

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

Product Name:	Transmitter: 122K-TX15
Brand Name:	Pulsetronic
Model Name:	TX15
Model Difference:	N/A
FCC ID:	TM6DTC-TX15
Report No.:	ER/2005/80016
Issue Date:	Oct. 12, 2005
FCC Rule Part:	§15.209
Prepared for	Direction Technology Co., Ltd.
	1F, No. 88-7, Sec.1,Kwang Fu Rd., Sec.1, San Chung, Taipei, Taiwan.
Prepared by	SGS Taiwan Ltd.
	No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei County, Taiwan.

Note: This report shall not be reproduced except in full, without the written approval of SGS Taiwan Ltd. This document may be altered or revised by SGS Taiwan Ltd. personnel only, and shall be noted in the revision section of the document.

ID: TM6DTC-TX15

Report No.: ER/2005/80016 Issue Date: Oct. 12, 2005 Page: 2

VERIFICATION OF COMPLIANCE

Applicant:	Direction Technology Co., Ltd. 1F, No. 88-7, Sec.1,Kwang Fu Rd., Sec.1, San Chung, Taipei, Taiwan.
Product Description:	122KHz Heart rate transmitter
FCC ID Number:	TM6DTC-TX15
Brand Name:	Pulsetronic
Model No.:	TX15
Model Difference:	N/A
File Number:	ER/2005/80016
Date of test:	Aug. 16, 2005 – Aug. 17, 2005
Date of EUT Received:	Aug. 16, 2005

We hereby certify that:

The above equipment was tested by SGS Taiwan Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.209.

The test results of this report relate only to the tested sample identified in this report.

Test By:	Willis Chen	Date	Oct. 12, 2005
Prepared By:	Willis Chen Tha Coro	Date	Oct. 12, 2005
Approved By	Eva Kao Timent In	Date	Oct. 12, 2005

Vincent Su

ID: TM6DTC-TX15

Report No.: ER/2005/80016 Issue Date: Oct. 12, 2005 Page: 3

Version

Version No.	Date
00	Oct. 12, 2005

ID: TM6DTC-TX15

Report No.: ER/2005/80016 Issue Date: Oct. 12, 2005 Page: 4

Table of Contents

1.	GENERAL INFORMATION	5
1.1	PRODUCT DESCRIPTION	5
1.2	RELATED SUBMITTAL(S) / GRANT (S)	5
1.3	Test Methodology	5
1.4	TEST FACILITY	5
1.5	SPECIAL ACCESSORIES	5
1.6	EQUIPMENT MODIFICATIONS	5
2.	SYSTEM TEST CONFIGURATION	6
2.1	EUT CONFIGURATION	6
2.2	EUT Exercise	6
2.3	TEST PROCEDURE	6
2.4	LIMITATION	6
2.5	CONFIGURATION OF TESTED SYSTEM	9
3.	SUMMARY OF TEST RESULTS	10
4.	DESCRIPTION OF TEST MODES	10
5.	CONDUCTED EMISSIONS TEST (NOT APPLICABLE IN THIS REPO	RT) 11
5.1	Measurement Procedure:	11
5.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	11
5.3	Measurement Equipment Used:	11
5.4	Measurement Result:	11
6.	RADIATED EMISSION TEST	12
6.1	Measurement Procedure	
6.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3	Measurement Equipment Used:	
6.4	FIELD STRENGTH CALCULATION	13
6.5	Measurement Result	14
6.6	Measurement Result	

1. GENERAL INFORMATION

1.1 Product Description

The Direction Technology Co., Ltd. Model: TX15 (referred to as the EUT in this report) The EUT is an short range, lower power heart rate transmitter..

A major technical descriptions of EUT is described as following:

A). Operation Frequency: 122KHz, one channel.

- B). Antenna Designation: Non-User Replaceable (Fixed)
- C). Power Supply: 3 Vdc by battery.

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>TM6DTC-TX15</u> filing to comply with Section 15.209 of the FCC Part 15, Subpart C Rules. The composite system (receiver) is compliance with Subpart B is authorized under a Verification procedure.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003 and CISPR 22/EN 55022 requirements. Site No. 1(3 &10 meters) Registration Number: 94644, Anechoic chamber (3 meters) Registration Number: 573967

1.5 Special Accessories

Not available for this EUT intended for grant.

1.6 Equipment Modifications

Not available for this EUT intended for grant.

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. the Tx frequency was fixed and continuous which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions (Not apply in the report)

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2003.

2.4 Limitation

(1) Conducted Emission (Not applicable in this report)

According to section 15.207(a) Conducted Emission Limits is as following.

Enominantest	Limits				
Frequency range	ď	B (uV)			
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			
Note					
1. The lower limit shall apply at the transition frequencies					
2.The limit decreases line	early with the logarithm of the frequen	cy in the range 0.15 MHz to 0.50 MHz.			

(2) Radiated Emission

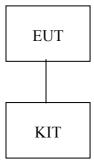
- (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:
- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other Sections within this Part and which are required to reduce their nwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Frequency (MHz)	Field strength $\mu V/m$	Distance (m)	Field strength at 3m dBµV/m
0.009-0.490	2400/F(KHz)	300	
0.490-1.705	24000/F(KHz)	30	
1.705-30	30	30	69.54
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
Above 960	500	3	54

Limit Table:

Unmber of Harmonic	Frequency (KHz)	Limit at 300m (uV/m)	Limit at 30m (uV/m)	Limit at 1m (uV/m)
1	122	19.67		124.96
2	244	9.84		118.94
3	366	6.56		115.42
4	488	4.92		112.92
5	610		39.34	90.98
6	732		32.79	89.40
7	854		28.10	88.06
8	976		24.59	86.90
9	1098		21.86	85.88
10	1220		19.67	84.96

Limit Calculation and transfer to 1m test distance:


If the frequency between 9 - 490KHz, Limit = $20\log(2400/f(\text{KHz}) + 40\log(300/1))$

If the frequency between 490 KHz – 1.705MHz $Limit = 20\log(24000/f(KHz) + 40\log(30/1))$

2.5 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	FCC ID	Series No.	Data Cable	Power Cord
1.	KIT	N/A	N/A	N/A	N/A	20cm	N/A

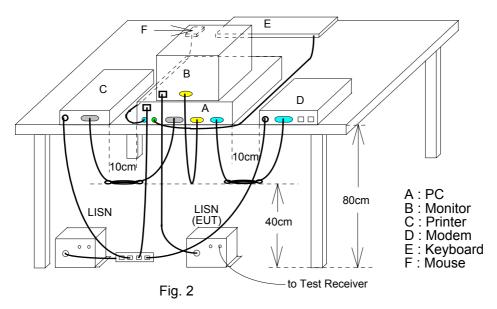
3. Summary Of Test Results

FCC Rules	Description Of Test	Result
§15.207	Conducted Emission	N/A
§15.209	Radiated Emission	Compliant

4. Description of test modes

The EUT has been tested under continuous operating condition with a Test Kit. The Frequency 122KHz was chosen for testing.

The field strength of radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1,E2 mode) three axis modes.



5. Conducted Emissions Test (Not applicable in this report)

5.1 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- **2.** Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

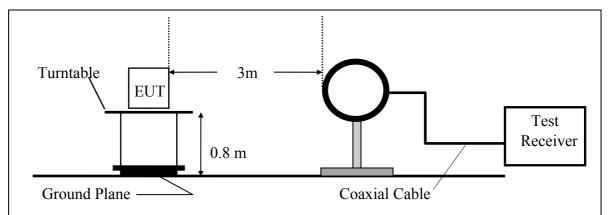
5.2 Test SET-UP (Block Diagram of Configuration)

5.3 Measurement Equipment Used:

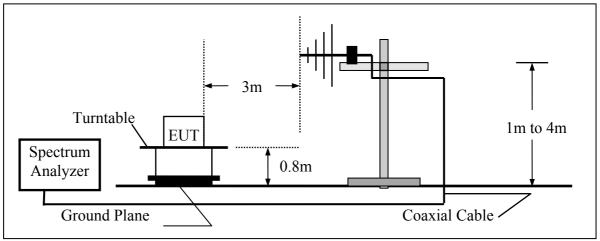
Conducted Emission Test Site							
EQUIPMENT MFR MODEL SERIAL				LAST	CAL DUE.		
ТҮРЕ		NUMBER	NUMBER	CAL.			
EMC Analyzer	HP	8594EM	3624A00203	09/02/2005	09/03/2006		
EMI Test Receiver	R&S	ESCS30	828985/004	06/09/2005	06/10/2006		
Transient Limiter	HP	11947A	3107A02062	09/02/2005	09/03/2006		
LISN	Rolf-Heine	NNB-2/16Z	99012	12/31/2004	12/30/2005		
LISN	Rolf-Heine	NNB-2/16Z	99013	12/24/2004	12/23/2005		
Coaxial Cables	N/A	No. 3, 4	N/A	12/24/2004	12/23/2005		

5.4 Measurement Result:

N/A, The EUT is powered by 3Bdc battery.


6. Radiated Emission Test

6.1 Measurement Procedure


- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measured were complete.

6.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

6.3 Measurement Equipment Used:

966 Chamber						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
ТҮРЕ		NUMBER	NUMBER	CAL.		
Spectrum Analyzer	R&S	FSP 40	100034	11/09/2004	11/10/2005	
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006	
Spectrum Analyzer	Agilent	E7405A	US40240202	06/28/2005	06/29/2006	
Loop Antenna	MESSTEC	FLA30	03/10086	11/25/2004	11/26/2006	
Bilog Antenna	SCHWAZBECK	VULB9163	152	10/10/2004	10/10/2005	
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	11/10/2004	11/11/2005	
Horn antenna	Schwarzbeck	BBHA 9170	184/185	11/02/2004	11/02/2005	
Pre-Amplifier	HP	8447D	2944A09469	07/24/2005	07/23/2006	
Pre-Amplifier	HP	8494B	3008A00578	02/26/2005	02/25/2006	
Turn Table	HD	DT420	N/A	N.C.R	N.C.R	
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R	
Controller	HD	HD100	N/A	N.C.R	N.C.R	
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA-10 M	10m	10/09/2004	10/08/2005	
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA-3M	3m	10/09/2004	10/08/2005	
Site NSA	SGS	966 chamber	N/A	11/17/2004	11/16/2005	

6.4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

6.5 Measurement Result

Operation Mode:	Transmitting Mode H Position	Test Date :	Aug. 17,2005
Fundamental Frequency:	122 KHz	Test By:	Willis
Temperature :	25 °C	Ant. Pol:	Vertical/ Horizontal
Humidity :	58 %		

Freq. (KHz)	Ant.Pol. H/V	Detector Mode (PK/AV/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit at 1m (dBuV/m)	Safe Margin (dB)	Note
122.00	V	Peak	56.64	-7.30	49.34	124.96	-75.62	F
244.00	V	Peak	30.13	-6.50	23.63	118.94	-95.31	Н
366.00	V	Peak	29.92	-6.40	23.52	115.42	-91.90	Н
488.00	V	Peak			0.00	112.92		Н
610.00	V	Peak			0.00	90.98		Н
732.00	V	Peak			0.00	89.40		Н
854.00	V	Peak			0.00	88.06		Н
976.00	V	Peak			0.00	86.90		Н
1098.00	V	Peak			0.00	85.88		Н
1220.00	V	Peak			0.00	84.96		Н
122.00	Н	Peak	40.21	-7.30	32.91	124.96	-92.05	F
244.00	Н	Peak	29.93	-6.50	23.43	118.94	-95.51	Н
366.00	Н	Peak	29.88	-6.40	23.48	115.42	-91.94	Н
488.00	Н	Peak			0.00	112.92		Н
610.00	Н	Peak			0.00	90.98		Н
732.00	Н	Peak			0.00	89.40		Н
854.00	Н	Peak			0.00	88.06		Н
976.00	Н	Peak			0.00	86.90		Н
1098.00	Н	Peak			0.00	85.88		Н
1220.00	Н	Peak			0.00	84.96		Н

Remark :

- (1) Measuring frequencies from foundation frequency to 10^{th} Harmonic. \circ
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) Data of measurement within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 9KHz to 150KHz was 300Hz, 150KHz to 30MHz was 10KHz; 30MHz to 1GHz was 100KHz.

6.6 Measurement Result

Operation Mode:	Transmitting Mode E1 Position	Test Date :	Aug. 17,2005
Fundamental Frequency:	122 KHz	Test By:	Willis
Temperature :	25 °C	Pol:	Vertical/Horizontal
Humidity :	58 %		

Freq. (KHz)	Ant.Pol. H/V	Detector Mode (PK/AV/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit at 1m (dBuV/m)	Safe Margin (dB)	Note
122.00	V	Peak	55.63	-7.30	48.33	124.96	-76.63	F
244.00	V	Peak	29.70	-6.50	23.20	118.94	-95.74	Н
366.00	V	Peak	29.60	-6.40	23.20	115.42	-92.22	Н
488.00	V	Peak			0.00	112.92		Н
610.00	V	Peak			0.00	90.98		Н
732.00	V	Peak			0.00	89.40		Н
854.00	V	Peak			0.00	88.06		Н
976.00	V	Peak			0.00	86.90		Н
1098.00	V	Peak			0.00	85.88		Н
1220.00	V	Peak			0.00	84.96		Н
122.00	Н	Peak	39.24	-7.30	31.94	124.96	-93.02	F
244.00	Н	Peak	29.90	-6.50	23.40	118.94	-95.54	Н
366.00	Н	Peak	29.83	-6.40	23.43	115.42	-91.99	Н
488.00	Н	Peak			0.00	112.92		Н
610.00	Н	Peak			0.00	90.98		Н
732.00	Н	Peak			0.00	89.40		Н
854.00	Н	Peak			0.00	88.06		Н
976.00	Н	Peak			0.00	86.90		Н
1098.00	Н	Peak			0.00	85.88		Н
1220.00	Н	Peak			0.00	84.96		Н

Remark :

- (1) Measuring frequencies from foundation frequency to 10^{th} Harmonic. \circ
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 9KHz to 150KHz was 300Hz, 150KHz to 30MHz was 10KHz; 30MHz to 1GHz was 100KHz.

6.7 Measurement Result

Operation Mode:	Transmitting Mode E2 Position	Test Date :	Aug. 17,2005
Fundamental Frequency:	122 KHz	Test By:	Willis
Temperature :	25 °C	Pol:	Vertical/Horizontal
Humidity :	58 %		

Freq. (KHz)	Ant.Pol. H/V	Detector Mode (PK/AV/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit at 1m (dBuV/m)	Safe Margin (dB)	Note
122.00	V	Peak	50.66	-7.30	43.36	124.96	-81.60	F
244.00	V	Peak	28.18	-6.50	21.68	118.94	-97.26	Н
366.00	V	Peak	27.86	-6.40	21.46	115.42	-93.96	Н
488.00	V	Peak			0.00	112.92		Н
610.00	V	Peak			0.00	90.98		Н
732.00	V	Peak			0.00	89.40		Н
854.00	V	Peak			0.00	88.06		Н
976.00	V	Peak			0.00	86.90		Н
1098.00	V	Peak			0.00	85.88		Н
1220.00	V	Peak			0.00	84.96		Н
122.00	Н	Peak	37.51	-7.30	30.21	124.96	-94.75	F
244.00	Н	Peak	28.17	-6.50	21.67	118.94	-97.27	Н
366.00	Н	Peak	27.58	-6.40	21.18	115.42	-94.24	Н
488.00	Н	Peak			0.00	112.92		Н
610.00	Н	Peak			0.00	90.98		Н
732.00	Н	Peak			0.00	89.40		Н
854.00	Н	Peak			0.00	88.06		Н
976.00	Н	Peak			0.00	86.90		Н
1098.00	Н	Peak			0.00	85.88		Н
1220.00	Н	Peak			0.00	84.96		Н

Remark :

- (1) Measuring frequencies from foundation frequency to 10^{th} Harmonic. \circ
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 9KHz to 150KHz was 300Hz, 150KHz to 30MHz was 10KHz; 30MHz to 1GHz was 100KHz.