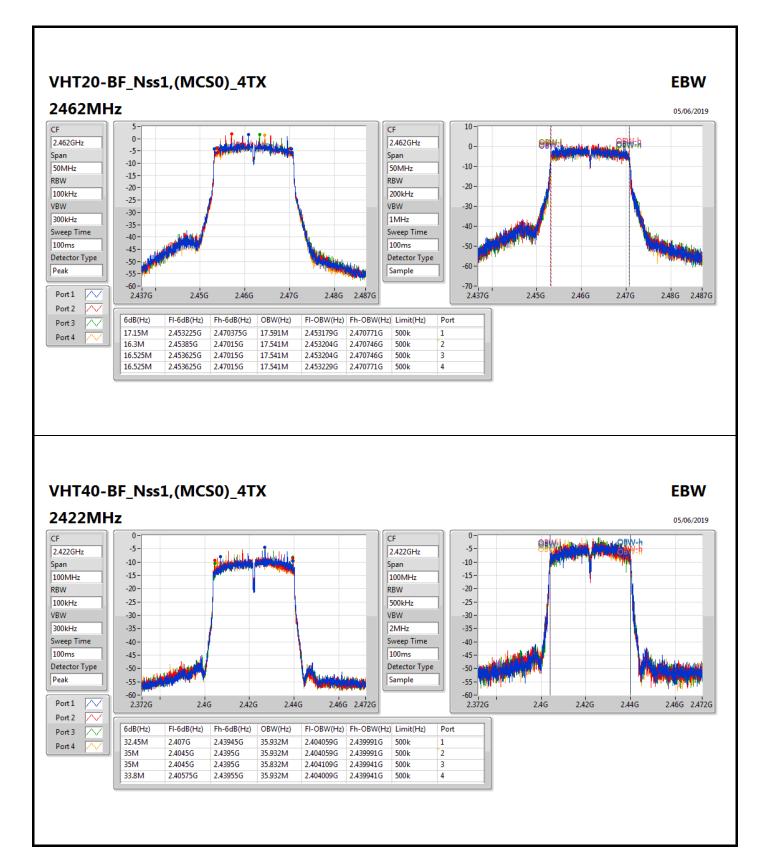
Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.4-2.4835GHz	-	-	-	-	-
VHT20-BF_Nss1,(MCS0)_4TX	17.525M	17.616M	17M6D1D	16.3M	17.541M
VHT40-BF_Nss1,(MCS0)_4TX	35.25M	35.982M	36M0D1D	31.2M	35.782M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;


Appendix A

Result


Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW	Port 3-N dB	Port 3-OBW	Port 4-N dB	Port 4-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
VHT20-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	500k	17.175M	17.616M	17.175M	17.541M	17.125M	17.616M	17.525M	17.566M
2437MHz	Pass	500k	17.125M	17.616M	17.525M	17.566M	17.525M	17.591M	16.75M	17.591M
2462MHz	Pass	500k	17.15M	17.591M	16.3M	17.541M	16.525M	17.541M	16.525M	17.541M
VHT40-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-	-	-
2422MHz	Pass	500k	32.45M	35.932M	35M	35.932M	35M	35.832M	33.8M	35.932M
2437MHz	Pass	500k	31.2M	35.782M	35.1M	35.982M	35.05M	35.832M	35.05M	35.982M
2452MHz	Pass	500k	34.05M	35.832M	35.25M	35.982M	34.95M	35.932M	34.95M	35.932M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

100ms

Peak

Port 1

Port 2

Port 3

Port 4

Detector Type

 \sim

 $\overline{\vee}$

 \sim

-45

-50

-55 -

-<u>60</u> -

2.402G

6dB(Hz)

34.05M

35.25M

34.95M

34.95M

2.42G

FI-6dB(Hz)

2.4355G

2.43425G

2.43455G

2.4345G

2.44G

Fh-6dB(Hz)

2.46955G

2.4695G

2.4695G

2.46945G

2.46G

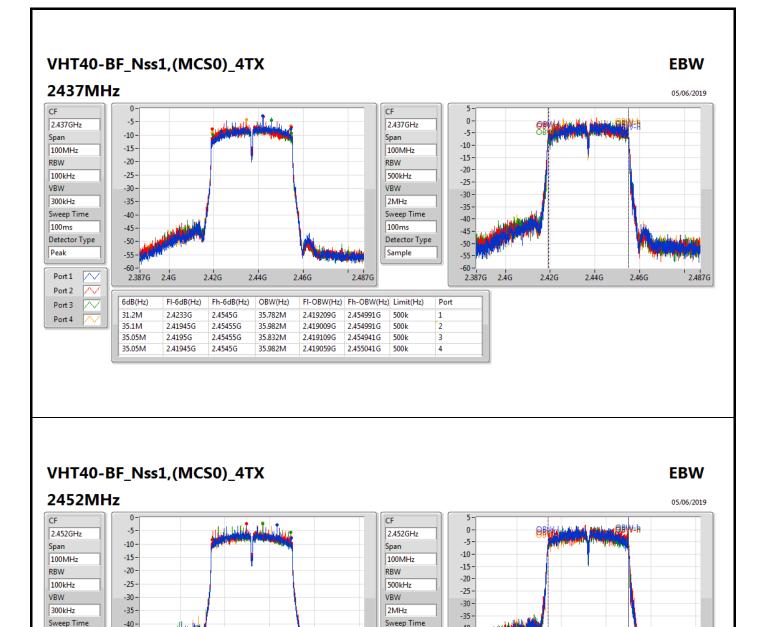
OBW(Hz)

35.832M

35.982M

35.932M

35.932M


2.48G

2.434009G

2.433959G

2.434009G

2.434059G

-40

-45

-50 -

-55

Port

1

2

3

4

-60-2.402G

2.42G

2.44G

2.46G

2.48G

2.502G

100ms

Sample

500k

500k

500k

500k

2.502G

FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz)

2.469841G

2.469941G

2.469941G

2.469991G

Detector Type

For Beamforming mode

Summary				
Mode	Total Power	Total Power		
	(dBm)	(W)		
2.4-2.4835GHz	-	-		
VHT20-BF_Nss1,(MCS0)_4TX	21.51	0.14158		
VHT40-BF_Nss1,(MCS0)_4TX	18.21	0.06622		

Result

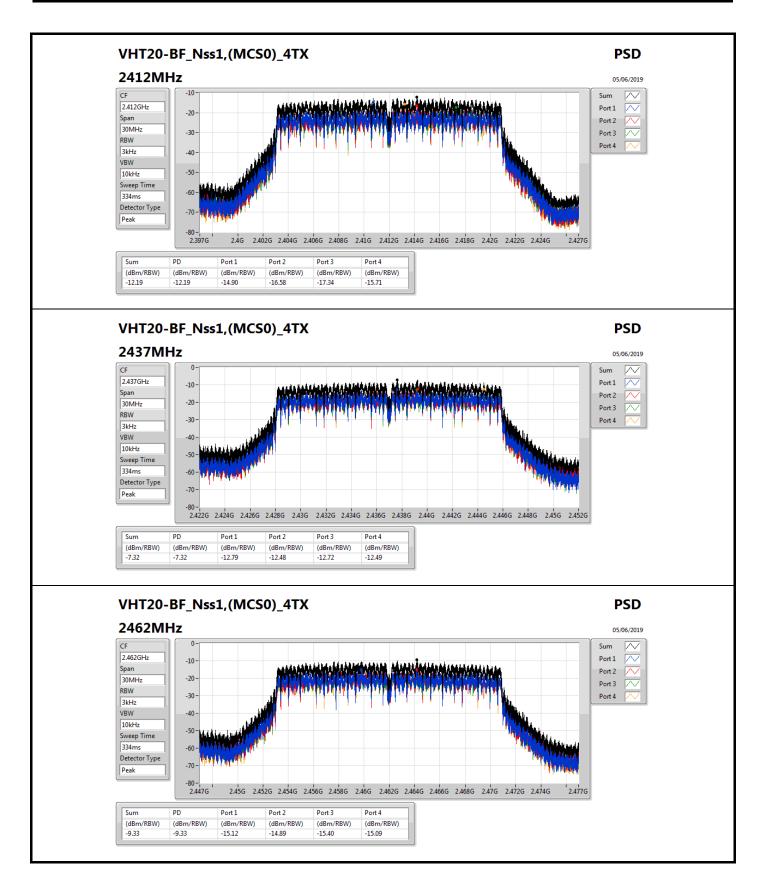
Mode	Result	DG	Port 1	Port 2	Port 3	Port 4	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
VHT20-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-
2412MHz	Pass	8.84	10.97	11.08	11.09	10.88	17.03	27.16
2417MHz	Pass	8.84	15.51	15.58	15.47	15.39	21.51	27.16
2437MHz	Pass	8.84	15.54	15.45	15.57	15.24	21.47	27.16
2462MHz	Pass	8.84	13.14	13.34	13.20	12.86	19.16	27.16
VHT40-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-
2422MHz	Pass	8.84	9.32	9.22	9.07	9.07	15.19	27.16
2437MHz	Pass	8.84	11.13	11.23	11.00	10.97	17.10	27.16
2452MHz	Pass	8.84	12.33	12.35	11.96	12.11	18.21	27.16

DG = Directional Gain; Port X = Port X output power

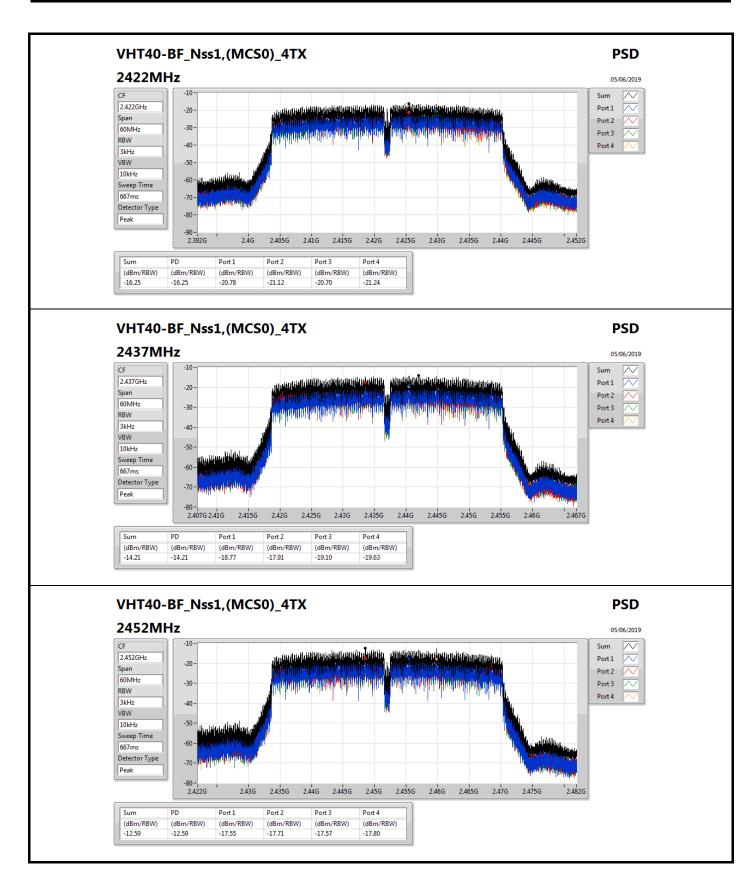
For Beamforming mode

Summary					
Mode	PD				
	(dBm/RBW)				
2.4-2.4835GHz					
VHT20-BF_Nss1,(MCS0)_4TX	-7.32				
VHT40-BF_Nss1,(MCS0)_4TX	-12.59				

RBW=3 kHz.



Result


Mode	Result	DG	Port 1	Port 2	Port 3	Port 4	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
VHT20-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-
2412MHz	Pass	8.84	-14.90	-16.58	-17.34	-15.71	-12.19	5.16
2437MHz	Pass	8.84	-12.79	-12.48	-12.72	-12.49	-7.32	5.16
2462MHz	Pass	8.84	-15.12	-14.89	-15.40	-15.09	-9.33	5.16
VHT40-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-
2422MHz	Pass	8.84	-20.78	-21.12	-20.70	-21.24	-16.25	5.16
2437MHz	Pass	8.84	-18.77	-17.91	-19.10	-19.63	-14.21	5.16
2452MHz	Pass	8.84	-17.55	-17.71	-17.57	-17.80	-12.59	5.16

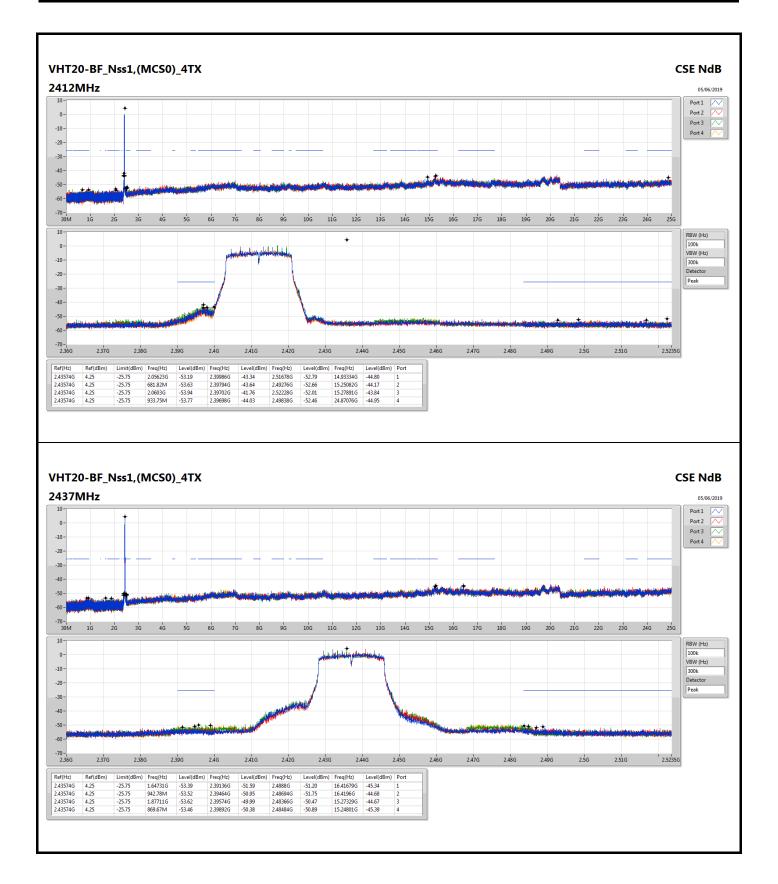
DG = Directional Gain; RBW=3 kHz; **PD** = trace bin-by-bin of each transmits port summing can be performed maximum power density; **Port X** = Port X power density;

For Beamforming mode

Summary

	Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
			(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
	2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-
VI	HT20-BF_Nss1,(MCS0)_4TX	Pass	2.43574G	4.25	-25.75	2.0603G	-53.94	2.39702G	-41.76	2.52228G	-52.01	15.27891G	-43.84	3
VI	HT40-BF_Nss1,(MCS0)_4TX	Pass	2.442G	-2.44	-32.44	597.35M	-54.02	2.39888G	-52.95	2.54186G	-52.03	15.2261G	-44.19	3

CSE(Non-restricted Band) _Radio 1

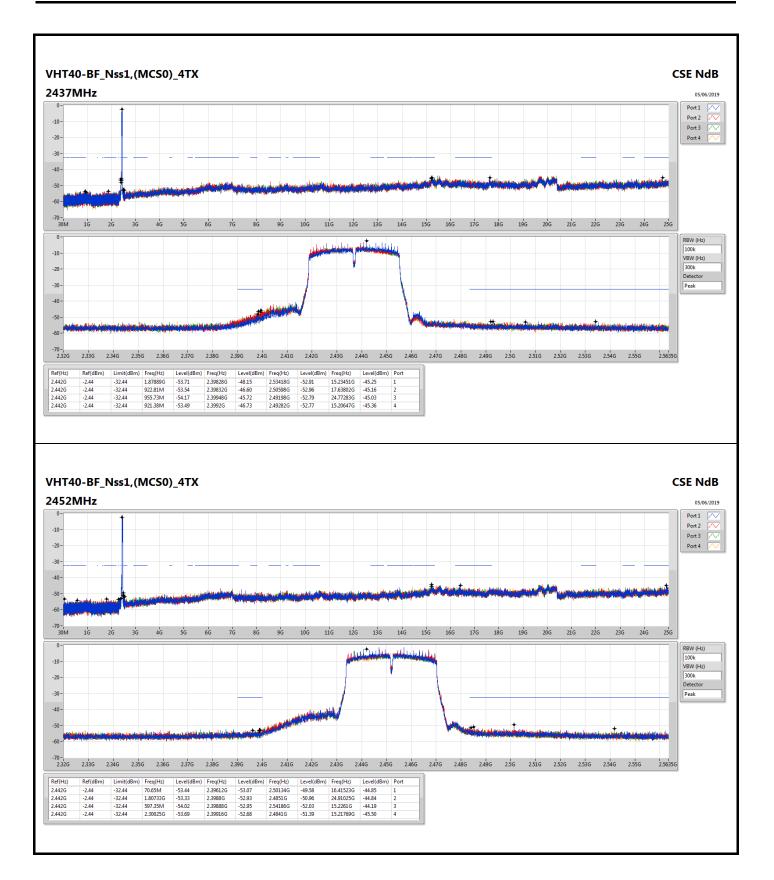

Appendix D

Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
VHT20-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.43574G	4.25	-25.75	2.05623G	-53.19	2.39986G	-43.34	2.51678G	-52.79	14.93334G	-44.80	1
2412MHz	Pass	2.43574G	4.25	-25.75	681.82M	-53.63	2.39794G	-43.64	2.49276G	-52.66	15.25082G	-44.17	2
2412MHz	Pass	2.43574G	4.25	-25.75	2.0603G	-53.94	2.39702G	-41.76	2.52228G	-52.01	15.27891G	-43.84	3
2412MHz	Pass	2.43574G	4.25	-25.75	933.75M	-53.77	2.39698G	-44.03	2.49838G	-52.46	24.87076G	-44.95	4
2437MHz	Pass	2.43574G	4.25	-25.75	1.64731G	-53.39	2.39136G	-51.59	2.4888G	-51.20	16.41679G	-45.34	1
2437MHz	Pass	2.43574G	4.25	-25.75	942.78M	-53.52	2.39464G	-50.95	2.48694G	-51.75	16.4196G	-44.68	2
2437MHz	Pass	2.43574G	4.25	-25.75	1.87711G	-53.62	2.39574G	-49.99	2.48366G	-50.47	15.27329G	-44.67	3
2437MHz	Pass	2.43574G	4.25	-25.75	869.67M	-53.46	2.39892G	-50.38	2.48484G	-50.89	15.24801G	-45.39	4
2462MHz	Pass	2.43574G	4.25	-25.75	1.99536G	-52.99	2.39618G	-53.63	2.48358G	-50.66	17.60804G	-44.83	1
2462MHz	Pass	2.43574G	4.25	-25.75	286.59M	-54.09	2.3922G	-52.22	2.48414G	-51.53	15.23115G	-45.21	2
2462MHz	Pass	2.43574G	4.25	-25.75	2.12001G	-53.97	2.3993G	-53.99	2.50324G	-50.76	15.20867G	-45.10	3
2462MHz	Pass	2.43574G	4.25	-25.75	2.13719G	-52.62	2.39342G	-53.00	2.50348G	-50.71	24.83143G	-45.49	4
VHT40-BF_Nss1,(MCS0)_4TX	-	-	-	-	-	-	-	-	-	-	-	-	-
2422MHz	Pass	2.442G	-2.44	-32.44	1.7455G	-53.91	2.39888G	-46.62	2.51258G	-52.55	15.22049G	-45.30	1
2422MHz	Pass	2.442G	-2.44	-32.44	870.72M	-52.91	2.39828G	-45.18	2.52838G	-52.26	15.22049G	-45.33	2
2422MHz	Pass	2.442G	-2.44	-32.44	2.13022G	-54.01	2.397G	-45.51	2.5179G	-53.67	15.21769G	-44.84	3
2422MHz	Pass	2.442G	-2.44	-32.44	1.93328G	-53.14	2.39636G	-46.21	2.56262G	-53.14	15.20086G	-44.59	4
2437MHz	Pass	2.442G	-2.44	-32.44	1.87889G	-53.71	2.39828G	-48.15	2.53418G	-52.91	15.23451G	-45.25	1
2437MHz	Pass	2.442G	-2.44	-32.44	922.81M	-53.54	2.39832G	-46.60	2.50598G	-52.96	17.63802G	-45.16	2
2437MHz	Pass	2.442G	-2.44	-32.44	955.73M	-54.17	2.39948G	-45.72	2.49198G	-52.79	24.77283G	-45.03	3
2437MHz	Pass	2.442G	-2.44	-32.44	921.38M	-53.49	2.3992G	-46.73	2.49282G	-52.77	15.20647G	-45.36	4
2452MHz	Pass	2.442G	-2.44	-32.44	70.65M	-53.44	2.39612G	-53.07	2.50134G	-49.58	16.41523G	-44.85	1
2452MHz	Pass	2.442G	-2.44	-32.44	1.80733G	-53.33	2.3988G	-52.93	2.4851G	-50.96	24.91025G	-44.84	2
2452MHz	Pass	2.442G	-2.44	-32.44	597.35M	-54.02	2.39888G	-52.95	2.54186G	-52.03	15.2261G	-44.19	3
2452MHz	Pass	2.442G	-2.44	-32.44	2.30025G	-53.69	2.39916G	-52.68	2.4841G	-51.39	15.21769G	-45.50	4

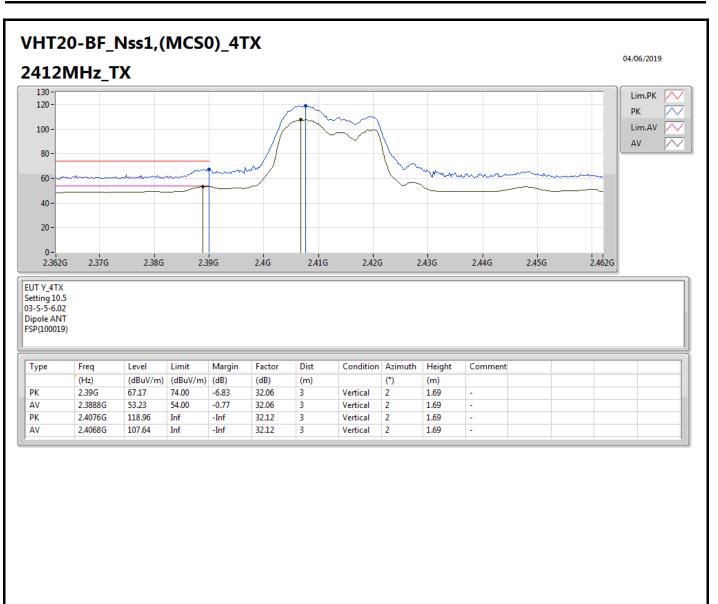


Appendix D



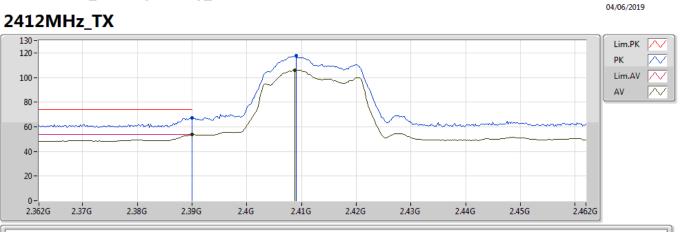
Appendix D

Appendix D

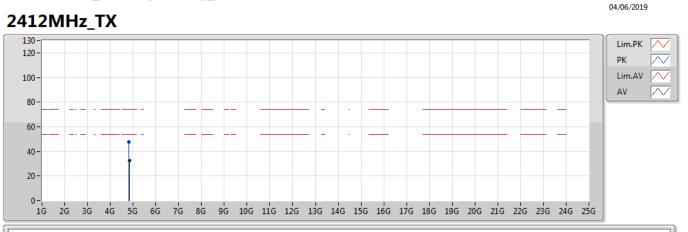


For Beamforming mode

Summary


Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
VHT20-BF_Nss1,(MCS0)_4TX	Pass	AV	2.39G	53.83	54.00	-0.17	32.06	3	Vertical	3	1.71	-

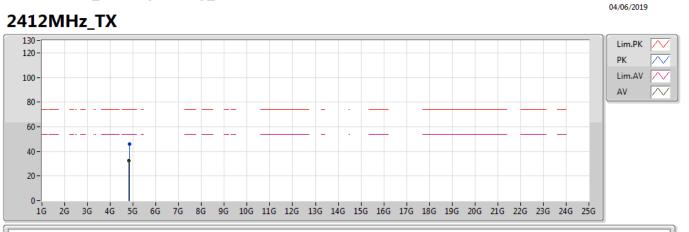
VHT20-BF_Nss1,(MCS0)_4TX



EUT Y_4TX Setting 10.5 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.39G	67.15	74.00	-6.85	32.06	3	Horizontal	10	2.03	-		
AV	2.39G	53.59	54.00	-0.41	32.06	3	Horizontal	10	2.03	-		
РК	2.409G	117.70	Inf	-Inf	32.13	3	Horizontal	10	2.03	-		
AV	2.4088G	106.06	Inf	-Inf	32.13	3	Horizontal	10	2.03	-		

VHT20-BF_Nss1,(MCS0)_4TX



EUT Z_4TX Setting 10.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.82768G	47.50	74.00	-26.50	5.12	3	Vertical	85	1.26	-		
AV	4.82864G	32.74	54.00	-21.26	5.12	3	Vertical	85	1.26	-		

VHT20-BF_Nss1,(MCS0)_4TX

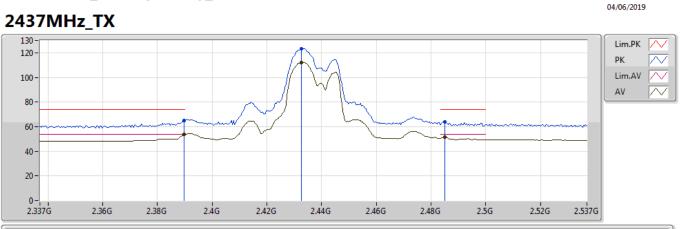
EUT Z_4TX Setting 10.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.83384G	46.13	74.00	-27.87	5.14	3	Horizontal	37	1.42	-		
AV	4.8284G	32.58	54.00	-21.42	5.12	3	Horizontal	37	1.42	-		

VHT20-BF_Nss1,(MCS0)_4TX 04/06/2019 2417MHz_TX 130-Lim.PK \sim 120-РК \sim Lim.AV 100- \square AV 80 -60 -40 -20 -0-2.367G 2.38G 2.4G 2.41G 2.42G 2.43G 2.44G 2.45G 2.39G 2.46G 2.467G EUT Y_4TX

Setting 15 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.3894G	68.38	74.00	-5.62	32.06	3	Vertical	3	1.71	-		
AV	2.39G	53.83	54.00	-0.17	32.06	3	Vertical	3	1.71	-		
PK	2.4124G	124.20	Inf	-Inf	32.14	3	Vertical	3	1.71	-		
AV	2.4126G	112.61	Inf	-Inf	32.14	3	Vertical	3	1.71	-		



VHT20-BF_Nss1,(MCS0)_4TX 04/06/2019 2417MHz_TX 130-Lim.PK \sim 120-РК \sim Lim.AV 100- \square AV 80 -60 -40-20 -0-2.367G 2.39G 2.38G 2.4G 2.41G 2.42G 2.43G 2.44G 2.45G 2.46G 2.467G EUT Y_4TX Setting 15 03-S-5-6.02 Dipole ANT FSP(100019)

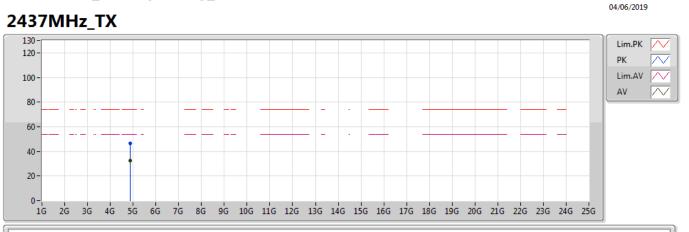
Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	2.375G	64.32	74.00	-9.68	32.02	3	Horizontal	12	2.01	-		
AV	2.3742G	51.79	54.00	-2.21	32.02	3	Horizontal	12	2.01	-		
PK	2.4138G	122.55	Inf	-Inf	32.14	3	Horizontal	12	2.01	-		
AV	2.414G	111.02	Inf	-Inf	32.14	3	Horizontal	12	2.01	-		

VHT20-BF_Nss1,(MCS0)_4TX

EUT Y_4TX Setting 15 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.3898G	64.80	74.00	-9.20	32.06	3	Vertical	4	1.67	-		
AV	2.3898G	53.67	54.00	-0.33	32.06	3	Vertical	4	1.67	-		
PK	2.4326G	123.54	Inf	-Inf	32.22	3	Vertical	4	1.67	-		
AV	2.4326G	112.21	Inf	-Inf	32.22	3	Vertical	4	1.67	-		
PK	2.485G	63.66	74.00	-10.34	32.42	3	Vertical	4	1.67	-		
AV	2.485G	51.47	54.00	-2.53	32.42	3	Vertical	4	1.67	-		

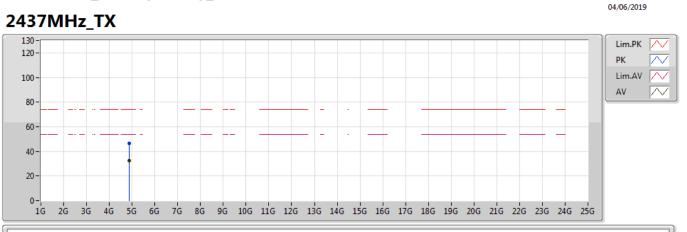
VHT20-BF_Nss1,(MCS0)_4TX



EUT Y_4TX Setting 15 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.3894G	63.99	74.00	-10.01	32.06	3	Horizontal	11	2.01	-		
AV	2.3898G	51.93	54.00	-2.07	32.06	3	Horizontal	11	2.01	-		
PK	2.4338G	121.53	Inf	-Inf	32.22	3	Horizontal	11	2.01	-		
AV	2.4342G	110.31	Inf	-Inf	32.22	3	Horizontal	11	2.01	-		
PK	2.4846G	63.91	74.00	-10.09	32.41	3	Horizontal	11	2.01	-		
AV	2.4854G	51.73	54.00	-2.27	32.42	3	Horizontal	11	2.01	-		

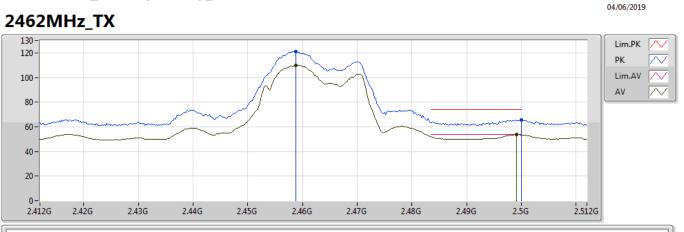
VHT20-BF_Nss1,(MCS0)_4TX



EUT Z_4TX Setting 15 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.87172G	46.57	74.00	-27.43	5.23	3	Vertical	22	2.36	-		
AV	4.88372G	32.62	54.00	-21.38	5.26	3	Vertical	22	2.36	-		

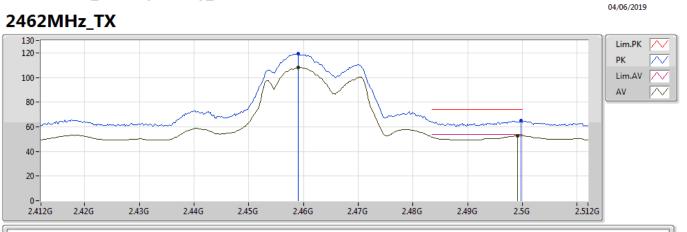
VHT20-BF_Nss1,(MCS0)_4TX



EUT Z_4TX Setting 15 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.88308G	46.47	74.00	-27.53	5.26	3	Horizontal	6	1.30	-		
AV	4.88336G	32.64	54.00	-21.36	5.26	3	Horizontal	6	1.30	-		

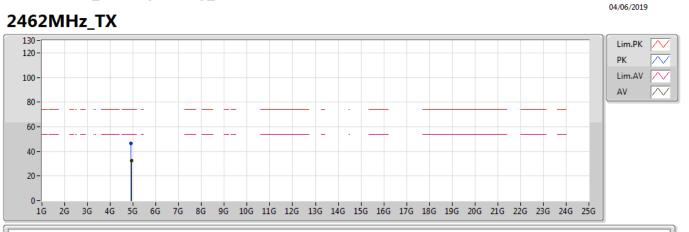
VHT20-BF_Nss1,(MCS0)_4TX



EUT Y_4TX Setting 12.5 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.4588G	120.99	Inf	-Inf	32.32	3	Vertical	2	1.91	-		
AV	2.4588G	109.85	Inf	-Inf	32.32	3	Vertical	2	1.91	-		
РК	2.5G	65.77	74.00	-8.23	32.47	3	Vertical	2	1.91	-		
AV	2.4992G	53.63	54.00	-0.37	32.47	3	Vertical	2	1.91	-		

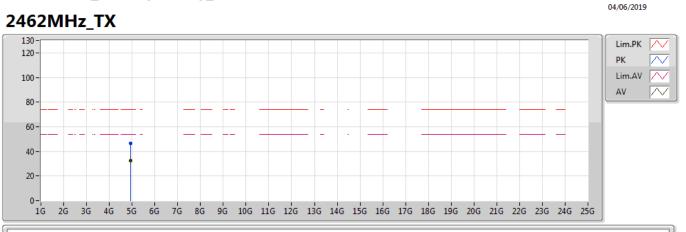
VHT20-BF_Nss1,(MCS0)_4TX



EUT Y_4TX Setting 12.5 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.459G	119.37	Inf	-Inf	32.32	3	Horizontal	11	1.97	-		
AV	2.459G	108.04	Inf	-Inf	32.32	3	Horizontal	11	1.97	-		
PK	2.4998G	65.12	74.00	-8.88	32.47	3	Horizontal	11	1.97	-		
AV	2.4992G	52.75	54.00	-1.25	32.47	3	Horizontal	11	1.97	-		

VHT20-BF_Nss1,(MCS0)_4TX



EUT Z_4TX Setting 12.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.91484G	46.78	74.00	-27.22	5.34	3	Vertical	188	2.37	-		
AV	4.93392G	32.39	54.00	-21.61	5.38	3	Vertical	188	2.37	-		

VHT20-BF_Nss1,(MCS0)_4TX

EUT Z_4TX Setting 12.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.93352G	46.45	74.00	-27.55	5.38	3	Horizontal	45	1.57	-		
AV	4.9286G	32.41	54.00	-21.59	5.37	3	Horizontal	45	1.57	-		

PK

AV

2.4956G

2.4848G

62.33

50.09

74.00

54.00

-11.67

-3.91

32.46

32.41

3

3

Appendix E

VHT40-BF_Nss1,(MCS0)_4TX 04/06/2019 2422MHz_TX 130-Lim.PK \sim 120- \sim РК \sim Lim.AV 100-AV \square 80 -60-40-20 -0-2.322G 2.34G 2.36G 2.38G 2.4G 2.44G 2.46G 2.48G 2.5G 2.522G 2.42G EUT Y_4TX Setting 8.5 03-S-5-6.02 Dipole ANT FSP(100019) Туре Freq Level Limit Margin Factor Dist Condition Azimuth Height Comment (dBuV/m) (dBuV/m) (dB) (Hz) (dB) (m) (°) (m) PK 2.3776G 66.43 74.00 -7.57 32.03 3 Vertical 3 1.73 2.3776G 54.00 -0.35 32.03 Vertical 1.73 AV 53.65 3 3 32.15 3 1.73 РК 2.4168G 114.34 Inf -Inf Vertical 3 -AV 2.4176G 104.45 Inf -Inf 32.15 3 Vertical 3 1.73 _

Vertical

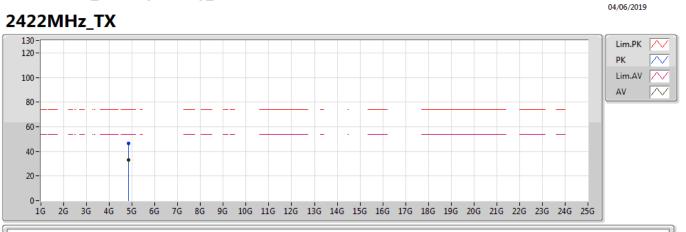
Vertical

3

3

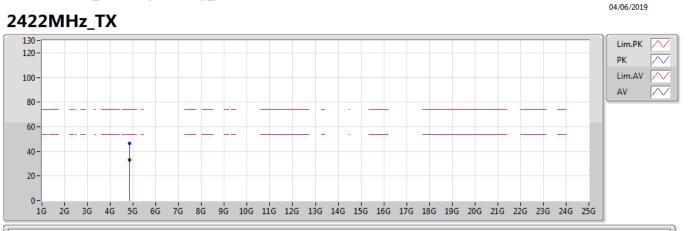
1.73

1.73


_

VHT40-BF_Nss1,(MCS0)_4TX 04/06/2019 2422MHz_TX 130-Lim.PK \sim 120- \sim РК \sim Lim.AV 100-AV \square 80 -60-40-20 -0-2.322G 2.34G 2.36G 2.4G 2.44G 2.46G 2.48G 2.522G 2.38G 2.42G 2.5G EUT Y_4TX Setting 8.5 03-S-5-6.02 Dipole ANT FSP(100019) Туре Freq Level Limit Margin Factor Dist Condition Azimuth Height Comment (dBuV/m) (dBuV/m) (dB) (Hz) (dB) (m) (°) (m) РК 2.3796G 65.81 74.00 -8.19 32.03 3 Horizontal 11 1.78 2.3792G 52.34 54.00 32.03 Horizontal 11 1.78 AV -1.66 3 32.15 3 Horizontal 11 1.78 РК 2.418G 112.24 Inf -Inf -AV 2.4188G 102.44 Inf -Inf 32.17 3 Horizontal 11 1.78 _ PK 2.498G 62.03 74.00 -11.97 32.46 Horizontal 11 1.78 3 2.4848G 49.84 54.00 32.41 3 Horizontal 11 1.78 AV -4.16 _

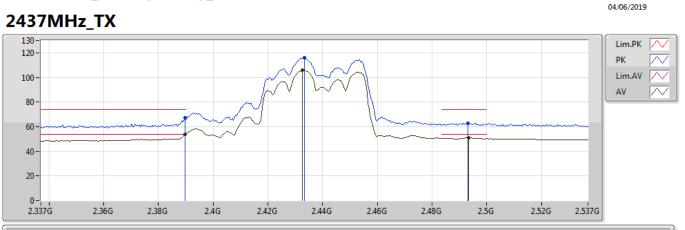
VHT40-BF_Nss1,(MCS0)_4TX



EUT Z_4TX Setting 8.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.85316G	46.71	74.00	-27.29	5.19	3	Vertical	102	1.01	-		
AV	4.83864G	33.21	54.00	-20.79	5.15	3	Vertical	102	1.01	-		

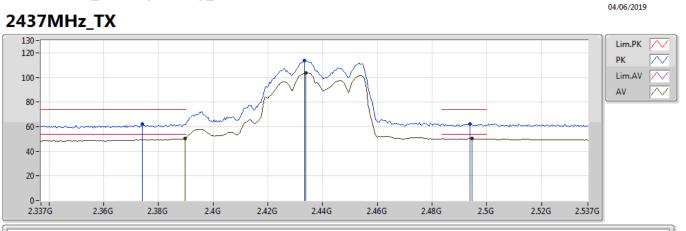
VHT40-BF_Nss1,(MCS0)_4TX



EUT Z_4TX Setting 8.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.83764G	46.54	74.00	-27.46	5.15	3	Horizontal	153	1.50	-		
AV	4.83888G	33.18	54.00	-20.82	5.15	3	Horizontal	153	1.50	-		

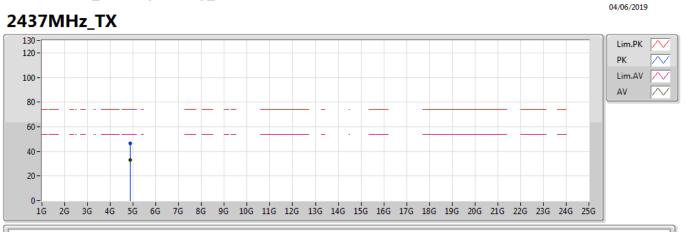
VHT40-BF_Nss1,(MCS0)_4TX



EUT Y_4TX Setting 10.5 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.3898G	67.36	74.00	-6.64	32.06	3	Vertical	3	1.67	-		
AV	2.3898G	53.77	54.00	-0.23	32.06	3	Vertical	3	1.67	-		
PK	2.4334G	116.01	Inf	-Inf	32.22	3	Vertical	3	1.67	-		
AV	2.4326G	105.91	Inf	-Inf	32.22	3	Vertical	3	1.67	-		
PK	2.493G	62.94	74.00	-11.06	32.44	3	Vertical	3	1.67	-		
AV	2.4934G	51.06	54.00	-2.94	32.44	3	Vertical	3	1.67	-		

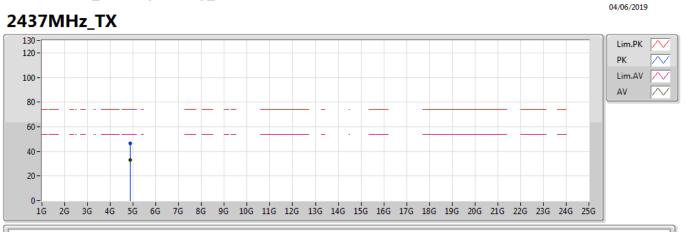
VHT40-BF_Nss1,(MCS0)_4TX



EUT Y_4TX Setting 10.5 03-S-5-6.02 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	2.3742G	62.19	74.00	-11.81	32.02	3	Horizontal	12	1.86	-		
AV	2.3898G	50.64	54.00	-3.36	32.06	3	Horizontal	12	1.86	-		
РК	2.4334G	113.74	Inf	-Inf	32.22	3	Horizontal	12	1.86	-		
AV	2.4338G	103.56	Inf	-Inf	32.22	3	Horizontal	12	1.86	-		
РК	2.4938G	62.14	74.00	-11.86	32.45	3	Horizontal	12	1.86	-		
AV	2.4946G	50.45	54.00	-3.55	32.45	3	Horizontal	12	1.86	-		

VHT40-BF_Nss1,(MCS0)_4TX



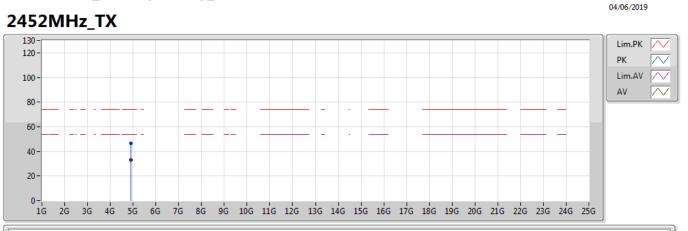
EUT Z_4TX Setting 10.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.87012G	46.25	74.00	-27.75	5.23	3	Vertical	297	1.82	-		
AV	4.88216G	33.28	54.00	-20.72	5.25	3	Vertical	297	1.82	-		

VHT40-BF_Nss1,(MCS0)_4TX

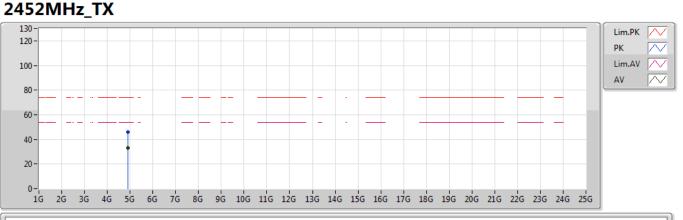
EUT Z_4TX Setting 10.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.87816G	46.25	74.00	-27.75	5.25	3	Horizontal	307	1.52	-		
AV	4.88324G	33.16	54.00	-20.84	5.26	3	Horizontal	307	1.52	-		


VHT40-BF_Nss1,(MCS0)_4TX 04/06/2019 2452MHz_TX 130-Lim.PK \sim 120- \sim РК \sim Lim.AV 100-AV \square 80 -60-40-20 -0-2.38G 2.352G 2.4G 2.42G 2.44G 2.46G 2.48G 2.5G 2.52G 2.54G 2.552G EUT Y_4TX Setting 11.5 03-S-5-6.02 Dipole ANT FSP(100019) Туре Freq Level Limit Margin Factor Dist Condition Azimuth Height Comment (dBuV/m) (dBuV/m) (dB) (Hz) (dB) (m) (°) (m) РК 2.384G 62.53 74.00 -11.47 32.05 3 Vertical 5 1.69 2.3884G 50.59 54.00 -3.41 32.06 Vertical 1.69 AV 3 5 2.448G 32.27 1.69 РК 116.47 Inf -Inf 3 Vertical 5 -AV 2.4484G 106.50 Inf -Inf 32.28 3 Vertical 5 1.69 _ PK 2.4876G 65.59 74.00 -8.41 32.42 Vertical 5 1.69 3 2.4876G 53.61 54.00 -0.39 32.42 3 5 1.69 AV Vertical _

VHT40-BF_Nss1,(MCS0)_4TX 04/06/2019 2452MHz_TX 130-Lim.PK 120- \sim РК \sim Lim.AV 100-AV \square 80 -60-40-20 -0-2.38G 2.352G 2.4G 2.42G 2.44G 2.46G 2.48G 2.5G 2.52G 2.54G 2.552G EUT Y_4TX Setting 11.5 03-S-5-6.02 Dipole ANT FSP(100019) Туре Freq Level Limit Margin Factor Dist Condition Azimuth Height Comment (dBuV/m) (dBuV/m) (dB) (Hz) (dB) (m) (°) (m) РК 2.3896G 61.98 74.00 -12.02 32.06 3 Horizontal 11 1.95 2.39G 54.00 -3.91 32.06 Horizontal 11 1.95 AV 50.09 3 2.4484G 32.28 Horizontal 11 1.95 РК 114.79 Inf -Inf 3 -AV 2.4492G 105.15 Inf -Inf 32.28 3 Horizontal 11 1.95 _ PK 2.4884G 64.93 74.00 -9.07 32.43 Horizontal 11 1.95 3 2.4888G 52.64 54.00 -1.36 32.43 3 Horizontal 11 1.95 AV _

VHT40-BF_Nss1,(MCS0)_4TX


EUT Z_4TX Setting 11.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.91072G	46.56	74.00	-27.44	5.32	3	Vertical	211	1.15	-		
AV	4.89492G	33.09	54.00	-20.91	5.29	3	Vertical	211	1.15	-		

04/06/2019

VHT40-BF_Nss1,(MCS0)_4TX

EUT Z_4TX Setting 11.5 03-S-5 Dipole ANT FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.8994G	45.75	74.00	-28.25	5.30	3	Horizontal	89	1.04	-		
AV	4.89492G	33.10	54.00	-20.90	5.29	3	Horizontal	89	1.04	-		