Report No. : FR132339-07AA

RADIO TEST REPORT

FCC ID	:	TLZ-XM9098
Equipment	:	IEEE 802.112X2 WiFi 6 SU and MU-MIMO DBC Wireless LAN + Bluetooth 5.1 Combo Module
Brand Name	5 9	AzureWave
Model Name	:	AW-XM458, AW-XM369, AW-XM458MA-XXX, AW-XM369MA-XXX
Applicant	-	AzureWave Technologies, Inc. 8F., No.94, Baozhong Rd. , Xindian Dist., New Taipei City , Taiwan 231
Manufacturer	:	AzureWave Technologies (Shanghai) Inc. No. 1355, Jiaxin Road, Malu Twon, Jiading District Shanghai, P.R. China
Standard	:	47 CFR FCC Part 15.247

The product was received on Feb. 13, 2023, and testing was started from Feb. 25, 2023 and completed on Apr. 13, 2023. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A10_10 Ver1.3 Page Number : 1 of 24 Issued Date : May 02, 2023 Report Version : 01

Table of Contents

Histo	listory of this test report3				
Sum	mary of Test Result	4			
1	General Description	5			
1.1	Information	5			
1.2	Applicable Standards	10			
1.3	Testing Location Information	10			
1.4	Measurement Uncertainty	10			
2	Test Configuration of EUT	11			
2.1	The Worst Case Measurement Configuration	11			
2.2	EUT Operation during Test	12			
2.3	Accessories	12			
2.4	Support Equipment	12			
2.5	Test Setup Diagram	13			
3	Transmitter Test Result	16			
3.1	AC Power-line Conducted Emissions				
3.2	Emissions in Restricted Frequency Bands	18			
4	Test Equipment and Calibration Data	22			
Арре	endix A. Test Results of AC Power-line Conducted Emissions				
Арре	endix B. Test Results of Emissions in Restricted Frequency Bands				
Арре	endix C. Test Photos				

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FR132339-07AA	01	Initial issue of report	May 02, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen Report Producer: Viola Huang

1 General Description

1.1 Information

1.1.1 **RF General Information**

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20), ax (HEW20)	2412-2462	1-11 [11]
2400-2483.5	n (HT40), ax (HEW40)	2422-2452	3-9 [7]

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.11b	20	2TX
2.4-2.4835GHz	802.11g	20	2TX
2.4-2.4835GHz	802.11n HT20	20	2TX
2.4-2.4835GHz	802.11ax HEW20	20	2TX
2.4-2.4835GHz	802.11n HT40	40	2TX
2.4-2.4835GHz	802.11ax HEW40	40	2TX

Note:

- 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11g, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- HEW20, HEW40 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Ant	t. Port			Brond	Мо	dal Nama	Antenna	Connector	Gain
Ant.	2.4GHz	5GHz	Bluetooth	Brand			Туре	Connector	(dBi)
1	1	1	-	MAG. LAYERS	MSA-40	08-25GC1-A2	PIFA	I-PEX	
2	2	2	-	MAG. LAYERS	MSA-40	08-25GC1-A2	PIFA	I-PEX	
3	-	-	1	MAG. LAYERS	MSA-40	08-25GC1-A2	PIFA	I-PEX	
4	1/2	1/2	1	Inpaq	WA-P	P-LB-02-587	PCB	I-PEX	
5	1/2	1/2	1	Inpaq	WA-P	P-LB-03-129	PCB	I-PEX	
6	-	-	-	Inpaq	WA-P	P-LB-03-130	PCB	I-PEX	Note 1
7	-	-	-	Inpaq	WA-F	-LB-03-110	PCB	I-PEX	
8	-	-	-	Inpaq	WA-F	-LB-02-187	PCB	I-PEX	
9	-	-	-	Inpaq	WA-F	-LA-01-015	PCB	I-PEX	
10	-	-	-	TE Connectivity	21	95501-2	PCB	I-PEX	
11	-	-	-	TE Connectivity	21	95505-2	PCB	I-PEX	
12	-	-	-	LUXSHARE-ICT	SA3	37A47021	Dipole	I-PEX	
13	-	-	-	LUXSHARE-ICT	SA3	37A47021	Dipole	I-PEX	Note 2
14	-	-	-	LUXSHARE-ICT	SA3	37A47025	PIFA	I-PEX	Note 1
Note1	:								
Ant		Port	I	Antenna Gair			(dBi)		
<u> </u>	2.4GHz	5GHz	Bluetooth	WLAN 2.40	WLAN 2.4GHz WLAN 50		Hz	Bluetoo	oth
1	1	1	-	2.98		5.16		-	
2	2	2	-	2.98		5.16		-	
3	-	-	1	-		-		2.98	
4	1/2	1/2	1	4.43		7.52		4.43	
5	1/2	1/2	1	6.51		3.2		6.51	
6	-	-	-	4.91		5.84		4.91	
7	-	-	-	-0.27	2.74			-0.27	
8	-	-	-	0.07		2.39		0.07	
9	-	-	-	5.66		-		5.66	
10	-	-	-	0.47		1.88		0.47	
11	-	-	-	0.77		0.96		0.77	
14	-	-	-	-		-		-1.1	

Note2:

	Port		Cable	Antenna (Gain (dBi)	Cable Lo	oss (dB)	True Ga	iin (dBi)
Ant.	2.4GHz	5GHz	Length	WLAN 2.4GHz	WLAN 5GHz	WLAN 2.4GHz	WLAN 5GHz	WLAN 2.4GHz	WLAN 5GHz
12	-	-	450mm	2.8	2.6	1.1	1.9	1.7	0.7
13	-	-	470mm	2.8	2.6	1.2	2	1.6	0.6

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A10_10 Ver1.3 Page Number : 6 of 24

Issued Date : May 02, 2023

Report Version : 01

Note3: The above information was declared by manufacturer.

Note4: There are 14 antennas listed on the antenna table. The EUT has three types of antenna.

Note5: Directional gain information.

For ant. 1~ant. 2

Туре	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT \leq 4	$DirectionalGain = 10 \cdot \log \begin{bmatrix} \sum_{j=1}^{N_{arg}} \left(\sum_{k=1}^{N_{arg}} S_{j,k} \right)^2 \\ N_{ANT} \end{bmatrix}$
BF	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{er}} \left[\sum_{k=1}^{N_{er}} \overline{\mathbf{g}}_{jk} \right]^2}{N_{evr}} \right]$	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{m}} \left[\sum_{k=0}^{N_{m}} \overline{\mathbf{g}}_{j,k} \right]^{2}}{N_{ANT}} \right]$

Ex.

Directional Gain (NSS1) formula :

NSS1(g1,1) = 10^{G1/20} ; NSS1(g1,2)= 10^{G2/20}

gj,k =(Nss1(g1,1) + Nss1(g1,2))²

$$\label{eq:DG} \begin{split} DG &= 10 \; \text{log}[(\text{Nss1}(\text{g1,1}) \; + \; \text{Nss1}(\text{g1,2}) \;))^2 \; / \; \text{N}_{\text{ANT}}] => 10 \; \text{log}[(10^{\text{G1/20}} \; + \; 10^{\text{G2/20}} \;)^2 \; / \; \text{N}_{\text{ANT}}] \\ \\ \text{Where }; \end{split}$$

2.4G G1 = 2.98 ; G2 = 2.98 ; DG=5.99 5G G1 = 5.16; G2 = 5.16 ; DG=8.17

For ant. 4~ant. 5

Туре	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT \leq 4	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{eff}} \left[\sum_{k=1}^{N_{eff}} \left \mathcal{S}_{j,k} \right ^{2} \right]}{N_{ANT}}\right]$
BF	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{m}} \left[\sum_{k=1}^{N_{m}} \boldsymbol{\xi}_{k,k}\right]^{2}}{N_{kbr}}\right]$	$Directional Gain = 10 \cdot \log \begin{bmatrix} \sum_{j=1}^{N_{m}} \left\{ \sum_{k=1}^{N_{m}} \mathbf{g}_{j,k} \right\}^{2} \\ N_{ANT} \end{bmatrix}$

Ex.

Directional Gain (NSS1) formula :

DirectionalGain = 10

$$\begin{split} NSS1(g1,1) &= \ 10^{G1/20} \ ; \ NSS1(g1,2) = \ 10^{G2/20} \\ gj,k &= (Nss1(g1,1) \ + \ Nss1(g1,2) \)^2 \\ DG &= \ 10 \ log[(Nss1(g1,1) \ + \ Nss1(g1,2) \))^2 \ / \ N_{ANT}] => \ 10 \ log[(\ 10^{G1/20} \ + \ 10^{G2/20} \)^2 \ / \ N_{ANT}] \\ Where \ ; \end{split}$$

For ant. 5 2.4G G1 = 6.51 ; G2 = 6.51 ; DG=9.52 For ant. 4 5G G1 = 7.52 ; G2 = 7.52 ; DG=10.53

<WLAN 2.4GHz Function>

For IEEE 802.11b/g/n/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

<WLAN 5GHz Function>

For IEEE 802.11a/n/ac/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

<Bluetooth Function> (1TX/1RX)

Only Port 1 can be used as transmitting/receiving.

1.1.3 EUT Operational Condition

EUT Power Type	From host system				
Boomforming Eurotion	With beamforming				
Beamorning Function	The product has beamforming function for n/ac/ax in 5GHz.				
Function	Point-to-multipoint Point-to-point				
Test Software Version	DutApiMimoApApp (Version : 2.0.0.80)				

Note: The above information was declared by manufacturer.

1.1.4 Table for Multiple Listing

EUT	Model No.	GPIO	Antenna	Description
1	AW-XM458, AW-XM369	Without GPIO		All the model names are identical, the difference model names served as marketing strategy.
2 3	AW-XM458MA-XXX, AW-XM369MA-XXX	With GPIO	PIFA, PCB, Dipole	 All the model names are identical, the difference model names served as marketing strategy. The difference between this two EUTs are RF connector trace and RF connector type.

Note 1: From the above models, model: AW-XM458MA-XXX (EUT 2) was selected as representative model for the test and its data was recorded in this report.

Note 2: The above information was declared by manufacturer.

1.1.5 Table for Permissive Change

This product is an extension of original one reported under Sporton project number: FR132339-01AA.

Below is the table for the change of the product with respect to the original one.

	Modifications		Performance Checking
1.	Adding antenna type for WLAN 2.4GHz/5GHz:	1. 2.	AC Power-line Conducted Emissions Emissions in Restricted Frequency Bands
			(Based on original output power to test.)
2.	Adding 1 set of PIFA antenna (Set 14) for bluetooth. The antenna type is the same as the original and the gain is lower than the original report.		
3.	Adding 2 same PCB type antenna (Ant. 10~11) with lower gain than the original report for all EUT.		Do not have to retest assessed.
4.	Adding PCB type antenna for EUT 2.		
5.	Adding PIFA type antenna for EUT 3.		

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 662911 D01 v02r01
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information				
Test Lab. : Sportor	n International Inc. Hsinchu Laboratory			
Hsinchu	ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)			
(TAF: 3787)	TEL: 886-3-656-9065 FAX: 886-3-656-9085			
	Test site Designation No. TW3787 with FCC.			
Conformity Assessment Body Identifier (CABID) TW3787 with ISED.				

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
Radiated below 1GHz	03CH04-CB	Chris Li	22~23 / 55~58	Feb. 25, 2023~Apr. 07, 2023
	03CH02-CB	_ Chris Li	20~21 / 55~58	
Radiated above 1GHz	03CH04-CB		22~23 / 55~58	Feb. 25, 2023~Apr. 07, 2023
	03CH06-CB		23.7~24.8 / 56~59	
AC Conduction	CO01-CB	Bob Chang	23~24 / 52~53	Apr. 13, 2023

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	5.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.7 dB	Confidence levels of 95%

2 Test Configuration of EUT

2.1 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode CTX			
1 EUT 2 + WLAN 2.4GHz (Ant. 12)			
2 EUT 2 + WLAN 5GHz (Ant. 12)			
For exercise mode 2 is the warst energy and it was record in this test report			

For operating mode 2 is the worst case and it was record in this test report.

Th	The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands			
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
Operating Mode < 1GHz	СТХ			
1	EUT 2 in X axis + WLAN 2.4GHz (Ant. 12)			
2	EUT 2 in Y axis + WLAN 2.4GHz (Ant. 12)			
3	EUT 2 in Z axis + WLAN 2.4GHz (Ant. 12)			
4	EUT 2 in X axis + WLAN 5GHz (Ant. 12)			
5	EUT 2 in Y axis + WLAN 5GHz (Ant. 12)			
6	EUT 2 in Z axis + WLAN 5GHz (Ant. 12)			
For operating mode 5 is th	e worst case and it was record in this test report.			
	СТХ			
Operating Mode > 1GHz	The EUT was performed at X axis, Y axis and Z axis position, and the worst case was found at X axis. So the measurement will follow this same test configuration.			
1	EUT 2 in X axis + Ant. 12			

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation			
Operating Mode Normal Link			
1 WLAN 2.4GHz + WLAN 5GHz + Bluetooth			
Refer to Sporton Test Report No.: FA132339-07 for Co-location RF Exposure Evaluation.			

2.2 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link Mode:

During the test, the EUT operation to normal function.

2.3 Accessories

N/A

2.4 Support Equipment

For AC Conduction:

Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID	
А	NB	DELL	E6430	N/A	
В	Fixture 3	Azurewave	2460 12	N/A	
С	Earphone	SHYARO CHI	MIC-04	N/A	
D	Mouse	HP	FM100	N/A	

For Radiated (below 1GHz):

Support Equipment					
No. Equipment Brand Name Model Name FCC ID					
А	Notebook	DELL	E4300	N/A	
В	Fixture 1	Azurewave	2458 12	N/A	

For Radiated (above 1GHz):

Support Equipment					
No. Equipment Brand Name Model Name FCC ID					
А	Notebook	DELL	E4300	N/A	
В	Fixture 2	Azurewave	AW-CB162NF I3	N/A	
С	Fixture 3	Azurewave	2460 12	N/A	

2.5 Test Setup Diagram

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5 66 - 56 * 56 - 46 *					
0.5-5	56	46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

3.1.5 Measurement Results Calculation

The measured Level is calculated using:

- a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- b. Margin = -Limit + Level

3.1.6 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 Emissions in Restricted Frequency Bands

3.2.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit					
Frequency Range (MHz) Field Strength (uV/m) Field Strength (dBuV/m) Measure Distar					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300		
0.490~1.705	24000/F(kHz)	33.8 - 23	30		
1.705~30.0	30	29	30		
30~88	100	40	3		
88~216	150	43.5	3		
216~960	200	46	3		
Above 960	500	54	3		

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].								
-	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.								
•	For the transmitter unwanted emissions shall be measured using following options below:								
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands. 								
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).								
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).								
	☑ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).								
	□ Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.								
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.								
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.								
•	For the transmitter band-edge emissions shall be measured using following options below:								
	 Refer as FCC KDB 558074 clause 8.7 & C63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below. 								
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements. 								
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). 								
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB 								
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred. 								

3.2.4 Test Setup

3.2.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.2.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.2.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix B

Test Equipment and Calibration Data 4

Instrument	Brand	Model No.	Serial No. Characteristics		Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz	Feb. 20, 2023	Feb. 19, 2024	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Feb. 16, 2023	Feb. 15, 2024	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Dec. 20, 2022	Dec. 19, 2023	Conduction (CO01-CB)
Pulse Limiter	Rohde&Schwarz	ESH3-Z2	100430	9kHz ~ 30MHz	Feb. 09, 2023	Feb. 08, 2024	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	Oct. 18, 2022	Oct. 17, 2023	Conduction (CO01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	May 14, 2022	May 13, 2023	Radiation (03CH04-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH04-CB	30 MHz ~ 1 GHz	Aug. 02, 2022	Aug. 01, 2023	Radiation (03CH04-CB)
3m Semi Anechoic Chamber VSWR	ТDК	SAC-3M	03CH04-CB	1GHz ~18GHz 3m	Feb. 23, 2023	Feb. 22, 2024	Radiation (03CH04-CB)
BILOG ANTENNA with 6 dB attenuator	Schaffner & EMCI	CBL6112B & N-6-06	22021&AT-N06 07	30MHz ~ 1GHz	Oct. 08, 2022	Oct. 07, 2023	Radiation (03CH04-CB)
Horn Antenna	ETS·Lindgren	3115	00143147	750MHz~18GHz	Oct. 12, 2022	Oct. 11, 2023	Radiation (03CH04-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2022	Aug. 21, 2023	Radiation (03CH04-CB)
Pre-Amplifier	EMCI	EMC330N	980391	20MHz ~ 3GHz	May 19, 2022	May 18, 2023	Radiation (03CH04-CB)
Pre-Amplifier	Agilent	83017A	MY53270063	0.5GHz ~ 26.5GHz	Jul. 01, 2022	Jun. 30, 2023	Radiation (03CH04-CB)
Spectrum Analyzer	R&S	FSP40	100142	9kHz~40GHz	Mar. 28, 2022	Mar. 27, 2023	Radiation (03CH04-CB)
Spectrum Analyzer	R&S	FSP40	100142	9kHz~40GHz	Mar. 21, 2023	Mar. 20, 2024	Radiation (03CH04-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	Jun. 17, 2022	Jun. 16, 2023	Radiation (03CH04-CB)
RF Cable-low	Woken	RG402	Low Cable-03+67	30MHz – 1GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH04-CB)
RF Cable-high	Woken	RG402	High Cable-21	1GHz - 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH04-CB
RF Cable-high	Woken	RG402	High Cable-21+67	1GHz - 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH04-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH04-CB)

Page Number : 22 of 24

: May 02, 2023

Issued Date Report Version : 01

Report No. : FR132339-07AA

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
High Cable	Woken	WCA0929M	40G#5	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH04-CB
High Cable	Woken	WCA0929M	40G#6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH04-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH04-CB)
3m Semi Anechoic Chamber VSWR	RIKEN	SAC-3M	03CH02-CB	1GHz ~18GHz	Mar. 26, 2022	Mar. 25, 2023	Radiation (03CH02-CB)
3m Semi Anechoic Chamber VSWR	RIKEN	SAC-3M	03CH02-CB	1GHz ~18GHz	Mar. 25, 2023	Mar. 24, 2024	Radiation (03CH02-CB)
Horn Antenna	EMCO	3115	9610-4976	1GHz ~ 18GHz	Apr. 19, 2022	Apr. 18, 2023	Radiation (03CH02-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2022	Aug. 21, 2023	Radiation (03CH02-CB)
Pre-Amplifier	Agilent	83017A	MY39501305	1GHz ~ 26.5GHz	Jul. 01, 2022	Jun. 30, 2023	Radiation (03CH02-CB)
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz	Nov. 16, 2022	Nov. 15, 2023	Radiation (03CH02-CB)
Spectrum analyzer	R&S	FSU	100015	9kHz~26GHz	Dec. 05, 2022	Dec. 04, 2023	Radiation (03CH02-CB)
RF Cable-high	Woken	RG402	High Cable-18	1GHz ~ 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH02-CB)
RF Cable-high	Woken	RG402	High Cable-18+19	1GHz ~ 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH02-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH02-CB)
High Cable	Woken	WCA0929M	40G#5	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH02-CB)
High Cable	Woken	WCA0929M	40G#6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH02-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH02-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH06-CB	1GHz ~18GHz 3m	Sep. 30, 2022	Sep. 29, 2023	Radiation (03CH06-CB)
Horn Antenna	SCHWARZBECK	BBHA9120D	BBHA 9120D-1292	1GHz~18GHz	Aug. 09, 2022	Aug. 08, 2023	Radiation (03CH06-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2022	Aug. 21, 2023	Radiation (03CH06-CB)
Pre-Amplifier	Agilent	83017A	MY53270064	0.5GHz ~ 26.5GHz	Aug. 02, 2022	Aug. 01, 2023	Radiation (03CH06-CB)
Signal Analyzer	R&S	FSV40	101904	9kHz ~ 40GHz	Apr. 26, 2022	Apr. 25, 2023	Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-68	1GHz~18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH06-CB)

Page Number : 23 of 24

: May 02, 2023

Issued Date Report Version : 01

Report No. : FR132339-07AA

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-05+68 1GHz~18GHz I		Dec. 21, 2022	Dec. 20, 2023	Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-18	1GHz ~ 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-18+19	1GHz ~ 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH06-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH06-CB)
High Cable	Woken	WCA0929M	40G#5	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH06-CB)
High Cable	Woken	WCA0929M	40G#6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH06-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH06-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Conducted Emissions at Powerline

Appendix A

summary											
Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition				
Mode 2	Pass	QP	150k	48.45	66.00	-17.55	Line				

Radiated Emissions below 1GHz

Summary											
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition				
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)					
Mode 5	Pass	QP	30M	38.95	40.00	-1.05	Vertical				

Radiated Emissions below 1GHz

Radiated Emissions below 1GHz

RSE TX above 1GHz

Appendix B.2

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
802.11ax HEW20_Nss1,(MCS0)_2TX	Pass	PK	2.4878G	72.78	74.00	-1.22	3	Vertical	43	1.19	

2.4-2.4835GHz_802.11g_Nss1,(6Mbps)_2TX 2437MHz_TX 140-Lim.PK \wedge РК \sim 120- \sim Lim.AV \sim AV 100· 80manna mmm 60-NOW 27/02/2023 40-20-2.337G 2.36G 2.38G 2.4G 2.42G 2.44G 2.46G 2.48G 2.5G 2.52G 2.537G EUT X_2TX Setting 20 04-D-W-4 Туре Freq Level Limit Margin Raw Dist Condition Azimuth Height Comment AF CL PA (dBuV/m) (dBuV/m) (dB) (dBuV) (dB) (dB) (dB) (Hz) (m) (m) (°) 39.49 РК 2.3886G 1.71 27.63 3.19 70.31 74.00 -3.69 3 Vertical 48 AV 2.3898G 52.34 54.00 -1.66 21.51 3 Vertical 48 1.71 27.64 3.19 РК 2.4334G 115.16 84.23 48 1.71 27.70 3.23 -Inf 3 Vertical Inf AV 2.435G 74.34 48 27.70 3.24 105.28 Inf -Inf 3 Vertical 1.71 РΚ 2.4835G 69.43 74.00 -4.57 38.32 3 Vertical 48 1.71 27.83 3.28 --AV 2.4838G 50.67 54.00 -3.33 19.55 3 Vertical 48 1.71 27.84 3.28

