

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	<u>26.18</u> (dBm)
Maximum peak output power at antenna input terminal:	414.9540426 (mW)
Antenna gain(typical):	5.5 (dBi)
Maximum antenna gain:	3.548133892 (numeric)
Prediction distance:	<u>30</u> (cm)
Prediction frequency:	<u>824.2</u> (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.549466667 (mW/cm^2)
Power density at prediction frequency:	0.130181 (mW/cm^2)
Maximum allowable antenna gain:	11.75393725 (dBi)
Margin of Compliance:	6.253937246

Peak Power = 32.2dBm

Product is a Class 10 GPRS, therefore worst case time source averaging = 1:4 (2 UP + 3down) Average power = 32.2-10log(4/1) = 26.18dBm

Maximum ERP = 26.18+5.5-2.15 = 29.53dBm = 0.897Watts