ATTACHMENT FCC ID: TO8-TKR-372MP2

**** MPE Calculations ****

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = -13.25 dBm + 3.89 dBi	P = Power input to the antenna (mW)
EIRP = -9.36 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$\mathbf{S} = \mathbf{PG}/(4\mathbf{R}^2\boldsymbol{\pi})$	Where,
	S = Maximum power density (mW/cm2)
$\mathbf{S} = (-13.25 \times 2.45) / (4 \times 0.14^2 \times \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$\mathbf{S} = 0.037 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(0.5 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm^2 .

The power density at 0.5cm does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$\mathbf{R} = \sqrt{(\mathbf{PG} / 4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(-13.25 * 2.45 / 4 \pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 0.10 Cm	(0.5 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

G = Log⁻¹ (dB antenna gain / 10) G = Log-1 (3.89 / 10) G = 2.45 **ATTACHMENT**

- Min. transmitting frequency = 494.0 MHz

- Min. test separation distance = 5 mm

- Max. Power with tune-up tolerance = 0 dBm = 1 mW

(Measured power -13 dBm \pm 0.5dB)

Step 1)

SAR Test exclusion thresholds for 100MHz to 6GHz at test separation distance $\leq 50 \text{ mm} = \text{Used}$ [(max.power of channel, including tune-up torelance, mW)/(min. test separation distance, mm)] * [\sqrt{f} (GHz)] = [0.05 / 5] * [$\sqrt{0.494}$] = 0.007 \leq 3, for 1g SAR

Thus, SAR for this device is not required.

Step 2)

SAR Test exclusion thresholds for 100MHz to 1500MHz at test separation distance > 50 mm = N/A [Threshold at 50mm in step 1) + (test separation distance - 50 mm) * ($\sqrt{f(MHz)/150}$] mW

Step 3)

SAR Test exclusion thresholds for 1500MHz to 6GHz at test separation distance > 50 mm = N/A[Threshold at 50mm in step 1) + (test separation distance - 50 mm) * 10] mW