

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	<u>20.81</u> (dBm)
Maximum peak output power at antenna input terminal:	<u>120.503594</u> (mW)
Antenna gain(typical):	<u>5.5</u> (dBi)
Maximum antenna gain:	3.548133892 (numeric)
Prediction distance:	<u> </u>
Prediction frequency:	<u>1850.2</u> (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	<u>1</u> (mW/cm^2)
Power density at prediction frequency:	0.037805 (mW/cm^2)
Maximum allowable antenna gain:	19.72452373 (dBi)
Margin of Compliance:	14.22452373

Peak Power = 26.83dBm Product is a Class 10 GPRS, therefore worst case time source averaging = 1:4 (2 UP + 3down) Average power = 26.83-10log(4/1) = 20.81dBm

Maximum ERP = 20.81+5.5-2.15 = 24.16dBm = 0.261Watts