# VZ38915AZ

# UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE

## **General Introduction**

VZ38915AZ is a low costing ISM band transceiver module implemented with unique PLL. The SPI interface is used to communicate with microcontroller for parameter setting.

## **Features:**

- Low costing, high performance and price ratio
- Tuning free during production
- PLL and zero IF technology
- Fast PLL lock time
- Automatic antenna tuning
- Analog and digital signal strength indicator (ARSSI/DRSSI)
- Automatic frequency control (AFC)
- Data quality detection (DQD)
- Internal data filtering and clock recovery
- RX synchron pattern recognition
- SPI compatible serial control interface
- · Clock and reset signal output for external MCU use
- 16 bit RX Data FIFO
- Two 8 bit TX data registers
- Standard 10 MHz crystal reference
- Wakeup timer
- 3.3V power supply
- Low power consumption
- Standby current less than 0.3uA

## VZ38915AZ





"This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation."

"Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment."

# Pin Definition :

SMD



| definition     | Туре      | Function                                                              |  |  |  |  |  |  |
|----------------|-----------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| nINT/VDI       | DI/ DO    | Interrupt input (active low)/Valid data indicator                     |  |  |  |  |  |  |
| VDD            | S         | Positive power supply                                                 |  |  |  |  |  |  |
| SDI            | DI        | SPI data input                                                        |  |  |  |  |  |  |
| SCK            | DI        | SPI clock input                                                       |  |  |  |  |  |  |
| nSEL           | DI        | Chip select (active low)                                              |  |  |  |  |  |  |
| SDO            | DO        | Serial data output with bus hold                                      |  |  |  |  |  |  |
| nIRQ           | DO        | Interrupts request output (active low)                                |  |  |  |  |  |  |
| FSK/DATA/nFFS  | DI/DO/DI  | Transmit FSK data input/ Received data output (FIFO not used)/ FIFO   |  |  |  |  |  |  |
|                |           | select                                                                |  |  |  |  |  |  |
| DCLK/CFIL/FFIT | DO/AIO/DO | Clock output (no FIFO )/ external filter capacitor(analog mode)/ FIFO |  |  |  |  |  |  |
|                |           | interrupts(active high)when FIFO level set to 1,                      |  |  |  |  |  |  |
|                |           | FIFO empty interruption can be achieved                               |  |  |  |  |  |  |
| CLK            | DO        | Clock output for external microcontroller                             |  |  |  |  |  |  |
| nRES           | DIO       | Reset output (active low)                                             |  |  |  |  |  |  |
| GND            | S         | Power ground                                                          |  |  |  |  |  |  |

# Electrical Parameter :

### Maximum (not at working mode)

| symbol          | parameter                  | minimum | maximum | Unit |
|-----------------|----------------------------|---------|---------|------|
| V <sub>dd</sub> | Positive power supply      | -0.5    | 6.0     | V    |
| Vin             | All pin input level        | -0.5    | Vdd+0.5 | V    |
| lin             | Input current except power | -25     | 25      | mA   |
| ESD             | Human body model           |         | 1000    | V    |
| Tst             | Storage temperature        | -55     | 125     | °C   |
| Tld             | Soldering temperature(10s) |         | 260     | °C   |

## Recommended working range

| symbol          | parameter             | minimum | maximum | Unit |
|-----------------|-----------------------|---------|---------|------|
| V <sub>dd</sub> | Positive power supply | 3.3*0.9 | 3.3*1.1 | V    |
| T <sub>op</sub> | Working temperature   | -40     | 85      | °C   |

### DC characteristic

| symbol               | parameter                                       | Remark                       | minimum              | typical | maximum             | Unit |
|----------------------|-------------------------------------------------|------------------------------|----------------------|---------|---------------------|------|
| I <sub>dd_TX_0</sub> | Supply current                                  |                              |                      | 17      | 19                  | mA   |
|                      | (TX mode, P <sub>out</sub> = 0dBm)              |                              |                      |         |                     |      |
| $I_{dd_{TX}PMAX}$    | Supply current                                  | 915MHz band                  |                      | 24      | 26                  | mA   |
|                      | (TX mode, P <sub>out</sub> = P <sub>max</sub> ) |                              |                      |         |                     |      |
| I <sub>dd_RX</sub>   | Supply current                                  | 915MHz band                  |                      | 13      | 15                  | mA   |
|                      | (RX mode)                                       |                              |                      |         |                     |      |
| l <sub>x</sub>       | Idle current                                    | Crystal oscillator on        |                      | 0.62    | 1.2                 | mA   |
| I <sub>pd</sub>      | Sleep mode current                              | All blocks off               |                      | 0.3     |                     | uA   |
| Vil                  | Low level input                                 |                              |                      |         | 0.3*V <sub>dd</sub> | V    |
| V <sub>ih</sub>      | High level input                                |                              | $0.7^{*}V_{dd}$      |         |                     | V    |
| lii                  | Leakage current                                 | V <sub>il</sub> =0V          | -1                   |         | 1                   | uA   |
| l <sub>ih</sub>      | Leakage current                                 | $V_{ih}=V_{dd}, V_{dd}=5.4V$ | -1                   |         | 1                   | uA   |
| Vol                  | Low level output                                | I <sub>ol</sub> =2mA         |                      |         | 0.4                 | V    |
| V <sub>oh</sub>      | High level output                               | I <sub>oh</sub> =-2mA        | V <sub>dd</sub> -0.4 |         |                     | V    |

### AC characteristic

| symbol            | parameter         | remark                                   | min | typical           | max   | Unit |
|-------------------|-------------------|------------------------------------------|-----|-------------------|-------|------|
| f <sub>ref</sub>  | PLL frequency     |                                          | 9   | 10                | 11    | MHz  |
| BW                | Receiver          | mode 0                                   | 60  | 67                | 75    |      |
|                   | bandwidth         | mode 1                                   | 120 | 134               | 150   |      |
|                   |                   | mode 2                                   | 180 | 200               | 225   | KHz  |
|                   |                   | mode 3                                   | 240 | 270               | 300   |      |
|                   |                   | mode 4                                   | 300 | 350               | 375   |      |
|                   |                   | mode 5                                   | 360 | 400               | 450   |      |
| t <sub>lock</sub> | PLL lock time     | After 10MHz step hopping,                |     | 30                |       | us   |
|                   |                   | frequency error <10 kHz                  |     |                   |       |      |
|                   |                   | With a running crystal                   |     | 200               | 200   | 10   |
| tst, P            |                   | oscillator                               |     | 200               | 300   | us   |
| BR                | Data rate         | With internal digital                    | 0.6 |                   | 115.2 | kbps |
|                   |                   | demodulator                              |     |                   |       |      |
| BRA               | Data rate         | With external RC filter                  |     |                   | 256   | kbps |
| P <sub>min</sub>  | sensitivity       | BER 10 <sup>-3</sup> ,                   |     | -102              | -96   | dBm  |
|                   |                   | BW=134KHz,BR=1.2kbps                     |     |                   |       |      |
| AFCrange          | AFC working range | df <sub>FSK</sub> : FSK deviation in the |     | 0.8*              |       |      |
|                   |                   | received signal                          |     | $df_{\text{FSK}}$ |       |      |
| RS <sub>A</sub>   | RSSI accuracy     |                                          |     | ±5                |       | dB   |
| RS <sub>R</sub>   | RSSI range        |                                          |     | 46                |       | dB   |
| CARSSI            | ARSSI filter      |                                          |     | 1                 |       | nF   |

| RS <sub>STEP</sub> | RSSI              |                        | 6   | dB |
|--------------------|-------------------|------------------------|-----|----|
|                    | programmable step |                        |     |    |
| RSRESP             | DRSSI response    | RSSI output high after | 500 | us |
|                    | time              | valid , CARRSI=5nF     |     |    |

### AC characteristic(Transmitter)

| symbol               | parameter                        | remark                   | min                  | typical | max       | Unit   |
|----------------------|----------------------------------|--------------------------|----------------------|---------|-----------|--------|
| P <sub>max_50</sub>  | Max. output power delivered to   | 915MHZ band              |                      | 5       |           | dbm    |
|                      | 50Ohm load over a suitable       |                          |                      |         |           |        |
|                      | matching network                 |                          |                      |         |           |        |
| P <sub>max_ant</sub> | Max. EIRP with suitable selected | 915 MHz bands            |                      | 7       |           | dbm    |
|                      | PCB antenna.                     |                          |                      |         |           |        |
| Pout                 | Typical output power             | Selectable in 3 dB       | P <sub>max</sub> -21 |         | $P_{max}$ | dbm    |
|                      |                                  | steps                    |                      |         |           |        |
| Co                   | Output capacitance               | In low bands             | 2                    | 2.6     | 3.2       | pf     |
|                      | (set by the automatic antenna    | In high bands            | 2.1                  | 2.7     | 3.3       |        |
|                      | tuning circuit)                  |                          |                      |         |           |        |
| Qo                   | Quality factor of the output     | In low bands             | 13                   | 15      | 17        |        |
|                      | capacitance                      | In high bands            | 8                    | 10      | 12        |        |
| L <sub>out</sub>     | Output phase noise               | 100 kHz from carrier     |                      |         | -80       | dbc/HZ |
|                      |                                  | 1 MHz from carrier       |                      |         | -103      |        |
| BR <sub>TX</sub>     | FSK bit rate                     | Via internal TX data     |                      |         | 172       | kbps   |
|                      |                                  | register                 |                      |         |           |        |
| BRA <sub>TX</sub>    | FSK bit rate                     | TX data connected to the |                      |         | 256       | kbps   |
|                      |                                  | FSK input                |                      |         |           |        |
| df <sub>fsk</sub>    | FSK frequency deviation          | Programmable in 15       | 15                   |         | 240       | kHZ    |
|                      |                                  | kHz steps                |                      |         |           |        |

## AC characteristic(Turn-on/Turnaround timings)

| symbol                     | parameter                  | remark                         | min | typical | max | Unit |
|----------------------------|----------------------------|--------------------------------|-----|---------|-----|------|
| T <sub>st</sub>            | Crystal oscillator startup | Crystal ESR < 100              |     | 1       | 5   | ms   |
|                            | time                       |                                |     |         |     |      |
|                            | Transmitter turn-on        | Synthesizer off, crystal       |     | 250     |     |      |
| T <sub>tx_XTAL_ON</sub>    | time                       | oscillator on with 10 MHz step |     | 250     |     | us   |
| _                          | Receiver turn-on time      | Synthesizer off, crystal       |     | 250     |     |      |
| T <sub>rx_XTAL_ON</sub>    |                            | oscillator on with 10 MHz step |     | 250     |     | us   |
|                            | Transmitter – Receiver     | Synthesizer and crystal        |     |         |     |      |
| T <sub>tx_rx_SYNT_ON</sub> | turnover time              | oscillator on during           |     | 150     |     | us   |
|                            |                            | TX/RX                          |     |         |     |      |
|                            | Receiver – Transmitter     | Synthesizer and crystal        |     |         |     |      |
| T <sub>rx_tx_SYNT_ON</sub> | turnover time              | oscillator on during           |     | 150     |     | us   |
|                            |                            | RX/TX                          |     |         |     |      |
| C <sub>xl</sub>            | Crystal load               | Programmable in 0.5 pF steps,  | 8.5 |         | 16  | pf   |
|                            | capacitance                | tolerance+/- 10%               |     |         |     |      |

| t <sub>POR</sub>   | Internal POR timeout     | After $V_{dd}$ has reached 90% of |      | 100  | ms |
|--------------------|--------------------------|-----------------------------------|------|------|----|
|                    |                          | final value                       |      |      |    |
| t <sub>PBt</sub>   | Wake-up timer clock      | Calibrated every 30 seconds       | 0.96 | 1.05 | ms |
|                    | period                   |                                   |      |      |    |
| C <sub>in, D</sub> | Digital input apacitance |                                   |      | 2    | pf |
| t <sub>r, f</sub>  | Digital output rise/fall | 15pF pure capacitive load         |      | 10   | ns |
|                    | time                     |                                   |      |      |    |

### CONTROL INTERFACE

Commands to the transmitter are sent serially. Data bits on pin SDI are shifted into the device upon the rising edge of the clock on

pin SCK whenever the chip select pin nSEL is low. When the nSEL signal is high, it initializes the serial interface. All commands consist of a command code, followed by a varying number of parameter or data bits. All data are sent MSB first (e.g. bit 15 for a 16-

bit command). Bits having no influence (don't care) are indicated with X. The Power On Reset (POR) circuit sets default values in all control and command registers.

The receiver will generate an interrupt request (IT) for the microcontroller - by pulling the nIRQ pin low - on the following events:

The TX register is ready to receive the next byte (RGIT)

The FIFO has received the preprogrammed amount of bits (FFIT)

Power-on reset (POR)

FIFO overflow (FFOV) / TX register underrun (RGUR)

Wake-up timer timeout (WKUP)

Negative pulse on the interrupt input pin nINT (EXT)

Supply voltage below the preprogrammed value is detected (LBD)

FFIT and FFOV are applicable when the FIFO is enabled. RGIT and RGUR are applicable only when the TX register is enabled. To identify the source of the IT, the status bits should be read out.

#### **Timing Specification**

| Symbol | Parameter                                                | Minimum value [ns] |
|--------|----------------------------------------------------------|--------------------|
| tC     | Clock high time                                          | 25                 |
| tC     | Clock low time                                           | 25                 |
| tS     | Select setup time (nSEL falling edge to SCK rising edge) | 10                 |
| tS     | Select hold time (SCK falling edge to nSEL rising edge)  | 10                 |
| tS     | Select high time                                         | 25                 |
| tD     | Data setup time (SDI transition to SCK rising edge)      | 5                  |
| tD     | Data hold time (SCK rising edge to SDI transition)       | 5                  |
| tO     | Data delay time                                          | 10                 |

### **Timing Diagram**



Control Commands

|    | Control Command                                                      | Related Parameters/Functions                                                                                    | Related control bits                     |
|----|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1  | Configuration Setting Command                                        | Frequency band, crystal oscillator load<br>capacitance, RX FIFO and TX register enable                          | el, ef, b1 to b0, x3 to x0               |
| 2  | Power Management Command                                             | Receiver/Transmitter mode change,<br>synthesizer, crystal oscillator, PA, wake-up<br>timer, clock output enable | er, ebb, et, es, ex, eb, ew, dc          |
| 3  | Frequency Setting Command                                            | Frequency of the local oscillator/carrier signal                                                                | f11 to f0                                |
| 4  | Data Rate Command                                                    | Bit rate                                                                                                        | cs, r6 to r0                             |
| 5  | Receiver Control Command                                             | Function of pin 16, Valid Data Indicator, baseband bandwidth, LNA gain, digital RSSI                            | p16, d1 to d0, i2 to i0, g1 to g0,<br>r2 |
| 6  | Data Filter Command                                                  | Data filter type, clock recovery parameters                                                                     | al, ml, s, f2 to f0                      |
| 7  | FIFO and Reset Mode Command                                          | Data FIFO IT level, FIFO start control, FIFO<br>enable and FIFO fill enable, POR sensitivity                    | f3 to f0, sp, ff, al, dr                 |
| 8  | Synchron Pattern Command                                             | Synchron pattern                                                                                                | b7 to b0                                 |
| 9  | Receiver FIFO Read Command                                           | RX FIFO read                                                                                                    |                                          |
| 10 | AFC Command                                                          | AFC parameters                                                                                                  | a1 to a0, rl1 to rl0, st, fi, oe, en     |
| 11 | TX Configuration Control Command                                     | Modulation parameters, output power                                                                             | mp, m3 to m0, p2 to p0                   |
| 12 | PLL Setting Command                                                  | CLK out buffer speed, low power mode of the<br>crystal oscillator, dithering, PLL bandwidth                     | ob1 to ob0, ddit, ddy, bw0               |
| 13 | Transmitter Register Write                                           | TX data register write                                                                                          | t7 to t0                                 |
| 14 | Wake-Up Timer Command                                                | Wake-up time period                                                                                             | r4 to r0, m7 to m0                       |
| 15 | Low Duty-Cycle Command                                               | Enable and set low duty-cycle mode                                                                              | d6 to d0, en                             |
| 16 | Low Battery Detector and<br>Microcontroller Clock<br>Divider Command | LBD voltage and microcontroller clock division ratio                                                            | d2 to d0, v3 to v0                       |
| 17 | Status Read Command                                                  | Status bit readout                                                                                              |                                          |

In general, setting the given bit to one will activate the related function. In the following tables, the POR column shows the default

values of the command registers after power-on.

#### **Description of the Control Commands**

#### 1. Configuration Setting Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|----|----|----|----|----|----|-------|
|     | 1  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | el | ef | b1 | b0 | x3 | x2 | x1 | x0 | 8008h |

Bit el enables the internal data register.

Bit ef enables the FIFO mode. If ef=0 then DATA (pin 6) and DCLK (pin 7) are used for data and data clock output.

| b1 | b0 | Frequency Band [MHz] |
|----|----|----------------------|
| 0  | 0  | Reserved             |
| 0  | 1  | 433                  |
| 1  | 0  | 868                  |
| 1  | 1  | 915                  |

| x3 | x2 | x1 | x0 | Crystal Load Capacitance [pF] |
|----|----|----|----|-------------------------------|
| 0  | 0  | 0  | 0  | 8.5                           |
| 0  | 0  | 0  | 1  | 9.0                           |
| 0  | 0  | 1  | 0  | 9.5                           |
| 0  | 0  | 1  | 1  | 10.0                          |
|    |    |    |    |                               |
| 1  | 1  | 1  | 0  | 15.5                          |
| 1  | 1  | 1  | 1  | 16.0                          |

#### 2. Power Management Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6   | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|-----|----|----|----|----|----|----|-------|
|     | 1  | 0  | 0  | 0  | 0  | 0  | 1 | 0 | er | ebb | et | es | ex | eb | ew | dc | 8208h |

| Bit | Function of the control bit                                                                       | Related blocks                                  |
|-----|---------------------------------------------------------------------------------------------------|-------------------------------------------------|
| er  | Enables the whole receiver chain                                                                  | RF front end, baseband, synthesizer, oscillator |
| ebb | The receiver baseband circuit can be separately switched                                          | Baseband                                        |
| et  | Switches on the PLL, the power amplifier, and starts the transmission (If TX register is enabled) | Power amplifier, synthesizer, oscillator        |
| es  | Turns on the synthesizer                                                                          | Synthesizer                                     |
| ex  | Turns on the crystal oscillator                                                                   | Crystal oscillator                              |
| eb  | Enables the low battery detector                                                                  | Low battery detector                            |
| ew  | Enables the wake-up timer                                                                         | Wake-up timer                                   |
| dc  | Disables the clock output (pin 8)                                                                 | Clock output buffer                             |

The ebb, es, and ex bits are provided to optimize the TX to RX or RX to TX turnaround time.

Logic connections between power control bits:



#### Note:

If both et and er bits are set the chip goes to receive mode.

FSK / nFFSEL input are equipped with internal pull-up resistor. To achieve minimum current consumption do not pull this input to logic low in sleep mode.

#### 3. Frequency Setting Command

| Bit | 15 | 14 | 13 | 12 | 11  | 10  | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|----|----|----|-------|
|     | 1  | 0  | 1  | 0  | f11 | f10 | f9 | f8 | f7 | f6 | f5 | f4 | f3 | f2 | f1 | f0 | A680h |

The 12-bit parameter F (bits *f11* to *f0*) should be in the range

of 96 and 3903. When F value sent is out of

range, the previous value is kept. The synthesizer center frequency f

be calculated as:

f<sub>o</sub> = 10 \* C1 \* (C2 + F/4000) [MHz]

The constants C1 and C2 are determined by the selected band as:

| Band [MHz] | C1 | C2 |
|------------|----|----|
| 433        | 1  | 43 |
| 868        | 2  | 43 |
| 915        | 3  | 30 |

#### 4. Data Rate Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|----|----|----|----|----|----|-------|
|     | 1  | 1  | 0  | 0  | 0  | 1  | 1 | 0 | CS | r6 | r5 | r4 | r3 | r2 | r1 | r0 | C623h |

The actual bit rate in transmit mode and the expected bit rate of the received data stream in receive mode is determined by the 7-bit

 $_{\circ}$  can

parameter R (bits r6 to r0) and bit cs.

BR = 10000 / 29 / (R+1) / (1+*cs*\*7) [kbps]

In the receiver set R according to the next function:

R=  $(10000 / 29 / (1+cs^*7) / BR) - 1$ , where BR is the expected bit rate in kbps.

#### 5. Receiver Control Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10  | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|-------|
|     | 1  | 0  | 0  | 1  | 0  | p16 | d1 | d0 | i2 | i1 | i0 | g1 | g0 | r2 | r1 | r0 | 9080h |

Bit 10 (p16): pin16 function select

| p16 | Function of pin 16 |
|-----|--------------------|
| 0   | Interrupt          |
| 1   | VDI                |

Bits 9-8 (d1 to d0): VDI (valid data indicator) signal response time setting:

| d1 | d0 | Response  |
|----|----|-----------|
| 0  | 0  | Fas       |
| 0  | 1  | Medium    |
| 1  | 0  | Slo       |
| 1  | 1  | Always on |



#### Bits 7-5 (i2 to i0): Receiver baseband bandwidth (BW) select:

| i2 | i1 | i0 | BW [kHz] |
|----|----|----|----------|
| 0  | 0  | 0  | reserved |
| 0  | 0  | 1  | 400      |
| 0  | 1  | 0  | 340      |
| 0  | 1  | 1  | 270      |
| 1  | 0  | 0  | 200      |
| 1  | 0  | 1  | 134      |
| 1  | 1  | 0  | 67       |
| 1  | 1  | 1  | reserved |

#### Bits 4-3 (g1 to g0): LNA gain select:

| g1 | g0 | relative to maximum [dB] |
|----|----|--------------------------|
| 0  | 0  | 0                        |
| 0  | 1  | -6                       |
| 1  | 0  | -14                      |
| 1  | 1  | -20                      |

Bits 2-0 (r2 to r0): RSSI detector threshold:

| r2 | r1 | r0 | RSSI <sub>setth</sub> [dBm] |
|----|----|----|-----------------------------|
| 0  | 0  | 0  | -103                        |
| 0  | 0  | 1  | -97                         |
| 0  | 1  | 0  | -91                         |
| 0  | 1  | 1  | -85                         |
| 1  | 0  | 0  | -79                         |
| 1  | 0  | 1  | -73                         |
| 1  | 1  | 0  | Reserved                    |
| 1  | 1  | 1  | Reserved                    |

The RSSI threshold depends on the LNA gain, the real RSSI threshold can be calculated:

RSSI<sub>th</sub>=RSSI<sub>setth</sub>+G<sub>LNA</sub>

#### 6. Data Filter Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5 | 4 | 3 | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|---|---|---|----|----|----|-------|
|     | 1  | 1  | 0  | 0  | 0  | 0  | 1 | 0 | al | ml | 1 | s | 1 | f2 | f1 | fO | C22Ch |

Bit 7 (al): Clock recovery (CR) auto lock control, if set.

CR will start in fast mode, then after locking it will automatically switch to slow

mode. Bit 6 (ml): Clock recovery lock control

1: fast mode, fast attack and fast release (4 to 8 bit preamble (1010...) is recommended)

0: slow mode, slow attack and slow release (12 to 16 bit preamble is

recommended) Using the slow mode requires more accurate bit timing (see Data

Rate Command).

Bits 4 (s): Select the type of the data filter:

| S | Filter Type      |
|---|------------------|
| 0 | Digital filter   |
| 1 | Analog RC filter |

Digital: This is a digital realization of an analog RC filter followed by a comparator with hysteresis. The time constant is

automatically adjusted to the bit rate defined by the Data Rate

Command. Note: Bit rate can not exceed 115 kpbs in this mode.

Analog RC filter: The demodulator output is fed to pin 7 over a 10 kOhm resistor. The filter cut-off frequency is set by the external capacitor connected to this pin and VSS.

The table shows the optimal filter capacitor values for different data rates

| 1.2 kbps | 2.4 kbps | 4.8 kbps | 9.6 kbps | 19.2 kbps | 38.4 kbps | 57.6 kbps | 115.2 kbps | 256 kbps |
|----------|----------|----------|----------|-----------|-----------|-----------|------------|----------|
| 12 nF    | 8.2 nF   | 6.8 nF   | 3.3 nF   | 1.5 nF    | 680 pF    | 270 pF    | 150 pF     | 100 pF   |

Note: If analog RC filter is selected the internal clock recovery circuit and the FIFO can not be

used. Bits 2-0 (f2 to f0): DQD threshold parameter.

Note: To let the DQD report "good signal quality" the threshold parameter should be 4 in cases where the bitrate is close to the deviation. At higher deviation/bitrate settings, a higher threshold parameter can report "good signal quality" as well.

#### 7. FIFO and Reset Mode Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|----|----|----|----|----|----|-------|
|     | 1  | 1  | 0  | 0  | 1  | 0  | 1 | 0 | f3 | f2 | f1 | fO | sp | al | ff | dr | CA80h |

Bits 7-4 (f3 to f0): FIFO IT level. The FIFO generates IT when the number of received data bits reaches this level.

#### Bit 3 (sp): Select the length of the synchron pattern:

| sp | Byte1    | Byte0 (POR) | Synchron Pattern (Byte1+Byte0) |
|----|----------|-------------|--------------------------------|
| 0  | 2Dh      | D4h         | 2DD4h                          |
| 1  | Not used | D4h         | D4h                            |

Note: Byte0 can be programmed by the Synchron Pattern Command.

Bit 2 (al): Set the input of the FIFO fill start condition:





Bit 1 (ff): FIFO fill will be enabled after synchron pattern reception. The FIFO fill stops when this bit is cleared.

| Bit 0 ( <i>dr</i> ): Disables the highly sensitive RESET mode. |                                                 |
|----------------------------------------------------------------|-------------------------------------------------|
| Reset mode                                                     | Reset triggered when                            |
| Sensitive reset<br>dr=0                                        | Vdd below 1.5V<br>Vdd glitch greater than 500mV |
| Non-sensitive reset                                            | Vdd below 0.25V                                 |

Note: To restart the synchron pattern recognition, bit 1 should be cleared and set.

#### 8. Synchron Pattern Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|----|----|----|----|----|----|-------|
|     | 1  | 1  | 0  | 0  | 1  | 1  | 1 | 0 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 | CED4h |

The Byte0 used for synchron pattern detection can be reprogrammed by B <b7:b0>.

#### 9. Receiver FIFO Read Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | POR   |
|-----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|-------|
|     | 1  | 0  | 1  | 1  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | B000h |

With this command, the controller can read 8 bits from the receiver FIFO. Bit 6 (ef) must be set in Configuration Setting Command.



Note:: During FIFO access fsck cannot be higher than fref/4, where fref is the crystal oscillator frequency. When the duty-cycle of the clock signal is not 50 % the shorter period of the clock pulse width should be at least 2/fref.

#### 10. AFC Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5   | 4   | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|-----|-----|----|----|----|----|-------|
|     | 1  | 1  | 0  | 0  | 0  | 1  | 0 | 0 | a1 | a0 | rl1 | rl0 | st | fi | oe | en | C4F7h |

Bit 7-6 (a1 to a0): Automatic operation mode selector:

| a1 | a0 |                                                                                   |
|----|----|-----------------------------------------------------------------------------------|
| 0  | 0  | Auto mode off (Strobe is controlled by microcontroller)                           |
| 0  | 1  | Runs only once after each power-up                                                |
| 1  | 0  | Keep the f <sub>offset</sub> only during receiving (VDI=high)                     |
| 1  | 1  | Keep the f <sub>offset</sub> value independently from the state of the VDI signal |

Bit 5-4 (rl1 to rl0): Range limit. Limits the value of the frequency offset register to the next values:

| rl1 | rl0 | Max deviation                                | f <sub>res</sub> :              |
|-----|-----|----------------------------------------------|---------------------------------|
| 0   | 0   | No restriction                               | 433 MHz bands: 2.5 kHz          |
| 0   | 1   | +15 f <sub>res</sub> to -16 f <sub>res</sub> | 868 MHz band <sup>,</sup> 5 kHz |
| 1   | 0   | +7 f <sub>res</sub> to -8 f <sub>res</sub>   |                                 |
| 1   | 1   | +3 f <sub>res</sub> to -4 f <sub>res</sub>   | 915 MHz band: 7.5 kHz           |

Bit 3 (*st*): Strobe edge, when *st* goes to high, the actual latest calculated frequency error is stored into the offset register of the AFC block.

Bit 2 (fi): Switches the circuit to high accuracy (fine) mode. In this case, the processing time is about twice as long, but the measurement uncertainty is about half.

Bit 1 (*oe*): Enables the frequency offset register. It allows the addition of the offset register to the frequency control word of the PLL.

Bit 0 (en): Enables the calculation of the offset frequency by the AFC circuit.

There are three operation modes, examples from the possible application:

1, (*a1*=0, *a0*=1) The circuit measures the frequency offset only once after power up. This way, extended TX-RX maximum distance can be achieved.

Possible application:

In the final application, when the user inserts the battery, the circuit measures and compensates for the frequency offset caused by the crystal tolerances. This method allows for the use of a cheaper quartz in the application and provides protection against tracking

an interferer.

2a, (a1=1, a0=0) The circuit automatically measures the frequency offset during an initial effective low data rate pattern – easier to receive- (i.e.: 00110011) of the package and changes the receiving frequency accordingly. The further part of the package can be received by the corrected frequency settings.

2b, (*a1*=1, *a0*=0) The transmitter must transmit the first part of the packet with a step higher deviation and later there is a possibility

of reducing it.

In both cases (2a and 2b), when the VDI indicates poor receiving conditions (VDI goes low), the output register is automatically cleared. Use these settings when receiving signals from different transmitters transmitting in the same nominal frequencies.

3, (*a1*=1, *a0*=1) It's the same as 2a and 2b modes, but suggested to use when a receiver operates with only one transmitter. After a complete measuring cycle, the measured value is kept independently of the state of the VDI signal.

#### 11. TX Configuration Control Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7  | 6  | 5  | 4  | 3 | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|----|----|----|----|----|---|----|----|----|-------|
|     | 1  | 0  | 0  | 1  | 1  | 0  | 0 | mp | m3 | m2 | m1 | m0 | 0 | p2 | p1 | p0 | 9800h |

Bits 8-4 (*mp*, *m3* to *m0*): FSK modulation parameters:

The resulting output frequency can be calculated as:

$$f_{pht} = f_0 + (- \frac{SIG}{N} * (M + 1) * (15 \text{ kHz})$$

where:

 $f_0$  is the channel center frequency (see the Frequency Setting Command) M is the four bit binary number <m3 : m0> SIGN = (mp) XOR FSK

Bits 2-0 (*p2 to p0*): Output power:



|       | Relative Output Power [dB] | p0 | p1 | p2 |
|-------|----------------------------|----|----|----|
|       | 0                          | 0  | 0  | 0  |
|       | -2.5                       | 1  | 0  | 0  |
| Nete  | -5                         | 0  | 1  | 0  |
| Note: | -7.5                       | 1  | 1  | 0  |
|       | -10                        | 0  | 0  | 1  |
|       | -12.5                      | 1  | 0  | 1  |
|       | -15                        | 0  | 1  | 1  |
|       | -17.5                      | 1  | 1  | 1  |

mp=1 and FSK=1

mp=1 and FSK=0

FSK represents the value of the actual data bit.

The output power given in the table is relative to the maximum available power, which depends on the actual antenna impedance. (See: Antenna Application Note: IA ISM-AN1)

#### 12. PLL Setting Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6   | 5   | 4 | 3   | 2    | 1 | 0   | POR   |
|-----|----|----|----|----|----|----|---|---|---|-----|-----|---|-----|------|---|-----|-------|
|     | 1  | 1  | 0  | 0  | 1  | 1  | 0 | 0 | 0 | ob1 | ob0 | 1 | ddy | ddit | 1 | bw0 | CC67h |

Note: POR default setting of the register carefully selected to cover almost all typical applications.

Bit 6-5 (ob1-ob0): Microcontroller output clock buffer rise and fall time control.

| ob1 | ob0 | Selected uC CLK frequency |
|-----|-----|---------------------------|
| 0   | 0   | 5 or 10 MHz (recommended) |
| 0   | 1   | 3.3 MHz                   |
| 1   | Х   | 2.5 MHz or less           |

Bit 3 (ddy): Switches on the delay in the phase detector when this bit is set.

Bit 2 (*ddit*): When set, disables the dithering in the PLL loop.

Bit 0 (*bw0*): PLL bandwidth can be set for optimal TX RF performance.

| bw0 | Max bit rate [kbps] | Phase noise at 1MHz offset [dBc/Hz] |
|-----|---------------------|-------------------------------------|
| 0   | 86.2                | -107                                |
| 1   | 256                 | -102                                |

#### 13. Transmitter Register Write Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|----|----|----|----|----|----|-------|
|     | 1  | 0  | 1  | 1  | 1  | 0  | 0 | 0 | t7 | t6 | t5 | t4 | t3 | t2 | t1 | t0 | B8AAh |

With this command, the controller can write 8 bits (*t7 to t0*) to the transmitter data register. Bit 7 (*el*) must be set in Configuration

Setting Command.

Multiple Byte Write with Transmit Register Write Command:



Note: Alternately the transmit register can be directly accessed by nFFSEL (pin6).

#### 14. Wake-Up Timer Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|
|     | 1  | 1  | 1  | r4 | r3 | r2 | r1 | r0 | m7 | m6 | m5 | m4 | m3 | m2 | m1 | m0 | E196h |

The wake-up time period can be calculated by (m7 to m0) and (r4 to r0):

T<sub>wake-up</sub> = 1.03 \* M \* 2<sup>R</sup> + 0.5 [ms]

Note:

For continual operation the *ew* bit should be cleared and set at the end of every cycle. For future compatibility, use R in a range of 0 and 29.

#### 15. Low Duty-Cycle Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|----|----|----|----|----|----|-------|
|     | 1  | 1  | 0  | 0  | 1  | 0  | 0 | 0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | en | C80Eh |

With this command, Low Duty-Cycle operation can be set in order to decrease the average power consumption in receiver mode.

The time cycle is determined by the Wake-Up Timer Command.

The Duty-Cycle can be calculated by using (d6 to d0) and M. (M is parameter in a Wake-Up Timer

Command.) Duty-Cycle= (D \* 2 +1) / M \*100%

The on-cycle is automatically extended while DQD indicates good received signal condition (FSK transmission is detected in the frequency range determined by *Frequency Setting Command* plus and minus the baseband filter bandwidth determined by the *Receiver Control Command*).

Ť Τ Peckel A Pecket A Peckel A B. B. B. B. Packet A Packet A 8. Pacies DOD niRC ₹L FIFO Rand C activi is must be tran d by the TX side to e (A i sumber dej ends on the idle ti is and u

Application Proposal For LPDM (Low Power Duty-Cycle Mode) Receivers:

Bit 0 *(en)*: Enables the Low Duty-Cycle Mode. Wake-up timer interrupt is not generated in this mode. Note: In this operation mode, bit *er* must be cleared and bit *ew* must be set in the *Power Management Command*.

#### 16. Low Battery Detector and Microcontroller Clock Divider Command

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6  | 5  | 4 | 3  | 2  | 1  | 0  | POR   |
|-----|----|----|----|----|----|----|---|---|----|----|----|---|----|----|----|----|-------|
|     | 1  | 1  | 0  | 0  | 0  | 0  | 0 | 0 | d2 | d1 | d0 | 0 | v3 | v2 | v1 | v0 | C000h |

The 4 bit parameter (v3 to v0) represents the value V, which defines the threshold voltage V  $_{\rm \tiny b}$  of the detector:

V<sub>Ib</sub> = 2.25 + V \* 0.1 [V]

Clock divider configuration:

| d2 | d1 | d0 | Clock Output<br>Frequency [MHz] |
|----|----|----|---------------------------------|
| 0  | 0  | 0  | 1                               |
| 0  | 0  | 1  | 1.25                            |
| 0  | 1  | 0  | 1.66                            |
| 0  | 1  | 1  | 2                               |
| 1  | 0  | 0  | 2.5                             |
| 1  | 0  | 1  | 3.33                            |
| 1  | 1  | 0  | 5                               |
| 1  | 1  | 1  | 10                              |

The low battery detector and the clock output can be enabled or disabled by bits *eb* and *dc,* respectively, using the *Power Management Command.* 

#### 17. Status Read Command

The read command starts with a zero, whereas all other control commands start with a one. If a read command is identified, the status bits will be clocked out on the SDO pin as follows:

Status Register Read Sequence with FIFO Read Example:



| RGIT             | TX register is ready to receive the next byte (Can be cleared by Transmitter Register Write Command)                         |
|------------------|------------------------------------------------------------------------------------------------------------------------------|
| FFIT             | The number of data bits in the RX FIFO has reached the pre-programmed limit (Can be cleared by any of the FIFO read methods) |
| POR              | Power-on reset (Cleared after Status Read Command)                                                                           |
| RGUR             | TX register under run, register over write (Cleared after Status Read Command)                                               |
| FFOV             | RX FIFO overflow (Cleared after Status Read Command)                                                                         |
| WKUP             | Wake-up timer overflow (Cleared after Status Read Command)                                                                   |
| EXT              | Logic level on interrupt pin (pin 16) changed to low (Cleared after Status Read Command)                                     |
| LBD              | Low battery detect, the power supply voltage is below the pre-programmed limit                                               |
| FFEM             | FIFO is empty                                                                                                                |
| ATS              | Antenna tuning circuit detected strong enough RF signal                                                                      |
| RSSI             | The strength of the incoming signal is above the pre-programmed limit                                                        |
| DQD              | Data quality detector output                                                                                                 |
| CRL              | Clock recovery locked                                                                                                        |
| ATGL             | Toggling in each AFC cycle                                                                                                   |
| OFFS(6)          | MSB of the measured frequency offset (sign of the offset value)                                                              |
| OFFS(3) -OFFS(0) | Offset value to be added to the value of the frequency control parameter (Four LSB bits)                                     |

Note: In order to get accurate values the AFC has to be disabled during the read by clearing the "en" bit in the AFC Control Command (bit 0).

### TX REGISTER BUFFERED DATA TRANSMISSION

In this operating mode (enabled by bit *el*, in the *Configuration Control Command*) the TX data is clocked into one of the two 8bit data registers. The transmitter starts to send out the data from the first register (with the given bit rate) when bit *et* is set with the *Power Management Command*. The initial value of the data registers (AAh) can be used to generate preamble. During this mode, the SDO

pin can be monitored to check whether the register is ready (SDO is high) to receive the next byte from the microcontroller.

TX register simplified block diagram (before transmit)



TX register simplified block diagram (during transmit)



Typical TX register usage



Note: The content of the data registers are initialized by clearing bit et.

## RX FIFO BUFFERED DATA READ

In this operating mode, incoming data are clocked into a 16 bit FIFO buffer. The receiver starts to fill up the FIFO when the Valid Data Indicator (VDI) bit and the synchron pattern recognition circuit indicates potentially real incoming data. This prevents the FIFO from being filled with noise and overloading the external microcontroller.

Interrupt Controlled Mode:

The user can define the FIFO IT level (the number of received bits) which will generate the nFFIT when exceeded. The status bits report the changed FIFO status in this case.

#### Polling Mode:

When nFFS signal is low the FIFO output is connected directly to the SDO pin and its content can be clocked out by the SCK. Set the

FIFO IT level to 1. In this case, as long as FFIT indicates received bits in the FIFO, the controller may continue to take the bits away. When FFIT goes low, no more bits need to be taken.

An SPI read command is also available to read out the content of the FIFO.

#### FIFO Read Example with FFIT Polling



Note:: During FIFO access  $f_{SCK}$  cannot be higher than  $f_{ref}$  /4, where  $f_{ref}$  is the crystal oscillator frequency. When the duty-cycle of the clock signal is not 50 % the shorter period of the clock pulse should be at least 2/ $f_{ref}$ .