RF TEST REPORT

Report No.: RF_FCC_IC_SL19011103-SEV-111R2_DTS Supersede Report No.:

Applicant	:	Trilliant Networks, Inc.
Product Name	:	SecureMesh Wan Connector
Model No.	:	CONN-2000
Test Standard		47 CFR 15.247
Test Standard	•	RSS 247 Iss 2: Feb 2017
		ANSI C63.10:2013
Test Method	:	RSS Gen Iss 5: April 2018
		558074 D01 15.247 Meas Guidance v05r01
FCC ID	:	TMB-CONN2000
IC	•••	6028A-CONN2000
Dates of test	:	02/25/2019 - 03/22/2019
Issue Date	•••	03/22/2019
Test Result	:	🖾 Pass 🛛 🗆 Fail
Equipment complied with the specification [X]		
Equipment did not comply with the spec	ifica	ition []

This Test Report is Issued Under the Authority of:	
Grang Chou	\mathcal{C}
Gary Chou	Chen Ge
Test Engineer	Engineer Reviewer

Issued By: SIEMIC Laboratories 775 Montague Expressway, Milpitas, 95035 CA

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for comonnity Assessment		
Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA, NIST	RF/Wireless, Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom, Safety
Israel	MOC, NIST	EMC, RF, Telecom, Safety

Accreditations for Conformity Assessment

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & RED
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

CONTENTS

1	RE	PORT REVISION HISTORY	4
2	EX	ECUTIVE SUMMARY	5
3	CU	STOMER INFORMATION	5
4	TE	ST SITE INFORMATION	5
5	MC	DIFICATION	5
6	EU	T INFORMATION	6
6	5.1	EUT Description	6
6	5.2	Radio Description	6
7	SU	PPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	7
7	'.1	Supporting Equipment	7
7	.2	Cabling Description	7
7	.3	Test Software Description	7
8	TE	ST SUMMARY	8
9	ME	ASUREMENT UNCERTAINTY	9
9).1	Emissions (30MHz to 1GHz)	9
9	.2	Radiated Emissions (1GHz to 40GHz)	9
9	.3	RF conducted measurement1	0
10		MEASUREMENTS, EXAMINATION AND DERIVED RESULTS1	1
1	0.1	Antenna Requirement1	1
1	0.2	Radiated Spurious Emissions in restricted band	2
1	0.3	Radiated Spurious Emissions below 1GHz1	
1	0.4	Radiated Spurious Emissions between 1GHz – 25GHz1	
	0.5	Receiver Spurious Emissions	
AN	NEX	A. TEST INSTRUMENT2	6
AN	NEX	B. SIEMIC ACCREDITATION2	7

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	4 of 28

1 **Report Revision History**

Report No.	Report Version	Description	Issue Date
RF_FCC_IC_SL19011103-SEV-111R2_DTS	None	Original	03/22/2019

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	5 of 28

2 Executive Summary

The purpose of this test program was to demonstrate compliance of following product

Company:	Trilliant Networks, Inc.
Product:	SecureMesh WAN Connector
Model:	CONN-2000

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page. This report is issued as a supplementary report to the original DTS report under FCC ID: 2AC7Z-ESPWROOM02, report no.: RXA1503-0042RF01R1 / IC: 21098-ESPWROOM02, report no.: RKS160204001-00A. Radiated Spurious Emission was retested for the module integration in host device CONN-2000. The module ESPWROOM02 remains unchanged from the original filing.

3 Customer information

FCC Applicant Name	Trilliant Networks
FCC Applicant Address	401 Harrison Oaks Blvd., Suite 300 Cary, NC 27513 USA
Manufacturer Name	Trilliant Networks
Manufacturer Address	401 Harrison Oaks Blvd., Suite 300 Cary, NC 27513 USA

IC Applicant Name	Trilliant Networks, Inc.
IC Applicant Address	610Rue Du Luxembourg Street, Granby QC J2J 2V2 Canada
Manufacturer Name	Trilliant Networks, Inc.
Manufacturer Address	610Rue Du Luxembourg Street, Granby QC J2J 2V2 Canada

4 Test site information

Lab performing tests	SIEMIC Laboratories
Lab Address	775 Montague Expressway, Milpitas, CA 95035
FCC Test Site No.	540430
IC Test Site No.	4842D
VCCI Test Site No.	A0133

5 Modification

Index	ltem	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	6 of 28

6 **EUT Information**

6.1 EUT Description

Product Name	SecureMesh Wan Connector
Model No.	CONN-2000
Trade Name	Trilliant
Serial No.	FC0000002
Input Power	48VDC (PoE)
Date of EUT received	02/06/2019
Equipment Class/ Category	DTS
Port/Connectors	PoE, Ethernet

6.2 Radio Description

Radio Type	802.11b	802.11g	802.11n-20M				
Operating Frequency	2412-2462MHz	2412-2462MHz	2412-2462MHz				
Modulation	DSSS (CCK, DQPSK, DBPSK)	OFDM-CCK (BPSK, QPSK, 16QAM, 64QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM)				
Channel Spacing	5MHz	5MHz	5MHz				
Number of Channels	11	11	11				
Antenna Type		PCB Antenna					
Antenna Gain (Peak)		2 dBi					
Antenna Connector Type		N/A					
Note		N/A					

EUT Power level setting

Mode	Frequency (MHz)	Power setting
802.11-b	2412	Default
802.11-b	2437	Default
802.11-b	2462	Default
802.11-g	2412	Default
802.11-g	2437	Default
802.11-g	2462	Default
802.11-n-20	2412	Default
802.11-n-20	2437	Default
802.11-n-20	2462	Default

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

7 <u>Supporting Equipment/Software and cabling Description</u>

7.1 Supporting Equipment

ltem	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	N17Q1	NXGNPAA0167300AA597600	Acer	N/A
2	POE Adapter	740-64214-001	N/A	Ruckus	-

7.2 Cabling Description

Name	Connecti	Connection Start		Connection Stop		Length / shielding Info	
Name	From	I/O Port	То	I/O Port	Length (m)	Shielding	Note
1	EUT	RJ45	POE	RJ45	10	N/A	-
2	POE	RJ45	Laptop	RJ45	1	N/A	-

7.3 Test Software Description

Test Item	Software	Description	
RF Testing	Putty	Set the EUT to transmit continuously in diferent test mode	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

)+

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	8 of 28

Test Summary 8

Test Item	Test standard		Test Method/Procedure	Pass / Fail
Antenna Requirement	FCC	15.203	ANSI C63.10 - 2013	⊠ Pass
	IC	-	558074 D01 15.247 Meas. Guidance v05	□ N/A
AC Conducted Emissions Voltage	FCC	15.207	ANSI C63.10 - 2013	⊠ Pass*
	IC	RSS Gen	RSS Gen	□ N/A

DTS Band Requirement

Te	st Item		Test standard		Test Method/Procedure		
	99% Occupied Bandwidth		-	-	-	⊠ Pass*	
		IC	RSS Gen 6.6	IC	RSS Gen Issue 5: 2018	□ N/A	
6dB Bandwidth		FCC	15.247(a)(2)	FCC	558074 D01 15.247 Meas Guidance v05r01	⊠ Pass*	
UUD I	Banamatr	IC	RSS247 (5.2.1)	IC		□ N/A	
	e and Radiated	FCC	15.247(d)	FCC	ANSI C63.10:2013	⊠ Pass	
Spuriou	s Emissions	IC	RSS247 (5.5)	IC	558074 D01 15.247 Meas Guidance v05r01	□ N/A	
Output Power		FCC	15.247(b)	FCC	558074 D01 15.247 Meas Guidance v05r01	⊠ Pass*	
		IC	RSS247 (5.4.4)	IC	550074 D01 15.247 Weas Guidance V05101	□ N/A	
Receiver Spurious Emissions		IC	RSS Gen (4.8)	IC	RSS Gen Issue 5: 2018	⊠ Pass □ N/A	
Antenna Gain > 6 dBi		FCC	15.247(e)	FCC	-	□ Pass	
Antenna	Gain > 6 dBi	IC	-	IC	-	🖾 N/A	
Power Sp	ectral Density	FCC	15.247(e)	FCC	558074 D01 15.247 Meas Guidance v05r01	⊠ Pass*	
Fower Sp	ectial Density	IC	RSS247 (5.2.2)	IC	556074 D01 15.247 Weas Guidance V05101	□ N/A	
		FCC	15.247(i)	FCC	-	⊠ Pass	
RF Exposu	ire requirement	IC	RSS Gen(5.5)	IC	RSS Gen Issue 5: 2018	□ N/A	
Remark	 All measurement uncertainties do not take into consideration for all presented test results. The applicant shall ensure frequency stability by showing that an emission is maintained within the band of operation under all normal operating conditions as specified in the user's manual. Pass*: Please refer to FCC and IC report FCC ID: 2AC7Z-ESPWROOM02, report no.: RXA1503-0042RF01R1 						

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at:

IC: 21098-ESPWROOM02, report no.: RKS160204001-00A

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	9 of 28

9 Measurement Uncertainty

9.1 Emissions (30MHz to 1GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- NSA Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Filter Insertion Loss	0.25	Normal	2	1	0.125
Antenna Factor	0.65	Normal	2	1	0.325
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.86605081
PRF Response	1.5	Rectangular	1.732	1	0.86605081
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
NSA Calibration	4.0	U-Shape	1.414	1	2.8288543
Combined Standard Uncertain	ty				3.0059131
Expanded Uncertainty (K=2)					6.0118262

The total derived measurement uncertainty is +/- 6.00 dB.

9.2 Radiated Emissions (1GHz to 40GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- VSWR Calibration
- Etc., details see the below table

Source of Uncertainty	Value	Probability	Division	Sensitivity	Expanded
	(dB)	Distribution	DIVISION	Coefficient	Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.0692840
Cable Insertion Loss	0.21	Normal	2	1	0.1050000
Filter Insertion Loss	0.25	Normal	2	1	0.1250000
Antenna Factor	0.65	Normal	2	1	0.3250000
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.8660508
PRF Response	1.5	Rectangular	1.732	1	0.8660508
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
VSWR Calibration	2.0	U-Shape	1.414	1	1.4144272
Combined Standard Uncertain	ity				4.2363
Expanded Uncertainty (K=2)					8.4726

The total derived measurement uncertainty is +/- 8.47 dB.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

9.3 RF conducted measurement

The test is to measure the RF output power from the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the Reference Level Uncertainty
- Uncertainty of variable attenuators
- Uncertainty of cables
- Uncertainty due to the mismatches

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Reference Level	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Attenuator	0.25	Normal	2	1	0.125
Mismatch	0.25	U-Shape	1.414	1	0.1768033
Combined Standard Unce	rtainty				0.476087
Expanded Uncertainty (I	K=2)				0.952174

The total derived measurement uncertainty is +/- 0.95 dB.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

10 Measurements, Examination and Derived Results

10.1 Antenna Requirement

Spec	Requirement	Applicable
§15.203	 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna requirement must meet at least one of the following: a) Antenna must be permanently attached to the device. b) Antenna must use a unique type of connector to attach to the device. c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device. 	
Remark	Antenna is integrated PCB Antenna. Antenna must be permanently attached to the device.	
Result	🖾 PASS 🗆 FAIL	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 in

)+

-

10.2 Radiated Spurious Emissions in restricted band

Requirement(s):

Spec	Item Requirement	Applicable
47CFR§15.247(d), RSS247(A8.5)	 a) For non-restricted band, In any 100 kHz bandwidth outside the frequency band which the spread spectrum or digitally modulated intentional radiator is operating the radio frequency power that is produced by the intentional radiator shall be a least 20 dB or 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, determined by the measurement method on output power to be used. Attenuation below the general limits specified in § 15.209(a) is not required 20 dB down 30 dB down 	g, 🛛
	b) or restricted band, emission must also comply with the radiated emission limits specified in 15.209	
Test Setup	Semi Anechoic Chamber Radio Absorbing Material	Spectrum Analyzer
Procedure	 The EUT was switched on and allowed to warm up to its normal operating conditi The test was carried out at the selected frequency points obtained from the EUT of Maximization of the emissions, was carried out by rotating the EUT, changing the and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emistic. Finally, the antenna height was adjusted to the height that gave the ma An average measurement was then made for that frequency point. Steps 2 and 3 were repeated for the next frequency point, until all selected freque measured. 	haracterisation. antenna polarizatio evel over a full sion. imum emission.
Remark	The EUT was scanned up to 40GHz. Both horizontal and vertical polarities were investigat show only the worst case.	ted. The results
Result	⊠ Pass □ Fail	
Test Data □ Yes (S Test Plot ⊠ Yes (S Test was done by G		
775 Montague	e Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 5 Visit us at: www.siemic.com; Follow us at:	26 1088

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	13 of 28

Restricted Band Measurement Plots:

¢ + EVSIGHT Avg[Hold >100 Trig: Free Run 2.390 00 GI 50.261 dB Ref Level 86.99 dBµV Div 10 dB Trace 1 Pass Trace 2 Pass +CF #Video BW 3.0 MHz* art 2.31000 GHz tes BW (CISPR) 1 MHz Stop 2.39000 GHz pp 100 ms (1601 pts) On 61.62 dBµV 50.26 dBµV 2.389 60 GHz .:: 💸 ∎ " ⊂ ■ ? X 802.11b-2412MHz Ö KEYSIGHT Avg|Holo Tria: Fre Ref Level 86.99 Trace 1 Pass Trace 2 Pass 12 #Video BW 3.0 MHz Stop 2.500000 GHz p 1.07 ms (1601 pts On 64.05 dB **∜**りペ∎? 802.11b-2462MHz

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 in

σ+

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	14 of 28

ectrum Analyzer 1 rept SA											Marke	er v 🗦
Align Auto	Input Z 50 0 Corrections: On Freq Ref. Int (S) NFE: Adaptive	#Atten: 0 dB µW Path: Standa Source: Off	PNO Fast rd Gate Off IF Gain High Sig Track Off	Avg Type Power (RMS) Avg[Hold > 100/100 Trig: Free Run	1 M P		3 ₩ ₽	4 ₩ ₽	5 ₩ ₽	6 ₩ ₽	Select Marker Marker 1	
PASS spectrum	NEE Adaptive		sig mack off		К			ĸ		2.389 75 GHz	Marker Frequency 2.389750000 GHz	Settings
ale/Div 10 dB				Ref Level 86.99 dBp	v					70.91 dBµV	Peak Search	Peak Search
¹⁹ Irace 1 Pass Trace 2 Pass										1	Next Peak	Pk Searc Config
										enennensisteristeren	Next Pk Right	Propertie
0	an real marine of	derverand with mat	han an hair an	and a recomposite of the Article Articles and the	eden an drage	asser and velocing		47-89-0-10 CB-0404/19	dsponentials	2/	Next Pk Left	Marker
.0												
											Minimum Peak Pk-Pk Search	Marker-
												Counter
											Marker Delta	
											Mkr→CF	
at 2 24000 CH2				#Video BW 3.0 MHz						Stop 2 20000 CH	MkrRef Lvi	
art 2.31000 GHz es BW (CISPR) 1 MHz				#VIGEO BW 3.0 MHZ					#Sweep	Stop 2.39000 GHz p 100 ms (1601 pts)	Continuous Peak Search On	
Marker Table V Mode Trace Scale	x				ction	Function	14.0.00		Function	14.6	On Off	
1 N 1 f	~	2.389 75 2.390 00	SHz SHz	70.91 dBµV 49.28 dBµV	caon	runcuun	widin	_	runeach	value		
3												
5												
4 5 6 7 8 9 10 11												
10												
12												
										N - X		
ectrum Analyzer 1 ept SA	Sp	ectrum Analyze ept SA	12	Spectrum Ana Swept SA	-	12MHz	+				C Marke	r •
ectrum Analyzer 1 ept 3A EYSIGHT Input RF Coopening DC Coopening DC	Sp	ectrum Analyze ept SA #Atten 0 dB µW Path: Standa Source: Off	12 PNO: Best Wide Gate Off IF Gain: High	Spectrum Ana Swept SA	ilyzer 3 1 M] 2 A	+ 3 W	4 ₩	5	6 W	Marker Select Marker Marker 1	r •
ectrum Analyzer 1 ept SA EYSIGHT Input RF	Sp	ectrum Analyze ept SA #Atten: 0 dB µW Path: Standa Source: Off	72 PNO: Best Wide rd Gate: Off IF Gain: High Sig Track Off		ilyzer 3	2	+		5 ₩ ₽	6 W P 2.483 933 GHz	Select Marker Marker 1 Marker Frequency	er •
ectrum Analyzer 1 ept 5A EYSIGHT Input BF Coopleg: DC PASS Spactrum encDy 10 dB	Sp	ectrum Analyze ept SA #Atten: 0 dB wW Path: Standa Source: Off	2 PNO Best Wide di Gate Off IF Gan High Sig Track Off	Spectrum Ana Swept SA	Ilyzer 3 1 M P] 2 A	+ 3 W		5 ₩ ₽	6 ₩ ₽	Select Marker Marker 1 Marker Frequency 2.483933125 GHz	_
ectrum Analyzer 1 ept SA EVSIGHT Input RF Cooping DC PASS poctum alexDev 10 dB 9 1 race 1 Pass 0 race 1 Pass	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	Ilyzer 3 1 M P] 2 A	+ 3 W		5 ₩ ₽	о ук 2.483 933 GHz	Select Marker Marker 1 Marker Frequency 2.483933125 GHz Peak Search	Settings Peak Search
ectrum Analyzer 1 ept SA EVSIGHT Input RF Cooping DC PASS poctum alexDev 10 dB 9 1 race 1 Pass 0 race 1 Pass	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	llyzer 3 1 M P] 2 A A	н 3 У Р	₩ ₽	5 ₩ ₽	е ук 2.483 933 GHz	Select Marker Marker 1 Marker Frequency 2.483933125 GHz Peak Search Next Peak	Settings Peak Search Pk Searc Config
ectrum Analyzer 1 ept 5A EYSIGHT Input BF Coopleg: DC PASS Spactrum encDy 10 dB	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	llyzer 3 1 M P] 2 A	н 3 У Р	₩ ₽	5 ₩ ₽	е у 2.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker Frequency 2.439933125 GHz Peak Search Next Peak Next Pk Right	Settings Peak Search Pk Searc Config Propertie
ectrum Analyzer 1 ept SA VSIGHT Ingel: RF VSIGHT Ingel: RF VALUE AND PASS Sectors ale/Dev 10 dB	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	llyzer 3 1 M P] 2 A A	н 3 У Р	₩ ₽	s w P Mkr1 2	е у 2.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker Frequency 2.483933125 GHz Peak Search Next Peak Next Pk Right Next Pk Left	Settings Peak Search Pk Searc Config Propertie Marker Function
ectrum Analyzer 1 ept SA VSIGHT Ingel: RF VSIGHT Ingel: RF VALUE AND PASS Sectors ale/Dev 10 dB	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	llyzer 3 1 M P] 2 A A	н 3 У Р	₩ ₽	s w P Mkr1 2	е у 2.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker Frequency 2.43333125 GHz Peak Search Next Peak Next Pk Left Minimum Peak	Settings Peak Search Pk Searc Config Propertie Marker Function Marker
ectrum Analyzer 1 ept SA VSIGHT Ingel: RF VSIGHT Ingel: RF VALUE AND PASS Sectors ale/Dev 10 dB	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	llyzer 3 1 M P] 2 A A	н 3 У Р	₩ ₽	s w P Mkr1 2	е у 2.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker 1 Marker 1 Marke Prequency 246393125 GHz Peak Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search	Settings Peak Search Pk Searc Config Propertie Marker Function
ectrum Analyzer 1 ept SA VSIGHT Ingel: RF VSIGHT Ingel: RF VALUE AND PASS Sectors ale/Dev 10 dB	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	llyzer 3 1 M P] 2 A A	н 3 У Р	₩ ₽	s w P Mkr1 2	е у 2.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker 1 Marker Frequency 243333125 GHz Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Right Minimum Peak Pk-Pk Search Marker Delta	Settings Seach Pk Searc Config Propertie Marker Marker
ectrum Analyzer 1 ept SA VSIGHT Ingel: RF VSIGHT Ingel: RF VALUE AND PASS Sectors ale/Dev 10 dB	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	llyzer 3 1 M P] 2 A A	н 3 У Р	₩ ₽	s w P Mkr1 2	е у 2.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker Frequency 483933125 GHz Peak Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta Mar-uCF	Settings Peak Search Pk Searc Config Propertie Marker Function Marker
etruce Analyzer 1 provide a start of the st	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum An Swept SA Avg Type: Power (RMS) AvgHod: >100/100 Ting: Free Run Ref Level 86.99 dBpt	hyzer 3 1 M p V] 2 A A	н 3 У Р	₩ ₽	5 W P Mkr1 2	с.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker Frequency 243333125 GHz Peak Search Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MirCF	Settings Peak Search Pk Searc Config Propertie Marker Function Marker
ectrum Analyzer 1 ept SA Comparison of the Comparison of the Com	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PNO: Best Wide rd Gate Off IF Gam: High Sig Track Off	Spectrum And Swept SA Aug Type Tower (2015) Aug Hold -> 100 100 Traj Free Run Ref Level 86.99 dBpf	hyzer 3 1 M p V] 2 A A	н 3 У Р	₩ ₽	5 W P Mkr1 2	е у 2.483 933 GHz 71.57 dBµV	Select Marker Marker 1 Marker 1 Marker 1 Resk Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MirCF MirCF MirCF	Settings Peak Search Pk Searc Config Propertie Marker Function Marker
ectrum Analyzer 1 settum Analyzer 1 settum Analyzer 1 SPS CALL Settum Analyzer 1 Settum Analyzer 1 Setum Analyzer 1 Settum Analyzer 1 Setum Analyzer 1	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	MAtter: 0 dB	PND Deed Wilde Goale Of IF Cann Fagin Sig Tinck Of	Spectrum And Swept SA Aug Iyber Fower (RAIS) Aug Ised - 100/100 Trag Free Rain Ref Level 86.99 dBpf MMM/McA. Aug Iph MAR Spectrum And Brideo BW 3.0 MHz	Hyzer 3 1 P V] 2 A A		₩ ₽	5 W P Mkr1 2	у р 2.483 933 GHz 71.57 dBµV 71.57 dBµV 5100 2.500000 GHz 1.07 ms (1601 pts)	Select Marker Marker 1 Marker Frequency 243333125 GHz Peak Search Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MirCF	Settings Seach Pk Searc Config Propertie Marker Marker
ectrum Analyzer 1 ept SA Sector Analyzer 1 Expression Sign Auto PASS Sector Analyzer 1 Sign Auto Sign Au	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	#Atten:0dB µW Path Standa Source:Off	PND Deed Wilde Goale Of IF Cann Fagin Sig Tinck Of	Spectrum And Swept SA Aug Hyper Dever (PAHS) Aug Head - 100 100 Trag: Free Run Ref Level 86.99 dBpf	Hyzer 3 1 P V			₩ ₽	Sweep	у р 2.483 933 GHz 71.57 dBµV 71.57 dBµV 5100 2.500000 GHz 1.07 ms (1601 pts)	Select Marker Marker 1 Marker 1 Marker 1 Resk Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MarCF MirRef Lut Continuous Peak Search	Settings Peak Search Pk Searc Config Propertie Marker Marker
Contract Analyzer 1 entract Analyzer 1	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	MAtter: 0 dB	PND Deed Wilde Goale Of IF Cann Fagin Sig Tinck Of	Spectrum And Swept SA Aug Hype Rover (2003) Aug Hold - 1000 100 Tray: Free Run Ref Level 86.99 dBpf	Hyzer 3 1 P V			₩ ₽	Sweep	у р 2.483 933 GHz 71.57 dBµV 71.57 dBµV 5100 2.500000 GHz 1.07 ms (1601 pts)	Select Marker Marker 1 Marker 1 Marker 1 Resk Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MarCF MirRef Lut Continuous Peak Search	Settings Seach Pk Searc Config Propertie Marker Marker
Contract Analyzer 1 entract Analyzer 1	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	MAtter: 0 dB	PND Deed Wilde Goale Of IF Cann Fagin Sig Tinck Of	Spectrum And Swept SA Aug Hype Rover (2003) Aug Hold - 1000 100 Tray: Free Run Ref Level 86.99 dBpf	Hyzer 3 1 P V			₩ ₽	Sweep	у р 2.483 933 GHz 71.57 dBµV 71.57 dBµV 5100 2.500000 GHz 1.07 ms (1601 pts)	Select Marker Marker 1 Marker 1 Marker 1 Resk Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MarCF MirRef Lut Continuous Peak Search	Settings Seach Pk Searc Config Propertie Marker Marker
Contract Analyzer 1 entract Analyzer 1	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	MAtter: 0 dB	PND Deed Wilde Goale Of IF Cann Fagin Sig Tinck Of	Spectrum And Swept SA Aug Hype Rover (2003) Aug Hold - 1000 100 Tray: Free Run Ref Level 86.99 dBpf	Hyzer 3 1 P V			₩ ₽	Sweep	у р 2.483 933 GHz 71.57 dBµV 71.57 dBµV 5100 2.500000 GHz 1.07 ms (1601 pts)	Select Marker Marker 1 Marker 1 Marker 1 Resk Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MarCF MirRef Lut Continuous Peak Search	Settings Seach Pk Searc Config Propertie Marker Marker
ectrum Analyzer 1 ept SA Sector Analyzer 1 Expression Sign Auto PASS Sector Analyzer 1 Sign Auto Sign Au	Input Z: 50 Q Corrections: On Freq Ref: Int (S) NFE: Adaptive	MAtter: 0 dB	PND Deed Wilde Goale Of IF Cann Fagin Sig Tinck Of	Spectrum And Swept SA Aug Hype Rover (2003) Aug Hold - 1000 100 Tray: Free Run Ref Level 86.99 dBpf	Hyzer 3 1 P V			₩ ₽	Sweep	у р 2.483 933 GHz 71.57 dBµV 71.57 dBµV 5100 2.500000 GHz 1.07 ms (1601 pts)	Select Marker Marker 1 Marker 1 Marker 1 Resk Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MarCF MirRef Lut Continuous Peak Search	Settings Peak Search Pk Searc Config Propertie Marker Function Marker
Contract Analyzer 1 entract Analyzer 1	New 2:50 A Corrections On Freq Bot Int (5) NFE: Adaptive	MAtter: 0 dB	PND Deed Wilde Goale Of IF Cann Fagin Sig Tinck Of	Spectrum And Swept SA Aug Hype Rover (2003) Aug Hold - 1000 100 Tray: Free Run Ref Level 86.99 dBpf	Hyzer 3 1 P V			₩ ₽	3 w p Mkr1 2 Sweep Function	у р 2.483 933 GHz 71.57 dBµV 71.57 dBµV 5100 2.500000 GHz 1.07 ms (1601 pts)	Select Marker Marker 1 Marker 1 Marker 1 Resk Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MarCF MirRef Lut Continuous Peak Search	Settings Peak Search Pk Searc Config Propertie Marker Function Marker

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	15 of 28

ectrum Analyzer 1 ept SA	+										🔅 Marke	r • •
EYSIGHT Input RF Coupling DC Align: Auto	Input Z 50 Q # Corrections: On pl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO Fast ard Gate Off IF Gain: High Sig Track: Off	Avg Type: Power (RMS) Avg Hold >100/100 Trig: Free Run) <u>1</u> M			4 ₩ ₽	5 ₩ ₽	6 ₩ ₽	Select Marker Marker 2	
Spectrum V	инь. марти		oig nack oa						Mkr2	2.389 70 GHz	Marker Frequency 2.389700000 GHz	Settings
ale/Div 10 dB				Ref Level 86.99 dl	ΒμV					52.610 dBµV	Peak Search	Peak Search
Trace 1 Pass Trace 2 Pass											Next Peak	Pk Searc Config
										. Isher		Propertie
. O wasand marken with	ener-where the	and march	and the second second	Handerhander Martinetory	- manality with Marine	managene	احمد موجوا هما ومودهم	gent Million on	wellow dance	announdation 2	Next Pk Right	
0				~~~~		****					Next Pk Left	Marker Function
											Minimum Peak	Marker-
											Pk-Pk Search	Counter
											Marker Delta	
											Mkr⊶CF	
											Mkr→Ref Lvl	
es BW (CISPR) 1 MHz				#Video BW 3.0 MI	Hz*				Sweep	Stop 2.39000 GHz 1.07 ms (1601 pts)	Continuous Peak Search	1
ılarker Table 🔹 🔻											On Off	
Mode Trace Scale	x	2.389 90	GH7	Y F 67.05 dBµV	unction	Function	Width		Function	Value		
2 N 2 f		2.389 70	GHz	52.58 dBµV								
4 5												
4 5 6 7 8 9 9 10 11												
9												
11												
∎ ` ⊂ ■ ?	1 6	ίλ.								X X		
actrum Analyzer 1 ept SA	Spe	ctrum Analyze	H 2	Spectrum A Swept SA	Analyzer 3	-2412M	Hz +				🗘 Marke	
sctrum Analyzer 1 sept SA EYSIGHT Input RF Couping DC Couping DC	Spe Swe	Atten: 0 dB	PNO: Best Wide	Spectrum A Swept SA	Analyzer 3	2 A	+ 3 *	4 ₩	5	6 W	Marke Select Marker Marker 2	· •
actrum Analyzer 1 ept SA VSIGHT Input: RF Cooping: DC Align: Auto PASS	Spe Swe	Atten: 0 dB	rf 2 PNO: Best Wide and Gate: Off IF Gain: High Sig Track: Off	Spectrum A Swept SA	Analyzer 3	2	+		Р	р 2.483 510 GHz	Select Marker Marker 2 Marker Frequency	-
ectrum Analyzer 1 ept 3A EYSIGHT Input RF Comparing: DC Align Auto PASS pectrum ale/Div 10 dB	Spe Swe	Atten: 0 dB	PNO: Best Wide	Spectrum A Swept SA	Analyzer 3) 1 M P	2 A	+ 3 *		Р	P	Select Marker Marker 2 Marker Frequency 2.483510313 GHz	Settings Peak Search
ectrum Analyzer 1 ept SA SA SSIGHT Input RF Caping DC Caping DC PASS PASS portunt v sectory 10 dB 9 ↓ Tace 2 Pass ↓ Tace 2 Pass ↓ Tace 3 Pass	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	р 2.483 510 GHz	Select Marker Marker 2 Marker Frequency 2.483510313 GHz Peak Search	Settings Peak Search
ectrum Analyzer 1 ept SA SA SSIGHT Input RF Caping DC Caping DC PASS PASS portunt v sectory 10 dB 9 ↓ Tace 2 Pass ↓ Tace 2 Pass ↓ Tace 3 Pass	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	р 2.483 510 GHz	Select Marker Marker 2 Marker Frequency 2.483510313 GHz Peak Search Next Peak	Settings Peak Search Pk Searc Config
ectrum Analyzer 1 ept SA SA SSIGHT Input RF Caping DC Caping DC PASS PASS portunt v sectory 10 dB 9 ↓ Tace 2 Pass ↓ Tace 2 Pass ↓ Tace 3 Pass	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	р 2.483 510 GHz	Select Marker Marker 2 Marker Frequency 2.493510313 GHz Peak Search Next Peak Next Pk Right	Settings Peak Search Pk Sear Config Propertie
ectrum Analyzer 1 ept 3A EYSIGHT Input RF Comparing: DC Align Auto PASS pectrum ale/Div 10 dB	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	Р 2.483 510 GHz 53.399 dBµV	Select Marker Marker 2 Marker Frequency 2.483510313 GHz Peak Search Next Peak Next Pk Right Next Pk Left	Settings Peak Search Pk Search Pk Search Propertik Marker Function
ectrum Analyzer 1 ept SA SA SSIGHT Input RF Caping DC Caping DC PASS PASS portunt v sectory 10 dB 9 ↓ Tace 2 Pass ↓ Tace 2 Pass ↓ Tace 3 Pass	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	Р 2.483 510 GHz 53.399 dBµV	Select Marker Marker 2 Marker 2 Marker Prequency 2.433510313 GHz Peak Search Next Peak Next Pk Right Next Pk Left Minimum Peak	Settings Peak Search Pk Searc Config Propertie Marker Function
ectrum Analyzer 1 ept SA SA SSIGHT Input RF Caping DC Caping DC PASS PASS portunt v sectory 10 dB 9 ↓ Tace 2 Pass ↓ Tace 2 Pass ↓ Tace 3 Pass	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	Р 2.483 510 GHz 53.399 dBµV	Select Marker Marker 2 Marker Prequency 248331033 GHz Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search	Settings Peak Search Pk Searc Config Propertie Marker Function
echum Analyzer 1 ept SA VSIGHT input RF Capitag DC PASS portum sectum sectum () Trace 1 Pass () Trace 2 Sass _1	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	Р 2.483 510 GHz 53.399 dBµV	Select Marker Marker 2 Marker 7 Frequency 2:48331033 GHz Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Detta	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
echum Analyzer 1 ept SA VSIGHT input RF Capitag DC PASS portum sectum sectum () Trace 1 Pass () Trace 2 Sass _1	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3) 1 M P BµV	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	Р 2.483 510 GHz 53.399 dBµV	Select Marker Marker 2 Marker Frequency 2 493510313 GHz Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Right Next Pk Rearch Minimum Peak Pk-Pk Search Marker Delta MarCF	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
PASS Trace 2 Pass 0 Trace 1	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum Shep 2A Aug tops hop to 1 Aug tops hop to 1 Aug tops hop to 1 Ing Fee Run Ref Level 86.99 df	Analyzer 3	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	р 2.483 510 GHz 53.399 dBµV	Select Marker Marker 2 Marker Friequency 2433510313 OHz Peak Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MorCF MkrRefLvl	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
Algorithm Analyzor 1 and Constraints of the second	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum A Swept SA Avg Type Power (RMS) Avg)Hold - 100/100 Ting: Free Run Ref Level 86.99 dl	Analyzer 3	2 A A	3 ₩ ₽	₩ ₽	P Mkr2 2	Р 2.483 510 GHz 53.399 dBµV	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Sear Config Propertia Marker Marker
Clum Analyzer 1 Constant of the second sec	Speed argent 500 D Gomestows On pu Free Ref Int (S) S NFE Adaptive	Atten: 0 dB W Path: Standa ource: Off	PNO: Best Wide and Gate Off IF Gain: High Sig Track: Off	Spectrum / Snep 3A Augusted flower (883) Augusted flower (883) Trig Fee Rai Ref Level 86.99 df	Analyzer 3 1 1 P ByV ByV	2 A A		₩ ₽	p Mkr2 1	р 2.483 510 GHz 53.399 dBµV 5000 cm2 5000 cm2 1.07 ms (1601 pts)	Select Marker Marker 2 Marker Friequency 2433510313 OHz Peak Search Next Peak Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Deita MorCF MkrRefLvl	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
ection Analyzer 1 erson and analyzer 1 erson a	Spec Size Toput Z: 50 Q # Corrections: On µl Freq Ref. Int (S) S NFE: Adaptive	2.485.408	PRO Deal Web Gale of a Gale of Sig Inack of Sig Inack of	Spectrum / Snep 3A Augusted fromer (883) Trig Free Ran Ref Level 86.99 df Mar John - Augusted from - Frideo EW 3.0 Mi Y Frideo EW 3.0 Mi	Analyzer 3	2 A A		₩ ₽	P Mkr2 2	р 2.483 510 GHz 53.399 dBµV 5000 cm2 5000 cm2 1.07 ms (1601 pts)	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
Control of the second process of the se	Speed argent 500 D Gomestows On pu Free Ref Int (S) S NFE Adaptive	Alter: 0 dB	PRO Deal Web Gale of a Gale of Sig Inack of Sig Inack of	Spectrum // Swept SA. Avg Tayor Power (BAB) Ang Free Ran Ref Level 86.99 df	Analyzer 3 1 1 P ByV ByV	2 A A		₩ ₽	p Mkr2 1	р 2.483 510 GHz 53.399 dBµV 5000 cm2 5000 cm2 1.07 ms (1601 pts)	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Searc Config Propertie Marker Function Marker
Sectors Analyzer 1 Sectors Analyzer 1 Sectors Align Auto PASS 1 Face 2 Pass 1 Face 2 Pass	Speed argent 500 D Gomestows On pu Free Ref Int (S) S NFE Adaptive	2.485.408	PRO Deal Web Gale of a Gale of Sig Inack of Sig Inack of	Spectrum / Snep 3A Augusted fromer (883) Trig Free Ran Ref Level 86.99 df Mar John - Augusted from - Frideo EW 3.0 Mi Y Frideo EW 3.0 Mi	Analyzer 3 1 1 P ByV ByV	2 A A		₩ ₽	p Mkr2 1	р 2.483 510 GHz 53.399 dBµV 5000 cm2 5000 cm2 1.07 ms (1601 pts)	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Searc Config Propertie Marker Function Marker
Sectors Analyzer 1 Sectors Analyzer 1 Sectors Align Auto PASS 1 Face 2 Pass 1 Face 2 Pass	Speed argent 500 D Gomestows On pu Free Ref Int (S) S NFE Adaptive	2.485.408	PRO Deal Web Gale of a Gale of Sig Inack of Sig Inack of	Spectrum / Snep 3A Augusted fromer (883) Trig Free Ran Ref Level 86.99 df Mar John - Augusted from - Frideo EW 3.0 Mi Y Frideo EW 3.0 Mi	Analyzer 3 1 1 P ByV ByV	2 A A		₩ ₽	p Mkr2 1	р 2.483 510 GHz 53.399 dBµV 5000 cm2 5000 cm2 1.07 ms (1601 pts)	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
Sectors Analyzer 1 Sectors Analyzer 1 Sectors Align Auto PASS 1 Face 2 Pass 1 Face 2 Pass	Speed argent 500 D Gomestows On pu Free Ref Int (S) S NFE Adaptive	2.485.408	PRO Deal Web Gale of a Gale of Sig Inack of Sig Inack of	Spectrum / Snep 3A Augusted fromer (883) Trig Free Ran Ref Level 86.99 df Mar John - Augusted from - Frideo EW 3.0 Mi Y Frideo EW 3.0 Mi	Analyzer 3 1 1 P ByV ByV	2 A A		₩ ₽	p Mkr2 1	р 2.483 510 GHz 53.399 dBµV 5000 cm2 5000 cm2 1.07 ms (1601 pts)	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
Kthum Analyzer 1 ent SA Constraint of the second of the se	Spear 2 50 0 Swe Free Ret Int (S) S NFE Adaptive	2.485.408	PRO Deal Web Gale of a Gale of Sig Inack of Sig Inack of	Spectrum / Snep 3A Augusted fromer (883) Trig Free Ran Ref Level 86.99 df Mar John - Augusted from - Frideo EW 3.0 Mi Y Frideo EW 3.0 Mi	Analyzer 3 1 1 P ByV ByV	2 A A		₩ ₽	p Mkr2 2 	p 2.483 510 GHz 53.399 dBµV 50.0000 dHz 1.07 ms (1601 pts) Value	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Searc Config Propertik Marker Function Marker
Algorithm Analyzor 1 and Signal Auto PASS OF TRACE 2 Pass OF TRACE 2 P	Spear 2 50 0 Swe Free Ret Int (S) S NFE Adaptive	2.485.408	PRO Deal Web Gale Of Solo Deal Web Sig Track Of Sig Track Of	Spectrum / Snep 3A Augusted fromer (883) Trig Free Ran Ref Level 86.99 df Mar John - Augusted from - Frideo EW 3.0 Mi Y Frideo EW 3.0 Mi	Analyzer 3 1 1 P ByV ByV	2 A A		₩ ₽	p Mkr2 2 	р 2.483 510 GHz 53.399 dBµV 5000 cm2 5000 cm2 1.07 ms (1601 pts)	Select Marker Marker 2 Marker Freguency 2433510313 OHz Pesk Search Next Paak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MarCF MixRef Lvi Continuous Peak Search	Settings Peak Search Pk Searc Config Propertie Marker Function Marker

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

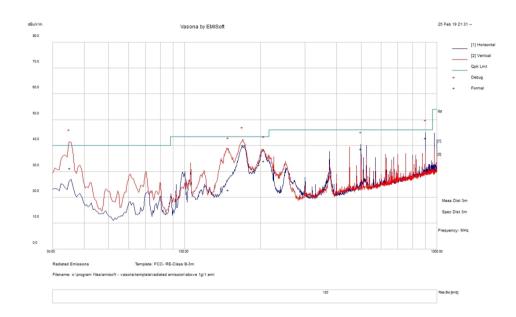
Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	16 of 28

10.3 Radiated Spurious Emissions below 1GHz

Requirement(s):

Spec	Item	Requirement		Applicable
47CFR§15.247(d) RSS247 (5.5)	a)	Except higher limit as specified elsewhere in low-power radio-frequency devices shall not specified in the following table and the level exceed the level of the fundamental emission edges Frequency range (MHz) 30 – 88 88 – 216 216 960 Above 960	t exceed the field strength levels of any unwanted emissions shall not	
Test Setup		Semi Anechoic Char Radio Absorbing Material	Antenna	pectrum Analyzer
Procedure	1. 2. 3. 4.	rotation of the EUT) was chosen. b. The EUT was then rotated to the c. Finally, the antenna height was a A Quasi-peak measurement was then mad Steps 2 and 3 were repeated for the next fr measured.	quency points obtained from the EUT cha out by rotating the EUT, changing the an ght in the following manner: (whichever gave the higher emission leve direction that gave the maximum emissio idjusted to the height that gave the maxim e for that frequency point. equency point, until all selected frequency	tenna el over a full n. um emission. / points were
Remark		JT was scanned up to 1GHz. Both horizontal only the worst case.	and vertical polarities were investigated.	The results
		ss 🗆 Fail		

Test was done by Gary Chou at 10m chamber.


775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	17 of 28

Radiated Emission Test Results (Below 1GHz)

Test specification	below 1GHz							
	Temp (°C):							
Environmental Conditions:	Humidity (%)	47	-					
	Atmospheric (mbar):	Result						
Mains Power:	120VAC, 60Hz		Pass					
Tested by:	Gary Chou							
Test Date:	02/25/2019							
Remarks:	802.11n20, 2437MHz							

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
35.06844	36.66	11.2	-16.6	31.25	Quasi Max	V	228	174	40	-8.75	Pass
900.0247	40.25	15.95	-13.28	42.92	Quasi Max	Н	105	195	46	-3.08	Pass
169.6525	51.64	12.35	-23.83	40.16	Quasi Max	V	210	19	43.5	-3.34	Pass
206.0225	45.99	12.68	-24.57	34.09	Quasi Max	Н	177	77	43.5	-9.41	Pass
148.7161	34.04	12.21	-23.37	22.88	Quasi Max	Н	102	261	43.5	-20.62	Pass
500.0234	42.81	14.17	-18.27	38.7	Quasi Max	Н	113	77	46	-7.3	Pass

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

10.4 Radiated Spurious Emissions between 1GHz – 25GHz

Requirement(s):

For non-restricted band, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB or 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, determined by the measurement method on output power to be used. Attenuation below the general limits specified in § 15.209(a) is not required □ 20 dB down ☑ 30 dB down or restricted band, emission must also comply with the radiated emission limits	
or restricted band, emission must also comply with the radiated emission limits	
specified in 15.209	\boxtimes
Radio Absorbing Material	Spectrum Analy
 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT chara Maximization of the emissions, was carried out by rotating the EUT, changing the anter and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission level rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission c. Finally, the antenna height was adjusted to the height that gave the maximu An average measurement was then made for that frequency point. 	enna polarizatio over a full m emission.
EUT was scanned up to 40GHz. Both horizontal and vertical polarities were investigated. vonly the worst case. There isn't outstanding emission found at the edge of restricted free	
Pass 🗆 Fail	
	 Radio Absorbing Material But an end allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT chara Maximization of the emissions, was carried out by rotating the EUT, changing the anterna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission level rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission c. Finally, the anterna height was adjusted to the height that gave the maximut An average measurement was then made for that frequency point. Steps 2 and 3 were repeated for the next frequency point. EUT was scanned up to 40GHz. Both horizontal and vertical polarities were investigated. v only the worst case. There isn't outstanding emission found at the edge of restricted frequency only the worst case. There isn't outstanding emission found at the edge of restricted frequency only the worst case. There isn't outstanding emission found at the edge of restricted frequency measured.

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	19 of 28

Radiated Emission Test Results (Above 1GHz)

Above 1GHz-25GHz – 802.11b – 2412MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
4824.07	50.43	4.12	-0.93	53.62	Peak Max	V	119	89	74	-20.38	Pass
1530.64	41.52	2.37	-6.33	37.56	Peak Max	Н	180	53	74	-36.44	Pass
17863.59	34.64	8.02	8.53	51.19	Peak Max	V	164	209	74	-22.81	Pass
4824.07	46.18	4.12	-0.93	49.37	Average Max	V	119	89	54	-4.63	Pass
1530.64	28.35	2.37	-6.33	24.39	Average Max	Н	180	53	54	-29.61	Pass
17863.59	22.39	8.02	8.53	38.94	Average Max	V	164	209	54	-15.06	Pass

Above 1GHz-25GHz- 802.11b - 2437MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17956.26	39.24	7.91	8.71	55.86	Peak Max	Н	199	15	74	-18.14	Pass
1529.68	41.15	2.37	-6.34	37.18	Peak Max	V	300	212	74	-36.82	Pass
4879.09	40.43	4.18	-0.99	43.62	Peak Max	V	253	60	74	-30.38	Pass
17956.26	26.28	7.91	8.71	42.9	Average Max	Н	199	15	54	-11.1	Pass
1529.68	30.51	2.37	-6.34	26.54	Average Max	V	300	212	54	-27.46	Pass
4879.09	27.39	4.18	-0.99	30.58	Average Max	V	253	60	54	-23.42	Pass

Above 1GHz-25GHz - 802.11b - 2462MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17565.68	38.41	8.24	7.84	54.49	Peak Max	V	345	346	74	-19.51	Pass
4924.4	40.27	4.17	-0.99	43.45	Peak Max	V	195	230	74	-30.55	Pass
7387.42	39.18	5.14	-0.51	43.81	Peak Max	V	238	169	74	-30.19	Pass
17565.68	26.43	8.24	7.84	42.51	Average Max	V	345	346	54	-11.49	Pass
4924.4	26.52	4.17	-0.99	29.7	Average Max	V	195	230	54	-24.3	Pass
7387.42	26.18	5.14	-0.51	30.81	Average Max	V	238	169	54	-23.19	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

)+

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	20 of 28

Above 1GHz-25GHz- 802.11g - 2412MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17436.26	39.29	8.22	7.54	55.05	Peak Max	V	191	29	74	-18.95	Pass
7237.65	38.34	5.16	-0.46	43.04	Peak Max	V	112	217	74	-30.96	Pass
4823.42	39.71	4.12	-0.93	42.9	Peak Max	V	267	18	74	-31.1	Pass
17436.26	26.29	8.22	7.54	42.05	Average Max	V	191	29	54	-11.95	Pass
7237.65	26.54	5.16	-0.46	31.24	Average Max	V	112	217	54	-22.76	Pass
4823.42	26.36	4.12	-0.93	29.55	Average Max	V	267	18	54	-24.45	Pass

Above 1GHz-25GHz – 802.11g – 2437MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17797.93	38.45	8.09	8.32	54.86	Peak Max	Н	281	163	74	-19.14	Pass
7262.8	38.61	5.16	-0.47	43.3	Peak Max	V	210	219	74	-30.7	Pass
4823.97	38.39	4.12	-0.93	41.58	Peak Max	V	295	116	74	-32.42	Pass
17797.93	26.52	8.09	8.32	42.93	Average Max	Н	281	163	54	-11.07	Pass
7262.8	26.41	5.16	-0.47	31.1	Average Max	V	210	219	54	-22.9	Pass
4823.97	26.29	4.12	-0.93	29.48	Average Max	V	295	116	54	-24.52	Pass

Above 1GHz-25GHz- 802.11g - 2462MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
16890.48	37.37	8.1	6.67	52.14	Peak Max	V	177	93	74	-21.86	Pass
7387.89	38.64	5.14	-0.51	43.27	Peak Max	V	305	198	74	-30.73	Pass
4922.26	39.19	4.22	-1.04	42.37	Peak Max	V	310	188	74	-31.63	Pass
16890.48	25.73	8.1	6.67	40.5	Average Max	V	177	93	54	-13.5	Pass
7387.89	26.45	5.14	-0.51	31.08	Average Max	V	305	198	54	-22.92	Pass
4922.26	26.53	4.22	-1.04	29.71	Average Max	V	310	188	54	-24.29	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 e in

н

Σ+

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	21 of 28

Above 1GHz-25GHz- 802.11n20 - 2412MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17965.19	26.71	7.9	8.72	43.33	Average Max	Н	214	313	54	-10.67	Pass
1530.15	28.28	2.37	-6.34	24.31	Average Max	Н	159	285	54	-29.69	Pass
4826.06	26.43	4.13	-0.93	29.63	Average Max	V	201	350	54	-24.37	Pass
17965.19	39.67	7.9	8.72	56.29	Peak Max	Н	214	313	74	-17.71	Pass
1530.15	41.15	2.37	-6.34	37.18	Peak Max	Н	159	285	74	-36.82	Pass
4826.06	39.24	4.13	-0.93	42.44	Peak Max	V	201	350	74	-31.56	Pass

Above 1GHz-25GHz – 802.11n20 – 2437MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
15850.66	38.56	7.79	5.75	52.1	Peak Max	V	117	188	74	-21.9	Pass
7315.05	38.42	5.15	-0.49	43.08	Peak Max	V	302	4	74	-30.92	Pass
4875.4	39.33	4.17	-0.99	42.51	Peak Max	V	138	158	74	-31.49	Pass
15850.66	26.42	7.79	5.75	39.96	Average Max	V	117	188	54	-14.04	Pass
7315.05	26.18	5.15	-0.49	30.84	Average Max	V	302	4	54	-23.16	Pass
4875.4	26.35	4.17	-0.99	29.53	Average Max	V	138	158	54	-24.47	Pass

Above 1GHz-25GHz- 802.11n20 - 2462MHz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
17223.41	39.4	8.2	7.5	55.1	Peak Max	Н	115	194	74	-18.9	Pass
7386.16	38.52	5.15	-0.49	43.18	Peak Max	Н	281	260	74	-30.82	Pass
4923.96	39.64	4.18	-0.9	42.92	Peak Max	Н	142	216	74	-31.08	Pass
17223.41	27.54	8.2	7.5	43.24	Average Max	Н	115	194	54	-10.76	Pass
7386.16	26.76	5.15	-0.49	31.42	Average Max	Н	281	260	54	-22.58	Pass
4923.96	26.81	4.18	-0.9	30.09	Average Max	Н	142	216	54	-23.91	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 t in

Н

)+

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	22 of 28

10.5 Receiver Spurious Emissions

Requirement(s):

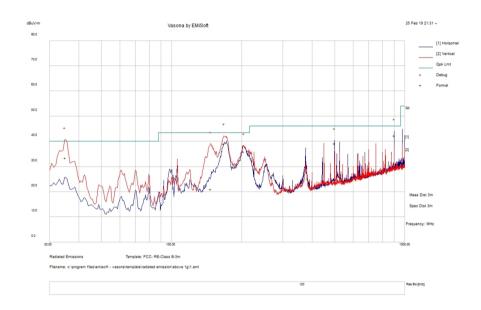
Spec	Item	Requirement		Applicable
RSS GEN 7.3	a)	Radiated emission measurements shall be p connected to the receiver antenna ports. Th be from the lowest frequency internally gene local oscillator, intermediate or carrier freque to at least five times the highest tunable or I higher, without exceeding 40 GHz. Spurious emissions from receivers shall not shown in table 3	e search for spurious emissions shall erated or used in the receiver (e.g. ency), or 30 MHz, whichever is higher, ocal oscillator frequency, whichever is	
		Frequency range (MHz)	Field Strength (uV/m)	
		30 - 88	100	
		88 - 216	150	
		216 960	200	
		Above 960	500	
Test Setup		Radio Absorbing Material	Antenna I I I I I I I I I I I I I I I I I I	Spectrum Analyzer
Test Setup		Semi Anechoic Char Radio Absorbing Material		Spectrum Analyzer

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

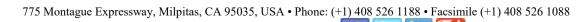
Ú

)		Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
SĬEN		Page	23 of 28
A Bureau Veritas G	roup Company		
Procedure	 The test was carried ou Maximization of the emi polarization, and adjusti a. Vertical or ho rotation of the b. The EUT was c. Finally, the ar A Quasi-peak measured 	t at the selected frequency p issions, was carried out by ro ing the antenna height in the rizontal polarisation (whicheve EUT) was chosen. Is then rotated to the direction intenna height was adjusted t ment was then made for that	ver gave the higher emission level over a full n that gave the maximum emission. to the height that gave the maximum emission.
Remark	The EUT was scanned up to 400 show only the worst case.	Hz. Both horizontal and ver	rtical polarities were investigated. The results
Result	🛛 Pass 🛛 🗆 Fail		

Test was done by Gary Chou at 10m chamber.


775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	24 of 28


Radiated Emission Test Results (Below 1GHz)

Test specification	below 1GHz				
	Temp (°C):				
Environmental Conditions:	Humidity (%)				
	Atmospheric (mbar):				
Mains Power:	120VAC, 60Hz	120VAC, 60Hz			
Tested by:	Gary Chou				
Test Date:	02/25/2019	02/25/2019			
Remarks:	Receiver mode				

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Po I	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
34.97125	38.85	11.2	-16.52	33.53	Quasi Max	V	108	249	40	-6.47	Pass
167.4244	50.41	12.33	-23.62	39.13	Quasi Max	V	175	9	43.5	-4.37	Pass
900.0247	39.7	15.95	-13.28	42.37	Quasi Max	Н	107	234	46	-3.63	Pass
146.9696	32.26	12.2	-23.37	21.1	Quasi Max	Н	105	279	43.5	-22.41	Pass
203.8534	47.54	12.66	-24.27	35.94	Quasi Max	Н	120	120	43.5	-7.56	Pass
500.0131	43.32	14.17	-18.27	39.22	Quasi Max	Н	118	101	46	-6.78	Pass

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

in

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	25 of 28

Radiated Emission Test Results (Above 1GHz)

Receiver mode

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
6193.6725	49.59	4.69	-0.34	53.95	Peak Max	V	118	356	74	-20.05	Pass
10043.873	40.51	5.93	1.35	47.79	Peak Max	Н	100	34	74	-26.21	Pass
11000.946	42.87	6.13	2.08	51.08	Peak Max	Н	119	45	74	-22.92	Pass
1000.03	51.16	1.88	-7.85	45.19	Peak Max	Н	176	139	74	-28.81	Pass
6193.6725	37.32	4.69	-0.34	41.68	Average Max	V	118	356	54	-12.32	Pass
10043.873	28.35	5.93	1.35	35.63	Average Max	Н	100	34	54	-18.37	Pass
11000.946	30.65	6.13	2.08	38.86	Average Max	Н	119	45	54	-15.14	Pass
1000.03	41.98	1.88	-7.85	36.02	Average Max	Н	176	139	54	-17.98	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	26 of 28

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions						
50GHz Spectrum Analyzer	N9030B (PXA)	MY57140374	01/25/2019	1 Year	01/25/2020	•
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	03/09/2018	2 Year	03/09/2020	>
Horn Antenna (1-18GHz)	3115	10SL0059	01/26/2018	2 Year	01/26/2020	>
RF Pre-Amplifier (9kHz - 6.5GHz)	LPA-6-30	11170601	07/23/2018	1 Year	07/23/2019	>
Pre-Amplifier (1-26.5GHz)	8449B	3008A00715	05/06/2018	1 Year	05/06/2019	>

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_FCC_IC_SL19011103-SEV-111R2_DTS
Page	27 of 28

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)	A	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	A	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	A	FCC Declaration of Conformity Accreditation
FCC Site Registration	A	3 meter site
FCC Site Registration	A	10 meter site
IC Site Registration	A	3 meter site
IC Site Registration	A	10 meter site
	Þ	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB	R	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	đđ	Phase I, Phase II
Vietnam MIC CAB Accreditation	Z	Please see the document for the detailed scope
	A	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA	Ā	(Phase I) Conformity Assessment Body for Radio and Telecom
	A	Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB	A	Telecom: CS-03 Part I, II, V, VI, VII, VIII

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Japan Recognized Certification Body Designation	1 1 1	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
		 EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Korea CAB Accreditation		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	R	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	A	CNS 13438
Japan VCCI	đ	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measurement
Australia CAB Recognition	ħ	EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
		Radio communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	Ø	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016,AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at: