

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

> TEST REPORT # Q310123 LSR Job #: C-903

Compliance Testing of: GE I-210+cRD SecureMesh with M-Antenna

<u>Test Date(s)</u>: December 5, 6, 2009, January 26, April 28, 29, May 11-13, 18-19, 2010

Prepared For: Trilliant Attn.: Eric Bourget 610 DU Luxembourg Granby, Quebec J2J 2V2

> In accordance with: Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 210 Annex 8 Digital Modulation Transmitters (DTS) Operating in the Frequency Band 2400 MHz – 2483.5 MHz

This Test Report is issued under the Authority of:		
Signature: Thomas TSault Date: 10.27.10		
Test Report Reviewed by:	Tested by: Peter Feilen, EMC Engineer	
Signature: Thomas TSmith Date: 10.27.10	Signature: Ida 3. Date: 10.27.10	

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

EXH	IBIT 1: INTRODUCTION	
1.1	Scope	4
1.2	Normative References	4
1.3	LS Research, LLC Test Facility	5
1.4	Location of Testing	5
1.5	Test Equipment Utilized	5
		Ŭ
EXH	IBIT 2: PERFORMANCE ASSESSMENT	
2.1	Client Information	6
2.2	Equipment Under Test (EUT) Information	6
2.3	Associated Antenna Description	6
2.4	EUT's Technical Specifications	7
2.5	Product Description	8
EXH TES	IBIT 3: EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TS	
3.1	Climate Test Conditions	9
3.2	Applicability & Summary of EMC Emission Test Results	9
3.3	Modifications Incorporated in the EUT for Compliance Purposes	9
3.4	Deviations & Exclusions from Test Specifications	9
_		
EXH	IBIT 4: DECLARATION OF CONFORMITY	10
EXH	IBIT 5: RADIATED EMISSIONS TESTING	
	Note: Items 5.1 through 5.8 are for TRANSMIT MODE	
	Item 5.9 is for RECEIVE MODE	
5.1	Test Setup	12
5.2	Test Procedure	12
5.3	Test Equipment Utilized	13
5.4	Test Results	13
		13
5.5	Calculation of Radiated Emissions Limits	13
5.5 5.6	Calculation of Radiated Emissions Limits Radiated Emissions Test Data Chart	
		14
5.6	Radiated Emissions Test Data Chart	14 15
5.6 5.7	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test	14 15 18
5.6 5.7 5.8	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test	14 15 18 20
5.6 5.7 5.8 5.9 EXH	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE	14 15 18 20 25
5.6 5.7 5.8 5.9 EXH 6.1	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE Test Setup	14 15 18 20 25
5.6 5.7 5.8 5.9 EXH 6.1 6.2	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IIBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE Test Setup Test Procedure	14 15 18 20 25 25 26 26
5.6 5.7 5.8 5.9 EXH 6.1 6.2 6.3	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE Test Setup Test Procedure Test Equipment Utilized	14 15 18 20 25 25 26 26 26 26
5.6 5.7 5.8 5.9 EXH 6.1 6.2 6.3 6.4	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE Test Setup Test Procedure Test Equipment Utilized Test Results	14 15 18 20 25 25 26 26 26 26 26 26
5.6 5.7 5.8 5.9 EXH 6.1 6.2 6.3 6.4 6.5	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IIBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE Test Setup Test Procedure Test Results FCC Limits of Conducted Emissions at the AC Mains Ports	14 15 18 20 25 25 26 26 26 26 26 26 26 27
5.6 5.7 5.8 5.9 EXH 6.1 6.2 6.3 6.4	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE Test Setup Test Procedure Test Equipment Utilized Test Results	14 15 18 20 25 25 26 26 26 26 26 26
5.6 5.7 5.8 5.9 EXH 6.1 6.2 6.3 6.4 6.5	Radiated Emissions Test Data Chart Test Setup Photo(s) – Radiated Emissions Test Screen Captures – Radiated Emissions Test Receive Mode Testing IIBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE Test Setup Test Procedure Test Results FCC Limits of Conducted Emissions at the AC Mains Ports	14 15 18 20 25 26 26 26 26 26 26 26 26 26 26 27

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 2 of 54

TABLE OF CONTENTS (Page 2 of 2)

EXHIBIT 7: OCCUPIED BANDWIDTH 7.1 Limits 33 7.2 Method of Measurements 33 7.3 Test Equipment 33 7.4 Test Data 33 7.5 Screen Captures – Occupied Bandwidth 34 EXHIBIT 8: BAND-EDGE MEASUREMENTS 8 8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 9 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 11 10.2 Test Equipment List 10 10.3 Test Data 10 10.4 Screen Captures – Power Spectral Density 11.1 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.1 Limits 11.3 11.1 11.2 Test Data 11.1 11.1 11.3			
7.1 Limits 33 7.2 Method of Measurements 33 7.3 Test Equipment 33 7.4 Test Data 33 7.5 Screen Captures – Occupied Bandwidth 34 EXHIBIT 8: BAND-EDGE MEASUREMENTS 8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 9 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 10.2 Test Equipment List 10.2 Test Equipment List 10.4 Screen Captures – Power Spectral Density 10.4 Screen Captures – Power Spectral Density 11.1 11.1 11.2 Test Equipment List 11.1 11.3 Test Equipment List 11.1 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERA	EXHIBIT 7: OCCUPIED BANDWIDTH		
7.2 Method of Measurements 33 7.3 Test Equipment 33 7.4 Test Data 33 7.5 Screen Captures – Occupied Bandwidth 34 EXHIBIT 8: BAND-EDGE MEASUREMENTS 8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 Limits 1 10.2 Test Equipment List 1 10.3 Test Equipment List 1 10.4 Screen Captures – Power Spectral Density 1 11.2 Test Equipment List 1 11.3 Test Equipment List 1 11.4 Screen Captures – Spurious Radiated Emissions 1 11.4 Screen Captures – Spurious Radiated Emissions 1 11.4 Screen Captures – Spurious RADIATED EMISLITY OVER VOLTAGE & TEMPERATURE VARIATIONS 1		33	
7.4 Test Data 33 7.5 Screen Captures – Occupied Bandwidth 34 EXHIBIT 8: BAND-EDGE MEASUREMENTS 36 8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 91 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 10.2 Test Equipment List 10.2 Test Equipment List 10.3 11.4 10.3 Test Data 10.4 Screen Captures – Power Spectral Density 10.4 Screen Captures – Power Spectral Density 11.1 11.2 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.3 11.3 Test Equipment List 11.3 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 13.1 Screen Captures – Channel Separation 13	7.2 Method of Measurements		
7.5 Screen Captures – Occupied Bandwidth 34 EXHIBIT 8: BAND-EDGE MEASUREMENTS 36 8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 91 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Equipment List 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 10.1 Limits 11.3 10.2 Test Equipment List 11.4 10.3 Test Data 11.4 10.4 Screen Captures – Power Spectral Density 11.4 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.1 Limits 11.1 11.2 Test Equipment List 11.4 11.3 Test Data 11.4 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 13.1 Screen Captures – Channel Separation 13.1 Screen Captures – Channel Separation </td <td>7.3 Test Equipment</td> <td>33</td>	7.3 Test Equipment	33	
EXHIBIT 8: BAND-EDGE MEASUREMENTS 8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 9 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 11.2 10.2 Test Equipment List 11.4 10.3 Test Equipment List 11.4 10.4 Screen Captures – Power Spectral Density 11.4 10.4 Screen Captures – Power Spectral Density 11.1 11.4 Screen Captures – Power Spectral Density 11.1 11.1 Limits 11.2 11.2 Test Equipment List 11.1 11.3 Test Data 11.4 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 11.1 EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation		33	
8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 91 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Equipment List 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 1 10.2 Test Equipment List 1 10.3 Test Data 10.1 10.4 Screen Captures – Power Spectral Density 1 10.4 Screen Captures – Power Spectral Density 1 11.4 Screen Captures – Power Spectral Density 1 11.1 Limits 1 11.2 Test Equipment List 1 11.1 Limits 1 11.2 Test Equipment List 1 11.3 Test Data 1 11.4 Screen Captures – Spurious Radiated Emissions 1 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 1 EXHIBIT 13: CHANNEL PLAN & SEPARATION 1 1	7.5 Screen Captures – Occupied Bandwidth	34	
8.1 Method of Measurements 36 EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 91 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Equipment List 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 1 10.2 Test Equipment List 1 10.3 Test Data 10.1 10.4 Screen Captures – Power Spectral Density 1 10.4 Screen Captures – Power Spectral Density 1 11.4 Screen Captures – Power Spectral Density 1 11.1 Limits 1 11.2 Test Equipment List 1 11.1 Limits 1 11.2 Test Equipment List 1 11.3 Test Data 1 11.4 Screen Captures – Spurious Radiated Emissions 1 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 1 EXHIBIT 13: CHANNEL PLAN & SEPARATION 1 1			
EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b) 9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 10.2 10.2 Test Equipment List 10.3 10.3 Test Data 10.4 10.4 Screen Captures – Power Spectral Density 11.4 10.4 Screen Captures – Power Spectral Density 11.1 11.1 Limits 11.2 11.2 Test Equipment List 11.3 11.3 Test Data 11.4 11.4 Screen Captures – Spurious Radiated Emissions 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 13.1 Screen Captures – Channel Separation 13.1			
9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 Limits 10.2 10.2 Test Equipment List 10.3 10.3 Test Data 10.4 10.4 Screen Captures – Power Spectral Density 10.4 10.4 Screen Captures – Power Spectral Density 10.4 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.1 Limits 11.3 11.2 Test Equipment List 11.3 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation	8.1 Method of Measurements	36	
9.1 Method of Measurements 38 9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 Limits 10.2 10.2 Test Equipment List 10.3 10.3 Test Data 10.4 10.4 Screen Captures – Power Spectral Density 10.4 10.4 Screen Captures – Power Spectral Density 10.4 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.1 Limits 11.3 11.2 Test Equipment List 11.3 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
9.2 Test Equipment List 38 9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 10.2 10.2 Test Equipment List 10.3 10.3 Test Data 10.4 10.4 Screen Captures – Power Spectral Density 10.4 10.4 Screen Captures – Power Spectral Density 10.4 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.1 Limits 11.2 11.2 Test Equipment List 11.4 11.3 Test Data 11.4 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 11.1 EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
9.3 Test Data 38 9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 10.2 10.2 Test Equipment List 10.3 10.3 Test Data 10.4 10.4 Screen Captures – Power Spectral Density 10.4 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.1 Limits 11.2 11.2 Test Equipment List 11.3 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 11.4 EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
9.4 Screen Captures – Power Output (Conducted) 39 EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 10.1 Limits 10.2 10.2 Test Equipment List 10.3 10.3 Test Data 10.4 10.4 Screen Captures – Power Spectral Density 10.4 EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 11.1 Limits 11.2 11.2 Test Equipment List 11.3 11.3 Test Data 11.4 11.4 Screen Captures – Spurious Radiated Emissions 11.4 EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS 11.4 EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e) 10.1 Limits 10.2 Test Equipment List 10.3 Test Data 10.4 Screen Captures – Power Spectral Density EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
10.1 Limits 10.2 Test Equipment List 10.3 Test Data 10.4 Screen Captures – Power Spectral Density EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation Extraction	9.4 Screen Captures – Power Output (Conducted)	39	
10.1 Limits 10.2 Test Equipment List 10.3 Test Data 10.4 Screen Captures – Power Spectral Density EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation Interval of the second			
10.2 Test Equipment List 10.3 Test Data 10.4 Screen Captures – Power Spectral Density EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Equipment List 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS			
10.3 Test Data 10.4 Screen Captures – Power Spectral Density EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
10.4 Screen Captures – Power Spectral Density EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation Image: Comparison of the second			
EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS	10.4 Screen Captures – Power Spectral Density		
11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS	EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15 247(d)		
11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
11.3 Test Data 11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS			
11.4 Screen Captures – Spurious Radiated Emissions EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS			
EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation			
TEMPERATURE VARIATIONS EXHIBIT 13: CHANNEL PLAN & SEPARATION 13.1 Screen Captures – Channel Separation	EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE &		
13.1 Screen Captures – Channel Separation			
13.1 Screen Captures – Channel Separation			
	EXHIBIT 13: CHANNEL PLAN & SEPARATION		
EXHIBIT 14: MPE CALCULATIONS	13.1 Screen Captures – Channel Separation		
EXHIBIT 14: MPE CALCULATIONS			
	EXHIBIT 14: MPE CALCULATIONS		
APPENDICES			
APPENDIX A: TEST EQUIPMENT LIST			
APPENDIX B: TEST STANDARDS – RADIO			
APPENDIX C: UNCERTAINTY STATEMENT			
APPENDIX D: JUSTIFICATIONS OF AVERAGE DUTY FACTOR			
CALCULATIONS	CALCULATIONS		

EXHIBIT 1. IN	ITRODUCTION	
Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 3 of 54

1.1 <u>SCOPE</u>

References:	FCC Part 15, Subpart C, Section 15.247	
Title:	FCC : Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15.	
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-	
	Power License-Exempt Transmitters.	
Test Procedures:	Both conducted and radiated emissions measurements	
	were conducted in accordance with American National	
	Standards Institute ANSI C63.4 – American National	
	Standard for Methods of Measurement of Radio-Noise	
	Emissions from Low-Voltage Electrical and Electronic	
	Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Commercial, Industrial or Business	
	Residential	

1.2 NORMATIVE REFERENCES

Please see appendix B

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 4 of 54

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: <u>www.lsr.com</u>. Accreditation status can be verified at A2LA's web site: <u>www.a2la2.net</u>.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 <u>TEST EQUIPMENT UTILIZED</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 5 of 54

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

Manufacturer Name:	Trilliant
Address:	610DU Luxembourg, Ganby, Quebec J2J 2V2
Contact Name:	Eric Bourget

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	GE I-210
Model Number:	RES-3000-I210
Serial Number:	NDEB0000022

2.3 ASSOCIATED ANTENNA DESCRIPTION

The PCB antenna associated with this report is a "M" antenna. It has an expected gain of 4.6 dBi maximum.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 6 of 54

2.4 **EUT'S TECHNICAL SPECIFICATIONS**

Additional Information:

EUT Frequency Range (in MHz)	2405-2475 MHz
RF Power in Watts	0.776 W
Conducted Output Power (in dBm)	28.9 dBm
Field Strength at 3 meters	131.73 dBuV/m @ 3m
Occupied Bandwidth (99% BW)	2.12 MHz
Type of Modulation	O-QPSK
Emission Designator	2M12F1D
EIRP (in mW)	2238.72 mW
Transmitter Spurious (worst case) at 3	68.6 dBuV/m
meters	
Receiver Spurious (worst case) at 3	53.4 dBuV/m
meters	
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Antenna Information	
Detachable/non-detachable	Non-detachable
Туре	PCB
Gain (in dBi)	4.6 dBi (max), -5.0 dBi (average)
EUT will be operated under FCC Rule	15.247
Part(s)	
EUT will be operated under RSS Rule	RSS-210, Issue 7 (2007), Section
Part(s)	Annex 8 (section 8.2)
Modular Filing	🗌 Yes 🛛 No
Portable or Mobile?	🗌 Yes 🛛 No

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Х	RF Evaluation

If <u>RF Evaluation</u> checked above, test engineer to complete the following:

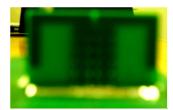

- Evaluated against exposure limits: 🔀 General Public Use Duty Cycle used in evaluation: 100 % Controlled Use •
- •
- Standard used for evaluation: OET Bulletin 65
- Measurement Distance: 20 cm
- RF Value: 4.45 V/m A/m W/m² Measured Computed Calculated

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 7 of 54

2.5 **PRODUCT DESCRIPTION**

The RES-3000-I210 SecureMesh[™] is a wireless communication card designed to be installed in GE's I-210+c and I-210+c/RD meters. The meters equipped with Trilliant's SecureMesh can communicate over Mesh networks (IEEE 802.15.4).

PHOTOS



Wires from the board are power supply connections (black and red wires) and a 5-pin connector for programming, to be used in conjunction with a programming board for testing purposes only.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 8 of 54

Opposite side of the radio board, showing power wires and a 5-pin connector. The antenna is nearly centered and the perpendicular PCB (near the model number and serial number label).

Pictured above illustrates the PCB m-antenna.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 9 of 54

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	20-25 °C
Humidity:	30-60%
Pressure:	745 mmHg

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)	
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	Yes	
FCC : 15.247(a)(2) IC : RSS 210 A8.2(a)	6 dB Bandwidth of a Digital Modulation System	Yes	
IC : RSS GEN section 4.6.1	20 dB Bandwidth	Yes	
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	Yes	
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	Yes	
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes	
FCC : 15.247(d) IC : RSS 210 A8.2(b)	Transmitted Power Spectral Density of a Digital Modulation System	Yes	
FCC : 15.247(c), 15.209 & 15.205 IC : RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	Yes	
The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The			

Receiver Test Report is available upon request.

3.3 <u>MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES</u> None Section Sect

The output power programmed per channel had to be reduced from maximum possible on the outer channels to meet the limits of the bandedge requirements. Channel 11 is set to power level 8 (reduced from the maximum of 15), channel 24 is reduced to power level 5 and channel 25 is reduced to power level 1.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 10 of 54

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 7 (2007), Section Annex 8 (section 8.2) for a Digital Spread Spectrum (DTS) Transmitter.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 11 of 54

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 <u>Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15 and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated using power as provided by a DC bench power supply of 3.3V. The unit has the capability to operate on three channels, controllable via laptop PC.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on three (3) standard channels: low (2405 MHz), middle (2440 MHz) and high (2475 MHz) to comply with FCC Part 15.31(m). The channels were changed using HyperTerminal software for programming through RS232 to USB communication.

5.2 <u>Test Procedure</u>

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber, and a compact semi-anechoic chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT when measuring from 30 MHz to 4 GHz. The EUT was placed on a non-conductive pedestal in a compact semi-anechoic chamber, with the antenna mast placed such that the antenna was 1 meter from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz, and a Standard Gain Horn Antenna was used for measurements from 18GHz to 25 GHz. The maximum radiated RF emissions were found by rotation 360 degrees and raising and lowering the antenna between 1 to 4 meters in height when measuring from 30 MHz to 4GHz, and 1 to 1.8 meters when measuring from 4 GHz to 25 GHz , using both horizontal and vertical antenna polarities.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 12 of 54

5.3 <u>Test Equipment Utilized</u>

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed by an ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an Agilent E4445A EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the Agilent E4445A EMI Receiver database. As a result, the data taken from the Agilent E4445A EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The Agilent E4445A EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 300 kHz). Above 1 GHz, a bandwidth of 1 MHz was utilized (video bandwidth of 1 MHz). From 4 to 25GHz, the Agilent 4446A Spectrum Analyzer was used.

Test Equipment	Manufacturer	Model No.	Serial No.
EMI Receiver	HP	8546A	3617A00320
EMI Receiver Pre-Select.	HP	85460A	3448A00296
Spectrum Analyzer	Agilent	E4446A	US45300564
Log Periodic Antenna	EMCO	93146	9701-4855
Horn Antenna	EMCO	3115	6907
Bicon Antenna	EMCO	93110B	9702-2918
Pre-Amp	Adv. Microwave	WLA612	1145A04094
Horn Antenna – Std. Gain	EMCO	3160-09	9809-1120

Test Equipment List

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 7 (2007), Annex 8 for a DTS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 13 of 54

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

The maximum peak output power of an intentional radiator in the 2400-2483.5 MHz band, as specified in Title 47 CFR 15.247 (b)(3) and RSS 210 A8.4 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.2(b), shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2,2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBµV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
> 960	500	54.0	63.5

Sample conversion from field strength μ V/m to dB μ V/m: dB μ V/m = 20 log ₁₀ (100) = 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

 $> 960 \mbox{ MHz} \\ 500 \mu\mbox{V/m or } 54.0 \mbox{ dB/} \mu\mbox{V/m at } 3 \mbox{ meters} \\ 54.0 \mbox{ + } 9.5 \mbox{ = } 63.5 \mbox{ dB/} \mu\mbox{V/m at } 1 \mbox{ meter} \end{cases}$

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 14 of 54

RADIATED EMISSIONS TEST DATA CHART

3 Meter Measurements of Electromagnetic Radiated Emissions Test Standard: 47CFR, Part 15.205 and 15.247(DTS) RSS 210 A8, sections 2.2,2.6 and 2.7

Frequency Range Inspected: 30 MHz to 25000 MHz

Trillia	Trilliant					
April 2	April 28, 29, May 18, 19, 2010					
Peter	Feilen					
3.3 V	DC					
Pseud	do-Random Bit Sequen	ce wit	h cont	inuous trans	smit	
Temp	erature: 20 – 25° C					
Relati	ive Humidity: 30 – 60 %	/ 0				
	Single PhaseVAC			3 Phase <u>VAC</u>		
	Battery		Х	Other: DC	Ben	ch Supply (3.3V)
Х	80cm non-conductive			10cm Space	cers	
	meter mount					
×	3 Meter Semi-Anechoi	3 Meter Semi-Anechoic			re	
^	FCC Listed Chamber			5/ TUIL OA	13	
	Pre-Compliance		Prelir	ninary	Х	Final
Х	Peak	Х	Quas	i-Peak		Average
	Trillia April 2 Peter 3.3 V Pseud Temp Relati	Trilliant April 28, 29, May 18, 19, 201 Peter Feilen 3.3 VDC Pseudo-Random Bit Sequent Temperature: 20 – 25°C Relative Humidity: 30 – 60 % Single PhaseVAC Battery X 80cm non-conductive meter mount X 3 Meter Semi-Anechoi FCC Listed Chamber Pre-Compliance	Trilliant April 28, 29, May 18, 19, 2010 Peter Feilen 3.3 VDC Pseudo-Random Bit Sequence with Temperature: 20 – 25° C Relative Humidity: 30 – 60 % Single Phase VAC Battery X 80cm non-conductive meter mount X 3 Meter Semi-Anechoic FCC Listed Chamber Pre-Compliance	TrilliantApril 28, 29, May 18, 19, 2010Peter Feilen3.3 VDCPseudo-Random Bit Sequence with contTemperature: 20 – 25° CRelative Humidity: 30 – 60 %Single PhaseVACBatteryXX80cm non-conductive meter mountX3 Meter Semi-Anechoic FCC Listed ChamberVACPre-Compliance	Trilliant April 28, 29, May 18, 19, 2010 Peter Feilen 3.3 VDC Pseudo-Random Bit Sequence with continuous trans Temperature: 20 – 25° C Relative Humidity: 30 – 60 % Single PhaseVAC Battery X Other: DC X 80cm non-conductive meter mount X 3 Meter Semi-Anechoic FCC Listed Chamber 3/10m OAT	Trilliant April 28, 29, May 18, 19, 2010 Peter Feilen 3.3 VDC Pseudo-Random Bit Sequence with continuous transmit Temperature: 20 – 25°C Relative Humidity: 30 – 60 % Single Phase VAC 3 Phase V/ Battery X Other: DC Ben X 80cm non-conductive meter mount X 3 Meter Semi-Anechoic FCC Listed Chamber Y Pre-Compliance

The following table depicts the level of significant spurious radiated RF emissions found:

,			V			
Frequency	Height (m)	Az (Deg)	Measured EFI	Limit	Margin	Ant./EUT
(MHz)			(dBµV/m)	(dBµV/m)	(dB)	Polarity
299.2	1.00	0	26.1	46.0	19.9	h/tt
285.9	1.00	0	23.98	46.0	22.0	v/tt
997.7	1.00	0	28.65	54.0	25.4	v/tt
973.4	1.00	0	29.37	54.0	24.6	h/tt
1193.4	1.00	0	34.3	54.0	19.7	v/tt
1190.3	1.00	0	35.28	54.0	18.7	h/tt
3730.4	1.00	0	40.16	54.0	13.8	h/tt
2503.9	1.00	0	47.41	54.0	6.6	v/tt

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 15 of 54

5.6

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 11:

Frequency (MHz)	Ant./EUT Polarity	Height (meters)	Azimuth (0° - 360°)	Measured EFI (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4809.03	Vertical	1.29	2	53.8	63.5	9.7
7213.77	Vertical	1.03	62	40.6	110.8	70.2
9627.63	Vertical	1.77	2	35.3	110.8	75.5
12027.00	Vertical	1.19	45	39.6	63.5	23.9
14427.13	Vertical	1.03	275	43.1	110.8	67.7
16842.87	Vertical	1.07	7	40.4	110.8	70.4
19240.00	Vertical	1.00	0	36.7	63.5	26.8
21645.00	Vertical	1.00	0	36.5	110.8	74.3
24050.00	Vertical	1.00	0	36.6	110.8	74.2
4810.77	Horizontal	1.06	2	50.1	63.5	13.4
7213.57	Horizontal	1.03	29	45.2	110.8	65.6
9629.90	Horizontal	1.76	7	35.3	110.8	75.5
12027.67	Horizontal	1.00	318	40.3	63.5	23.2
14427.27	Horizontal	1.06	324	44.3	110.8	66.5
16832.63	Horizontal	1.07	10	40.4	110.8	70.4
19240.00	Horizontal	1.00	0	36.7	63.5	26.8
21645.00	Horizontal	1.00	0	36.5	110.8	74.3
24050.00	Horizontal	1.00	0	36.7	110.8	74.1

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 18:

Frequency (MHz)	Ant./EUT Polarity	Height (meters)	Azimuth (0° - 360°)	Measured EFI (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4881.02	Vertical	1.20	5	60.0	63.5	3.5
7321.42	Vertical	1.13	356	45.8	63.5	17.7
9764.32	Vertical	1.76	9	36.0	111.3	75.3
12197.38	Vertical	1.11	350	40.2	63.5	23.3
14643.48	Vertical	1.00	355	44.6	111.3	66.7
17079.60	Vertical	1.03	5	43.0	111.3	68.3
19520.00	Vertical	1.00	0	34.3	63.5	29.2
21960.00	Vertical	1.00	0	36.8	111.3	74.5
24400.00	Vertical	1.00	0	36.4	111.3	74.9
4880.93	Horizontal	1.03	24	49.6	63.5	13.9
7321.35	Horizontal	1.07	13	44.5	63.5	19.0
9760.97	Horizontal	1.75	13	35.4	111.3	75.9
12197.25	Horizontal	1.03	312	41.1	63.5	22.4
14636.25	Horizontal	1.04	329	44.6	111.3	66.7
17084.52	Horizontal	1.05	4	43.0	111.3	68.3
19520	Horizontal	1.00	0	36.7	63.5	26.8
21960	Horizontal	1.00	0	36.8	111.3	74.5
24400	Horizontal	1.00	0	36.9	111.3	74.4

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 16 of 54

	<u> </u>		¥		The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel : 25					
Frequency	Ant./EUT	Height	Azimuth	Measured	Limit	Adjusted EFI	Measured	Calculated		
(MHz)	Polarity	(meters)	(0° - 360°)	EFI	(dBµV/m)	Reading	EFI Margin	EFI Margin		
				(dBµV/m)		(dBµV/m)	(dB)	(dB)		
						NOTE 3		NOTE 4		
4951.00	Vertical	1.24	3	68.6	63.5	48.6	-5.1	14.9		
7423.70	Vertical	1.14	17	43.6	63.5	23.6	19.9	39.9		
9897.87	Vertical	1.14	33	35.9	112.4	15.9	76.5	96.5		
12372.43	Vertical	1.10	345	42.9	63.5	22.9	20.6	40.6		
14847.03	Vertical	1.10	349	44.7	112.4	24.7	67.7	87.7		
17323.98	Vertical	1.04	6.9	43.9	112.4	23.9	68.5	88.5		
19800.00	Vertical	1.00	0	36.3	63.5	16.3	27.2	47.2		
22275.00	Vertical	1.00	0	36.1	63.5	16.1	27.4	47.4		
24750.00	Vertical	1.00	0	37.5	112.4	17.5	74.9	94.9		
4951.00	Horizontal	1.06	293	50.4	63.5	30.4	13.1	33.1		
7423.70	Horizontal	1.03	31	45.0	63.5	25.0	18.5	38.5		
9897.87	Horizontal	1.03	34	35.0	112.4	15.0	77.4	97.4		
12372.43	Horizontal	1.03	353	39.4	63.5	19.4	24.1	44.1		
14847.03	Horizontal	1.04	336	44.4	112.4	24.4	68.0	88.0		
17323.98	Horizontal	1.06	6	44.0	112.4	24.0	68.4	88.4		
19800.00	Horizontal	1.00	0	36.2	63.5	16.2	27.3	47.3		
22275.00	Horizontal	1.00	0	36.2	63.5	16.2	27.3	47.3		
24750.00	Horizontal	1.00	0	37.5	112.4	17.5	74.9	94.9		

The following table denicts the level of significant radiated PE fundamental and harmonic emissions seen on Channel - 25

Notes:

A Quasi-Peak Detector was used in measurements below 1 GHz, and a 10 Hz video averaged Peak Detector was used in measurements above 1 GHz. 1) Only the results from the Peak Detector with video averaging are published in the table above. A non-video averaged peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.

Measurements above 4 GHz were made at 1 meters of separation from the EUT Adjusted EFI Reading is a calculated measurement. This value is based on 20 dB relaxation and calculated from the measured EFI. Justification is seen in 2) 3) Appendix D of this report. The calculated EFI margin refers to the margin as compared to the Adjusted EFI Reading

4)

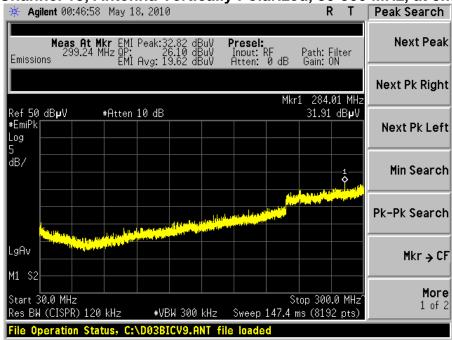
Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 17 of 54

5.7 <u>Test Setup Photo(s) – Radiated Emissions Test</u>

EUT on Test Fixture

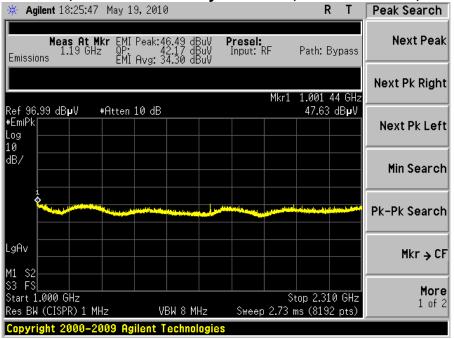
³m measurement Setup

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 18 of 54

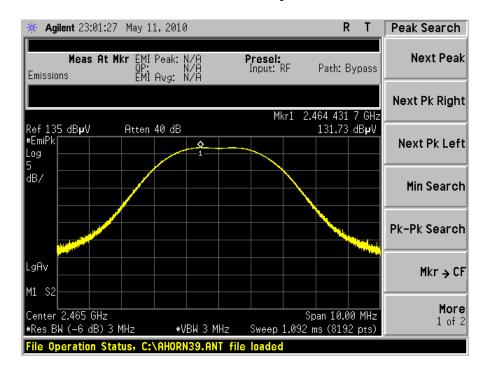

1 meter measurement setup

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 19 of 54

5.8 Screen Captures - Radiated Emissions Test

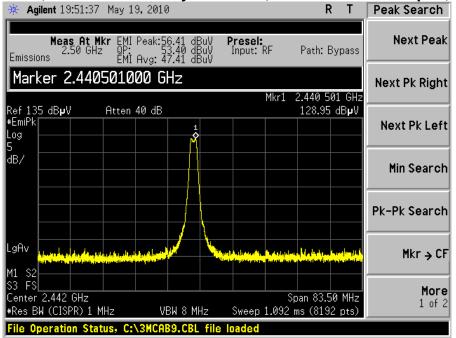

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

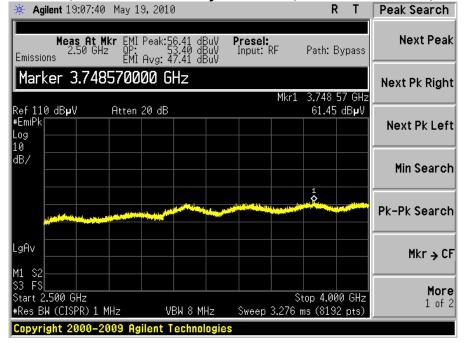
The signature scans shown here are from worst-case emissions, as measured on channels 11, 18, 23, 24 or 25, with the sense antenna both in vertical and horizontal polarity for worst case presentations.



Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 20 of 54

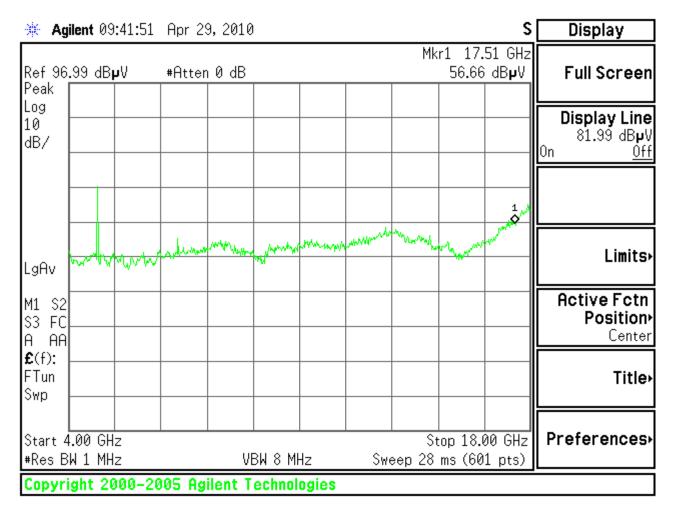
Channel 18, Antenna Vertically Polarized, 1000-2310 MHz, at 3m


Channel 23 Fundamental, Antenna Vertically Polarized, 2455-2465 MHz, at 3m


This screen capture demonstrates the highest fundamental emission of any channel tested

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 21 of 54

Channel 18, Antenna Vertically Polarized, 2400-2483.5 MHz Span, at 3m



Channel 18, Antenna Vertically Polarized, 2500.0-4000 MHz, at 3m

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 22 of 54

Channel 18, Antenna Vertically Polarized, 4000-18000 MHz, at 1m

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 23 of 54

🔆 Ag	ilent 21	:26:58	Apr 2	8,2010							Peak Search
Ref 90 Peak	dBµV		Atten	10 dB				Mkr:		80 GHz dB µ V	Next Peak
Log 10 dB/											Next Pk Right
	Mark	er <u>m</u>	-	. Josh danna	www.	harrend	Howard	many	1 	- to Vinte all you	Next Pk Left
LgAv	L		ØØØØ፼ ∄BµV) GHz							Min Search
M1 S2 S3 FC A AA											Pk-Pk Search
£ (f): FTun Swp											Mkr→CF
#Res B	.8.000 W 1 MH	z			BW 1 M		-	17.52		00 GHz 1 pts)	More 1 of 2
File 0	peratio	in Sta	tus, C:	SCREM	1039 . 6	IF file	saved				

Channel 18, Antenna Vertically Polarized, 18000-25000 MHz, at 1m

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 24 of 54

5.9 <u>Receive Mode Testing</u>

Per the requirements of RSS-210, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m) (dB)		Antenna Polarity	EUT orientation
298.70	1.00	0	33.1	46.0	12.9	V	тт
96.82	1.00	0	28.6	43.0	14.4	V	TT
992.70	1.00	0	37.4	54.0	16.6	V	ΤΤ
Frequency (MHz)	Height (m)	Azimuth (degree)	Average Reading (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
5754.00	1.00	0	53.4	54.0	0.6	V	TT

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 25 of 54

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE:

6.1 <u>Test Setup</u>

The test area and setup are in accordance with ANSI C63.4 and with Title 47 CFR, FCC Part 15 (Industry Canada RSS-210, Issue 7, 2007). The EUT was placed in a non-conductive wooden pedestal, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50 Ω (ohm), 50/250 μ H Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the Agilent E4445A Receiver. The EMCO LISN used has the ability to terminate the unused port with a 50 Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 <u>Test Procedure</u>

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in Title 47 CFR, FCC Part 15.35, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30MHz. Final readings were then taken and recorded.

Test Equipment Utilized

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter are performed by an ISO 17025 accredited calibration laboratory, and traceable to the SI standard. All cables are calibrated and checked periodically for conformance. The emissions are measured on the Agilent E4445A EMI Receiver, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.3 <u>Test Equipment List</u>

Test Equipment	Manufacturer	Model No.	Serial No.		
EMI Receiver	Agilent	E4445A	MY48250225		
Pre-selector	Agilent	N9039A	MY46520110		
LISN	EMCO	3816/2NM	9701-1057		
Transient Limiter	HP	119474A	3107A01708		

6.4 <u>Test Results</u>

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 26 of 54

6.4 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B I	Limits (dBµV)	Measuring		
(MHz)	Quasi-Peak	Average	Bandwidth		
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz		
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP		
5.0 - 30	60	50	VBW = 1 Hz for Average		
* The limit decrea logarithm of the fre					

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 27 of 54

CONDUCTED EMISSIONS TEST DATA CHART

Frequency Range inspected: 150 KHz to 30 MHz Test Standard: FCC 15.207 Class B IC RSS GEN 7.2.2

Manufacturer:	Trill	Trilliant					
Date(s) of Test:	Jan	January 26, 2010					
Test Engineer:	Pete	er Feilen					
Model #:	RE	S-3000-I210					
Serial #:	ND	EA0000027					
Voltage:	240	240 VAC					
Operation Mode:	con	continuous modulated transmit					
Environmental	Ten	nperature: 20 – 25°	С				
Conditions in the Lab:	Rela	ative Humidity: 30 -	- 60 %	6			
Test Location:						Chamber	
EUT Placed On:	Х	X 40cm from Vertical Ground Plane 10cm Spacer					
	Х	80cm above Grour	Other:				
Measurements:		Pre-Compliance		Preliminary	Х	Final	
Detectors Used:	Х	Peak	Х	Quasi-Peak	Х	Average	

		<u>QUASI-PEAK</u>			4	<u>AVERAGE</u>		
Frequency (MHz)	Line	Q-Peak Reading (dBµV)	Q-Peak Limit (dBµ V)	Quasi-Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBµ V)	Average Margin (dB)	
0.150	1.000	47.680	65.989	18.309	43.230	55.989	12.759	
0.654	1.000	27.980	56.000	28.020	23.520	46.000	22.480	
1.580	1.000	25.740	56.000	30.260	21.730	46.000	24.270	
4.920	1.000	28.470	56.000	27.530	23.490	46.000	22.510	
29.450	1.000	12.920	60.000	47.080	5.700	50.000	44.300	
0.155	2.000	46.630	65.728	19.098	42.140	55.728	13.588	
0.613	2.000	32.850	56.000	23.150	26.620	46.000	19.380	
1.670	2.000	36.050	56.000	19.950	32.150	46.000	13.850	
29.450	2.000	13.450	60.000	46.550	6.810	50.000	43.190	

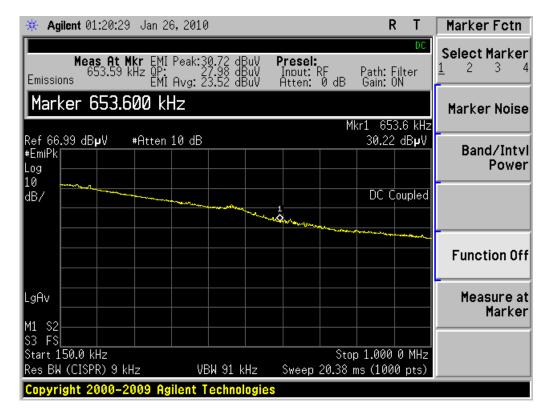
Notes:

1) The emissions listed are characteristic of the power supply used, and did not change by the EUT.

2) All other emissions were better than 20 dB below the limits.

3) The EUT exhibited similar emissions in transmit and receive modes, and across the Low, Middle and High channels tested.

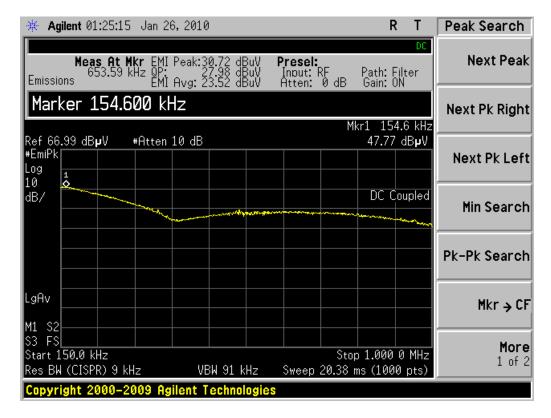
Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 28 of 54


6.6 <u>Test Setup Photo(s) – Conducted Emissions Test</u>

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 29 of 54

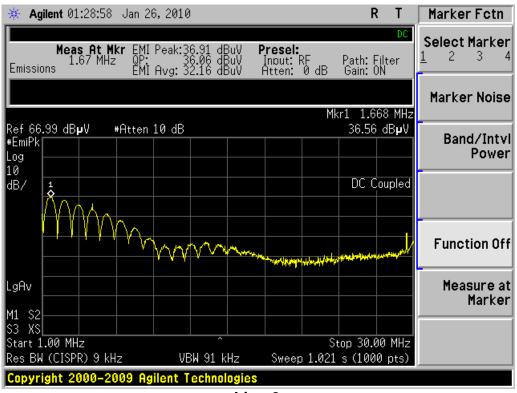
6.7 <u>Screen Captures – Conducted Emissions Test</u>

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).


The signature scans shown here are chosen as being a good representative of all channels.

Line 1

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 30 of 54


* Agilent 01:15:03 Jan 26, 2010 R T	Marker Fotn
Meas At Mkr EMI Peak:17.11 dBuV Presel: 29.45 MHz QP: 12.92 dBuV Input: RF Path: Filter Emissions EMI Avg: 5.70 dBuV Atten: 0 dB Gain: 0N	Select Marker <u>1</u> 234
Mkr1 29.448 MH	
Ref 66.99 dBµV #Atten 10 dB 17.01 dBµV #EmiPk Log	Band/Intvl Power
10 dB/ DC Coupled	
MMM when when a start when the second start	Function Off
LgAv	Measure at Marker
M1 S2 S3 XS	
Start 1.00 MHz ^ Stop 30.00 MHz Res BW (CISPR) 9 kHz VBW 91 kHz Sweep 1.021 s (1000 pts)	
Copyright 2000–2009 Agilent Technologies	

Line 1

Line 2

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 31 of 54

Line 2

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 32 of 54

EXHIBIT 7. OCCUPIED BANDWIDTH:

7.1 Limits

For a Digital Modulation System, the 6 dB bandwidth shall be at least 500 kHz.

7.2 Method of Measurements

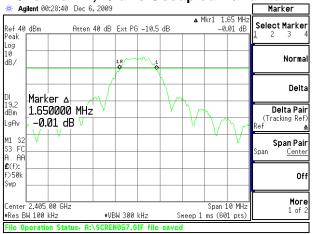
Refer to ANSI C63.4 and FCC Procedures (2007) for Digital Transmission Systems operating under 15.247.

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 100 kHz RBW and VBW=300 kHz.

The bandwidth requirement found in FCC Part 15.247(a)(2) requires a minimum -6dBc occupied bandwidth of 500 kHz. For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to the Agilent E4446 spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

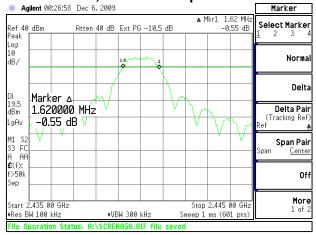
From this data, the closest measurement when compared to the specified limit is 1620 kHz, which is above the minimum of 500 kHz.

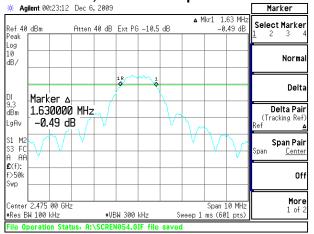
7.3 Test Equipment List


Test Equipment	Manufacturer	Model No.	Serial No.
Spectrum Analyzer	Agilent	E4446A	US45300564

7.4 Test Data

Channel	Center Frequency (MHz)	Measured -6 dBc Occ. BW (kHz)	Minimum -6 dBc (kHz)	Measured 99% Occ. BW (kHz)	Measured -20 dBc Occ.Bw (kHz)
11	2405	1650	500	2189	2360
18	2440	1620	500	2219	2364
25	2475	1630	500	2242	2421


Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 33 of 54


7.5 Screen Captures - OCCUPIED BANDWIDTH

Channel 11, -6 dBc Occupied Bandwidth

Channel 25, -6 dBc Occupied Bandwidth

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 34 of 54

Channel 11,	-20 abo	; Οςςι	ipiea	вап	awiath
★ Agilent 14:03:04 Feb 8,	2011		-	S	Freq/Channe
Ch Freq 2.405 Occupied Bandwidth	5 GHz		Tri	g Free	Center Fre 2.40500000 GH
Center 2.4050000	00 GHz				Start Fre 2.40350000 GH
Ref 30 dBm Atten 4 #Samp Log		Antiberry of the second	WIA WA .		Stop Fre 2.40650000 GH
10 dB/				11 11 11	CF Ste 300.000000 kH <u>Auto</u> M
Center 2.405 000 GHz				n 3 MHz	Freq Offse 0.00000000
•Res BW 30 kHz Occupied Bandwidt 2.1894		Occ BW 2			Signal Trac ^{On <u>O</u>}
	12.158 kHz .360 MHz≭				
File Operation Status, A:\	SCREN061.GIF	file saved			

Channel 11, -20 dBc Occupied Bandwidth

Channel 18, -20 dBc Occupied Bandwidth Agilent 14:22:57 Feb 8, 2011 SFreq/Channel

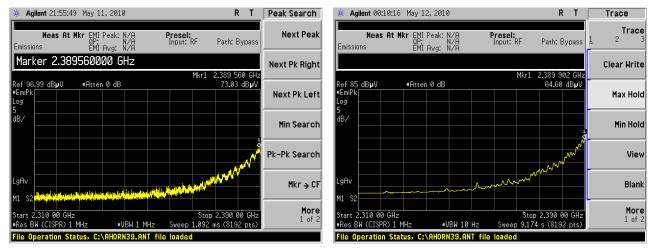
Agilent 14:22:57 Feb	8,2011		3	Freq/unannei
Ch Freq 2. Occupied Bandwidth	44 GHz		Trig Free	Center Freq 2.44000000 GHz
Center 2.440000	1000 GHz			Start Freq 2.43850000 GHz
•Samp	n 40 dB	A MANA ANA	8	Stop Freq 2.44150000 GHz
10 dB/				CF Step 300.000000 kHz <u>Auto</u> Man
Center 2.440 000 GHz			Span 3 MHz	Freq Offset 0.00000000 Hz
Res BW 30 kHz Occupied Bandwid 2.21	•VBW 100 kHz dth .97 MHz	Sweep 10.04 ms Occ BW % Pwr × dB		Signal Track ^{On <u>Of</u>l}
Transmit Freq Error × dB Bandwidth	–23.606 kHz 2.364 MHz*			
Unable to save file				

Channel 25, -20 dBc Occupied Bandwidth

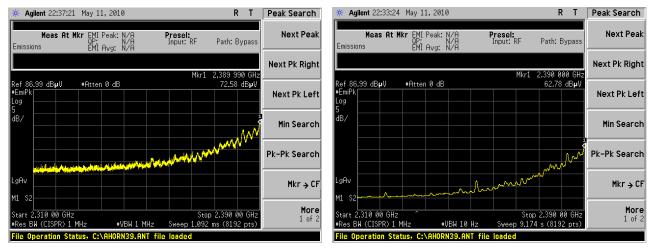
Center 2.475000000 GHz	Center Freq 2.47500000 GHz Start Freq 2.47350000 GHz				
Center 2.475000000 GHz					
	2.47530000 0112				
	Stop Freq 2.47650000 GHz				
	CF Step 300.000000 kHz <u>Auto</u> Man				
Center 2.475 000 GHZ Span 5 MHZ	FreqOffset 0.00000000 Hz				
•Res BH 30 kHz •VBW 100 kHz Sweep 10.04 ms (601 pts) Occupied Bandwidth •cc BW % Pwr 99.00 % 2.2418 MHz × dB	Signal Track ^{On <u>Off</u>}				
Transmit Freq Error -18.010 kHz × dB Bandwidth 2.421 MHz* File Operation Status. A:\SCREN064.01F file saved					

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 35 of 54

EXHIBIT 8.BAND-EDGE MEASUREMENTS

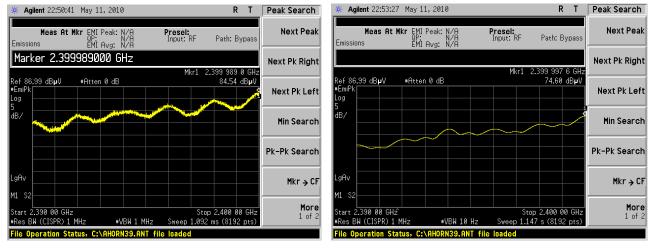

8.1 <u>Method of Measurements</u>

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 2400-2483.5 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was programmed to the channels 11, 12, 23 and 25. Channels 11 and 25 are at reduced power and channels 12 and 23 are programmed to full power.

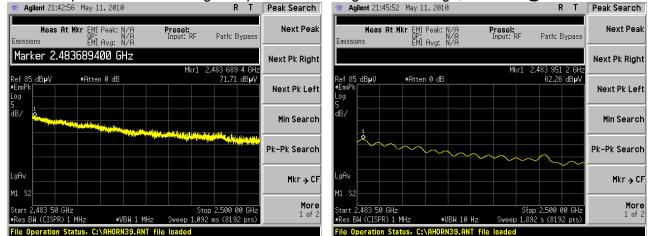

***NOTE**: Duty cycle relaxation is implemented and applied to the peak measurements. Justification for 20 dB of relaxation can be found in appendix D. When relaxation is applied, the average limit of 54 dBuV/m is satisfied for all 15.205 frequency bands.

The Lower Band-Edge limit, in this case, would be -20 dBc with respect to the fundamental level. The Upper Band-Edge limit, in this case, would be + 54 dB μ V/m at 3m.

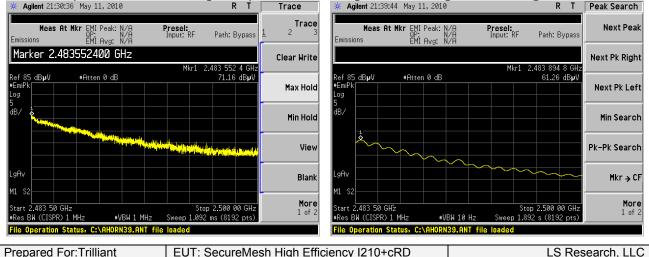
Screen Captures Demonstrating Compliance at the Lower Band-Edge, Chan. 11 @ Power Level 8:


Screen Captures Demonstrating Compliance at the Lower Band-Edge, Chan.12 @ Power Level 15:

2310-2390 MHz Scans. Peak limit is 74 dBuv/m @ 3m; the average limit is 54 dBuV/m @ 3m


Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 36 of 54

Screen Captures Demonstrating Compliance at the Lower Band-Edge, Chan.12 @ Power Level 15: (Continued)



2390-2400 MHz Scans. Peak limit is -20 dBc. Limit is maintained as shown in the above captures

Screen Captures Demonstrating Compliance at the Higher Band-Edge, Chan.23 @ Power Level 15

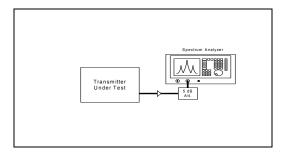
Screen Captures Demonstrating Compliance at the Higher Band-Edge, Chan.25 @ Power Level 15

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 37 of 54

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

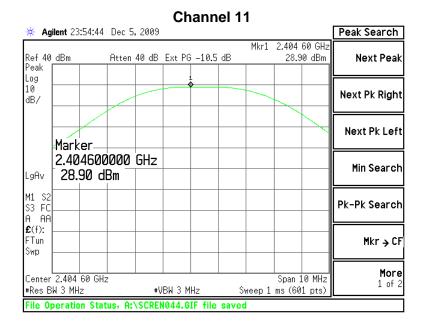
9.1 Method of Measurements

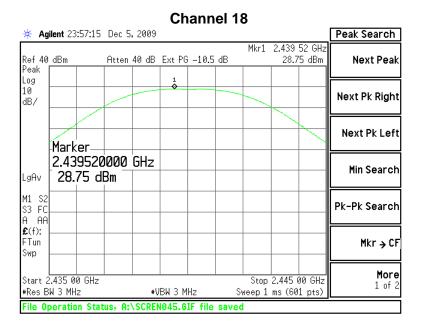
The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with a u.fl to SMA connector and an attenuator where the attenuator served as protection for the spectrum analyzer. The loss from the cable, connector and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data from an internal source by way of programming as a modulation source. The spectrum analyzer was used with resolution and video bandwidths set to 3 MHz, and a span of 10 MHz, with measurements from a peak detector presented in the chart below.

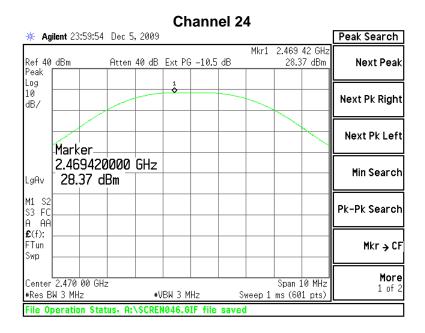

9.2 Test Equipment List

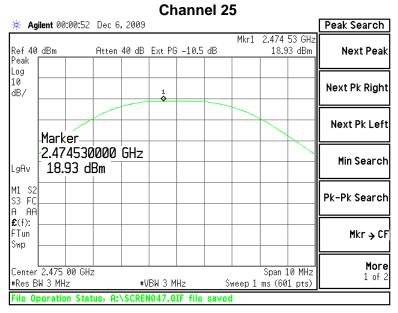
Test Equipment	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	Agilent	E4446A	US45300564	9kHz-44GHz

9.3 Test Data


CHANNEL	CENTER FREQ (MHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)
11	2405	+30 dBm	28.9	1.1
18	2440	+30 dBm	28.8	1.3
24	2470	+30 dBm	28.5	1.6
25	2475	+30 dBm	18.9	11.1


Rated RF power output (in watts): 1 W Measured RF Power Output (in Watts): 0.776 W


Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 38 of 54


9.4 Screen Captures – Power Output (Conducted)

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 39 of 54

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 40 of 54

EXHIBIT 10. POWER SPECTRAL DENSITY: 15.247(e)

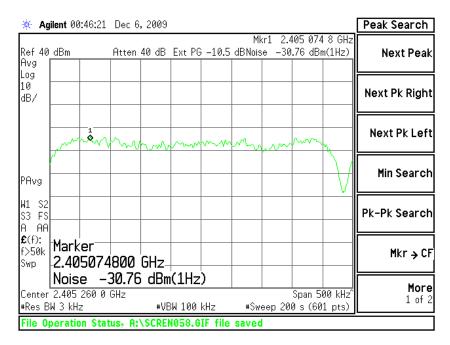
10.1 Limits

For digitally modulate systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e), the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings performed as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed using the noise marker utility built into the Agilent Analyzer. The noise marker measurement allows for noise cancelation with a bandwidth of 1 Hz to be read, and the resultant density was then corrected to a 3 kHz bandwidth using a software function of the Agilent spectrum analyzer. The highest density was found to be no greater than 4.04 dBm, which is under the allowable limit by 3.96 dB.

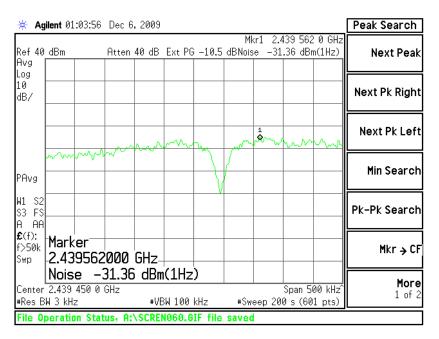
Type equation here.

10.2 Test Equipment List

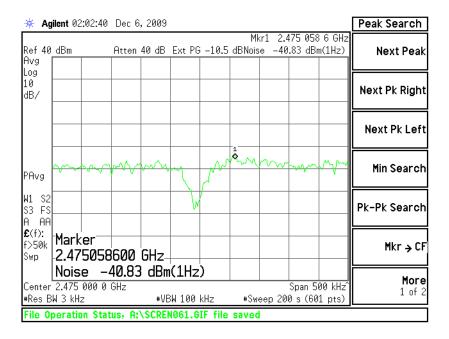

Test Equipment	Manufacturer	Model No.	Serial No.
Spectrum Analyzer	Agilent	E4446A	US45300564

10.3 Test Data

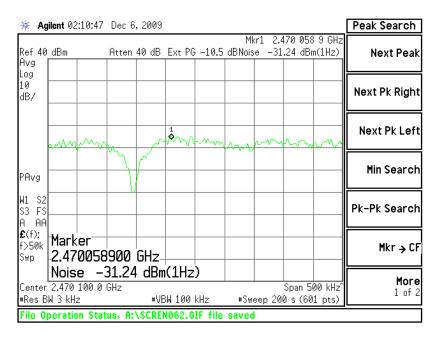
Transmitter Channel	Frequency (MHz)	RF Power Level In 3 kHz BW (dBm/3 kHz)	Limit (dBm/3 kHz)	Margin (dB)	Comments Pass/Fail
Lowest	2405	4.04	8.0	3.96	Pass
Middle	2440	3.44	8.0	4.56	Pass
Highest Channel Utilizing Full Power	2470	3.56	8.0	4.44	Pass
Highest Channel Available at Reduced Power	2475	-6.03	8.0	14.03	Pass


Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 41 of 54

10.4 Screen Captures – Power Spectral Density


Channel 11

Channel 18



Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 42 of 54

Channel 24

Channel 25

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 43 of 54

EXHIBIT 11. SPURIOUS RADIATED EMISSIONS: 15.247(d)

11.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at lease 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

In addition, radiated emissions, which fall in the restricted band, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(e)

Remarks:

- Applies to harmonics/spurious emissions that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209.
- The emission limits as specified above are based on measurement instrument employing an average detector. The provisions in Section 15.35 for limiting peak emissions apply.

		Sunoted Frequency Bun	40
MHz	MHz	MHz	GHz
0.090 - 0.110	162.0125 – 167.17	2310 – 2390	9.3 – 9.5
0.49 - 0.51	167.72 – 173.2	2483.5 – 2500	10.6 – 12.7
2.1735 – 2.1905	240 – 285	2655 – 2900	13.25 – 13.4
8.362 - 8.366	322 – 335.4	3260 - 3267	14.47 – 14.5
13.36 – 13.41	399.9 – 410	3332 – 3339	14.35 – 16.2
25.5 - 25.67	608 – 614	3345.8 – 3358	17.7 – 21.4
37.5 – 38.25	960 – 1240	3600 – 4400	22.01 – 23.12
73 – 75.4	1300 – 1427	4500 – 5250	23.6 - 24.0
108 – 121.94	1435 – 1626.5	5350 – 5460	31.2 – 31.8
123 – 138	1660 – 1710	7250 – 7750	36.43 - 36.5
149.9 – 150.05	1718.8 – 1722.2	8025 – 8500	Above 38.6
156.7 – 156.9	2200 – 2300	9000 – 9200	

FCC 47 CFR 15.205(a) – Restricted Frequency Bands

FCC 47 CFR 15.209(a) Field Strength Limits within Restricted Frequency Bands

Frequency	Field Strength Limits	Distance				
(MHz)	(microvolts/m)	(Meters)				
0.009 - 0.490	2,400 / F (kHz)	300				
0.490 – 1.705	24,000 / F (kHz)	30				
1.705 – 30.0	30	30				
30 - 88	100	3				
88 – 216	150	3				
216 – 960	200	3				
Above 960	500	3				

Calculation of Radiated Emission Measurements

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-25,000	500	54.0	63.5

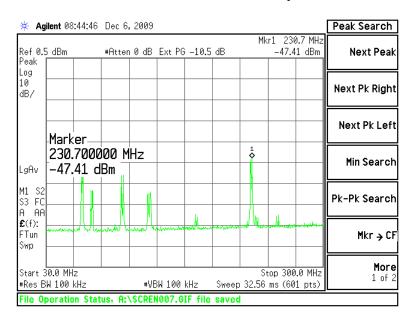
Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 44 of 54

FCC Part 15.247(d) requires a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, there by allowing direct readings of the measurements made without the need for any further corrections. An Agilent model E4445 spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

No significant emissions could be noted within at least -50 dBc of the fundamental level for this product.

Freq\Chan	11	18	24	25
fo	28.9	28.8	28.4	18.9
2fo	-56.6	-59.8	-59.9	-78.3
3fo	-73.5	-70.6	-67.6	-77.1
4fo	NF	NF	NF	NF
5fo	-74.5	-72.4	-72.0	-75.2
6fo	-64.6	-67.6	-67.3	NF
7fo	-71.5	-71.1	NF	NF
8fo	NF	NF	NF	NF
9fo	NF	NF	NF	NF
10fo	NF	NF	NF	NF

Notes:


(1) Measurement at system noise floor.

11.2 Test Equipment List

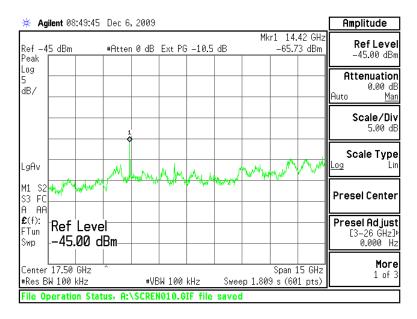
Test Equipment	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	Agilent	E4446A	US45300564	9 kHzTo 44 GHz

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 45 of 54

11.3 Screen Captures – Spurious Radiated Emissions

Channel 11, shown from 30 MHz up to 300 MHz

Channel 11, shown from 300 MHz up to 1000 MHz


🔆 Agilent 08:	45:52 Dec 6	2009			-	[Trace
Ref 0.5 dBm Peak	Atten	10 dB Ext F	°G −10.5 dB	Mk	r1 444. -34.86	.7 MHz 3 dBm 1	Trace
Log 10 dB/							Clear Write
Mark	er						Max Hold
	700000 <u>M</u> 86 dBm	Hz				_	Min Hold
	many herdere	n Marian Marina	montanamente	unt mundle	manningh	whencert	View
£(f): FTun Swp							Blank
Start 300.0 MH #Res BW 100 k		#VBW 10	0 kHz Sm	Stop Stop eep 84.44) 1.000 ms (601		More 1 of 2
File Operation	n Status, A:`	SCREN008.	GIF file sa	ved			

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 46 of 54

Channel 11, shown from 1000 MHz up to 10000 MHz

Channel 11, shown from 10000 MHz up to 25000 MHz

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 47 of 54

EXHIBIT 12. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

The stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the transmitter portion of the EUT was placed in CW continuous transmit mode. Power was supplied by an external bench-type variable power supply, and the frequency of operation was monitored using the spectrum analyzer.

In this case, the EUT uses a DC bench supply, with a nominal voltage of 3.3 VDC. The range of supply voltage tested is 2.8 VDC to 3.8 VDC.

A spectrum analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was placed in continuous transmit CW mode. Power to the EUT was supplied by an external bench-type variable power supply. The frequency of operation was monitored using the spectrum analyzer with RBW=VBW=1 kHz settings while the voltage was varied. The RF Power Output of the EUT was also monitored in a separate test, also using a Spectrum Analyzer with RBW=VBW=3 MHz setting while the voltage was varied. The result of each test is below.

	2.8VDC		3.3VDC		3.8VDC	
Power	Frequency	Power	Frequency	Power	Frequency	Channel
18.30	2474470000	18.76	2474500000	18.69	2474530000	25
27.46	2469470000	28.39	2469430000	29.26	2469470000	24
27.83	2439500000	28.80	2439500000	29.65	2439500000	18
28.02	2404430000	29.00	2404430000	29.60	2404470000	11

No anomalies were noted, in the measured transmit power, varying less than 2 dB for full power operation (channels 11, 18, 24), and less than 1 dB for reduced power measurements (channel 25), during the voltage variation tests.

No anomalies were noted, in the measured transmit power, varying less than 2 dB, during the voltage variation tests.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 48 of 54

EXHIBIT 13. MPE CALCULATIONS

The following MPE calculations are based on a M printed circuit board trace antenna, with a measured ERP of 131.73 dB μ V/m, at 3 meters, and conducted RF power of +29.8 dBm as presented to the antenna. The calculated gain of this antenna, based on the ERP measurements is 4.6 dB.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

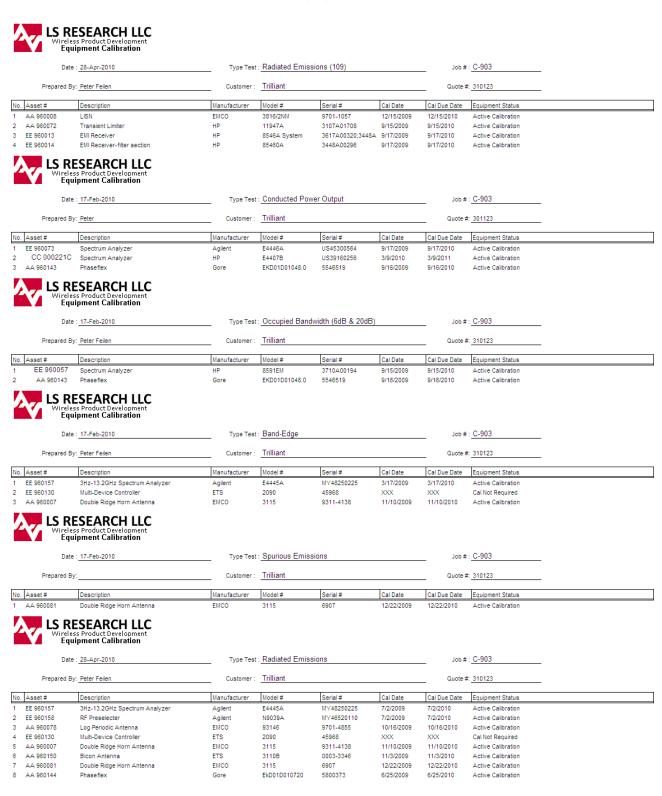
where: S = power density

- P = power input to the antenna
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: 28.9 (dBm) Maximum peak output power at antenna input terminal: 776.25 (mW) Antenna Gain (typical): 4.6 (dBi) Maximum Antenna Gain: 2.884 (numeric) Prediction Distance: 20 (cm) Prediction Frequency: 2405 (MHz) MPE Limit for uncontrolled exposure at prediction frequency: 1 (mW/cm^2)

Power density at prediction frequency: 0.445379 (mW/cm^2)


Maximum allowable antenna gain: 8.1 (dBi)

Margin of Compliance at 20 cm = 3.5 (dBi)

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 49 of 54

APPENDIX A

Test Equipment List

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 50 of 54

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 12	2007-05		
CISPR 14-1	2005-11	2008-11	
CISPR 14-2	2001-11	2001-11	2008-05
CISPR 16-1-1 Note 1	2010-01		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2007-05		
EN 55014-1	2006		
EN 55014-2	1997		
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05		
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05		
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4	2007-02		
FCC 47 CFR, Parts 0-15, 18, 90, 95 FCC Public Notice DA 00-	2008		
1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 003	2004-02		
IEC 60601-1-2 Note 1	2007-03		
IEC 61000-3-2	2005-11	2008-03	2009-02
IEC 61000-3-3	2008-06		
IEC 61000-4-2	2008-12		
IEC 61000-4-3	2008-04	incl in 2008-04	2009-12 FD

APPENDIX B	
TEST STANDARDS – CURRENT PUBLICATION DATES RADIO	

1		
2004-07	2010-10	
2005-11		
2008-10		
2009-09		
2004-03		
2005-03		
2006-06		
1998-07		
1999-08		
2007-06		
2007-06		
1999-11		
2000-03		
2003-07		
2002-10		
2009-02		
2007-06		
2005-12		
2005-11		
2007-06		
		1
	2008-10 2009-09 2004-03 2005-03 2006-06 1998-07 1999-08 2007-06 2007-06 1999-11 2000-03 2003-07 2002-10 2009-02 2007-06 2005-12 2005-11	2008-10 2009-09 2004-03 2005-03 2006-06 1998-07 1999-08 2007-06 2007-06 1999-11 2000-03 2003-07 2009-02 2007-06 2002-10 2009-02 2007-06 2005-12 2005-11

 Note 1: Test not on LSR Scope of Accreditation.

 Updated on 02-03-10

 P=Project
 FD= Final Draft

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 51 of 54

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 52 of 54

Appendix D

Justification of Average Duty Factor Calculations

Trilliant

Trilliant 1 Watt SecureMesh Radio Module Relaxation Factor

August 9, 2009

The Trilliant SecureMesh 1 Watt Radio Module will not transmit for more than 4.35ms over a 43.5ms time period. The justification is based upon the following conditions:

- 1) Transmit packet size 131 bytes maximum, for 4.19ms transmission duration.
- 2) Data rate 250kbps.
- 3) Each radio waits for acknowledgement prior to retransmission.
- 4) Acknowledgement is 5 bytes, or 0.16ms transmission duration.
- 5) Maximum number of hops per mesh network is 10.

Documentation is justified as below:

Example 1 – Trilliant SecureMesh Network – Source to Destination Requires Ten Hops

Typical broadcast over a large network (10 radios) includes:

A) Message is transmitted by the initiating radio (first hop). Total transmit time is 4.19ms.

B) Transmission time to the destination radio (10th hop- assuming no retries), requires an additional 37.71ms.

C) Acknowledgement from destination radio to initiating radio requires 1.6 ms, assuming no retries.

Large network, No Retries

Transmit time: 4.19ms

Total on time: 43.5ms

Total on time per radio (Tx packet plus Ack Packet): 4.35ms Total percentage on time per radio/best case: 10.00 per cent

Note: The Large Network, No Retries offers the highest utilization. A ten-hop mesh network will typically require retries which reduce the throughput of the system. Retries will effectively reduce the duty cycle of the radios.

Network Topology

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 53 of 54

Average (Relaxation) Factor

Average Factor = 20^* Log_{10} (Worst Case EUT On-time over 100 ms time window)

The transmit packet occupies 4.35ms X 2 = 8.7 ms of time, within any 100 ms window. Therefore, the relaxation factor allowance is calculated as:

Average Factor = 20* Log₁₀ (8.7 / 100 ms) = -21.2 dB

A relaxation factor of allowable dB would be allowable for this product.

Prepared For:Trilliant	EUT: SecureMesh High Efficiency I210+cRD	LS Research, LLC
Report # 310123	Model #: RES-3000-I210	Template: 15.109 Class B DTS RX 10-22-09
LSR Job #: C-903	Serial #: NDEB0000022	Page 54 of 54