

(Class II Permissive Change)

Product Name	802.11b/g/n Wireless USB Mini card
Model No	AW-NU706, AW-NU706H
FCC ID.	TLZ-NU706

A	pplicant	AzureWave Technologies, Inc.
A	ddress	8F, No. 94, Baozhong Rd., Xindian Taipei, 231 Taiwan

Date of Receipt	Dec. 24, 2009
Issue Date	Jan. 11, 2010
Report No.	09C425R-RFUSP05V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Jan. 11, 2010 Report No.: 09C425R-RFUSP05V01

Accredited by NIST (NVLAP)

NVLAP Lab Code: 200533-0

Product Name	802.11b/g/n Wireless USB Mini card			
Applicant	AzureWave Technologies, Inc.			
Address	8F, No. 94, Baozhong Rd., Xindian Taipei , 231 Taiwan			
Manufacturer	AzureWave Technologies, Inc.			
Model No.	AW-NU706, AW-NU706H			
EUT Rated Voltage	DC 3.3V			
EUT Test Voltage	AC 120V/60Hz			
Trade Name	AzureWave			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2008			
	ANSI C63.4: 2003			
Test Result	Complied			

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Rita Fluan 9

(Engineering Adm. Specialist / Rita Huang)

Tested By

NoNo Chan

(Engineer / Nono Chang)

Approved By

:

(Manager / Vincent Lin)

TABLE OF CONTENTS

Descript	tion	Page
1.	GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	10
2.1.	Test Equipment	10
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	14
3.1.	Test Equipment	14
3.2.	Test Setup	
3.3.	Limits	14
3.4.	Test Procedure	14
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	15
4.	Radiated Emission	
4.1.	Test Equipment	19
4.2.	Test Setup	20
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	Band Edge	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	40
5.4.	Test Procedure	40
5.5.	Uncertainty	
5.6.	Test Result of Band Edge	41
6.	EMI Reduction Method During Compliance Testing	57
Attachment 1:	EUT Test Photographs	
Attachment 2:	EUT Detailed Photographs	

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	802.11b/g/n Wireless USB Mini card		
Trade Name	AzureWave		
Model No.	AW-NU706, AW-NU706H		
FCC ID.	TLZ-NU706		
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW, 2422-2452MHz for 802.11n-40BW		
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7		
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 300Mbps		
Type of Modulation	802.11b:DSSS		
	DBPSK, DQPSK, CCK		
	802.11g/n:OFDM		
	BPSK, QPSK, 16QAM, 64QAM		
Antenna Type	PIFA		
Antenna Gain	Refer to the table "Antenna List"		
Channel Control	Auto		

Antenna List

No.	Manufacturer	Part No.	Peak Gain	
1	YAGEO	CAN43139LWPE00402 (R),	2.97dBi for 2.4 GHz	
		CAN43139LWPE00403 (L)		
2	WNC	81.EK815.G01 (Main), 81.EK815.G02 (Aux)	2.18dBi for 2.4 GHz	

Note:

- 1. The antenna of EUT is conform to FCC 15.203.
- 2. This is to request a Class II permissive change for FCC ID: TLZ-NU706, originally granted on 11/10/2008.

The major change filed under this application is:

Change #1: Additional Chassis added

Model number: 20043, 8078

The variation of model number is for different size of DDR.

Model name: Smart book

(The device have co-located with HSPA module card, but non-simultaneously transmit.)

Change #2: Addition new antenna, antenna gain: 2.97dBi.

802.11b/g/n-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

802.11n-40MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2422 MHz	Channel 02:	2427 MHz	Channel 03:	2432 MHz	Channel 04:	2437 MHz
Channel 05:	2442 MHz	Channel 06:	2447 MHz	Channel 07:	2452 MHz		

- 1. The EUT is an 802.11b/g/n Wireless USB Mini card with a built-in 2.4GHz WLAN transceiver.
- 2. Only the higher gain antenna Ant 1 was tested and recorded in this report.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps \$\infty\$ 802.11g is 6Mbps \$\infty\$ 802.11n(20M-BW) is 14.4Mbps and \$\infty\$ 802.11n(40M-BW) is 30Mbps)
- 5. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 6. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

1.2. Operational Description

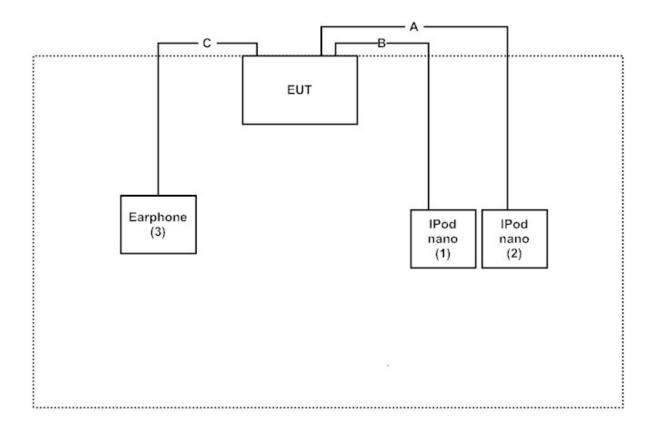
The EUT is a 802.11b/g/n Wireless USB Mini card with 11 channels. This device provided four kinds of transmitting speed 1, 2, 5.5 and 11Mbps and the device of RF carrier is DBPSK, DQPSK and CCK (IEEE 802.11b). The device provided of eight kinds of transmitting speed 6, 9, 12, 18, 24, 36, 48 and 54Mbps the device of RF carrier is BPSK, QPSK, 16QAM and 64QAM (IEEE 802.11g).

The device provided of eight kinds of transmitting speed 14.4,28.8,43.4,57.8,86.6,115.6,130 and 144.4 Mbps in 802.11n(20BW) mode and 30,60,90,120,180,240,270 and 300Mbps(40M-BW) the device of RF carrier is BPSK, QPSK, 16QAM and 64QAM (IEEE 802.11n), The IEEE 802.11n is Multiple In, Multiple Out" (MIMO) technology and two antennas to support 2(Transmit) * 2(Receive) NIMO technology.

This 802.11b/g/n Wireless USB Mini card, compliant with IEEE 802.11b and IEEE 802.11g/n, is a high-efficiency Wireless LAN adapter. It allows your computer to connect to a wireless network and to share resources, such as files or printers without being bound to the network wires. Operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) and Orthogonal Frequency Division Multiplexing (OFDM) radio transmission, the 802.11b/g/n Wireless USB Mini card Wired Equivalent Protection (WEP) algorithm is used. In addition, its standard compliance ensures that it can communicate with any IEEE 802.11b and IEEE 802.11g/n network.

Test Mode:	Mode 1: Transmitter (802.11b 1Mbps)
	Mode 2: Transmitter (802.11g 6Mbps)
Mode 3: Transmitter (802.11n MCS8 14.4Mbps 20M-BW)	
	Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW)

- 1. $802.11b \cdot 802.11g$ are tested by chain A.
- 2. 802.11n(20M-BW)
 \$ 802.11n(40M-BW) are testd by chain A + chain B


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
(1)	IPod nano	Apple	A1236	YM823SWSY0P	N/A
(2)	IPod nano	Apple	A1236	7L8221Y1Y0P	N/A
(3)	Earphone	AIWA	N/A	N/A	N/A

Signa	l Cable Type	Signal cable Description
А	USB Cable	Shielded, 0.9m
В	USB Cable	Shielded, 0.9m
С	Earphone Cable	Non-Shielded, 1.2m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute Command on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/tw/emc/accreditations/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on

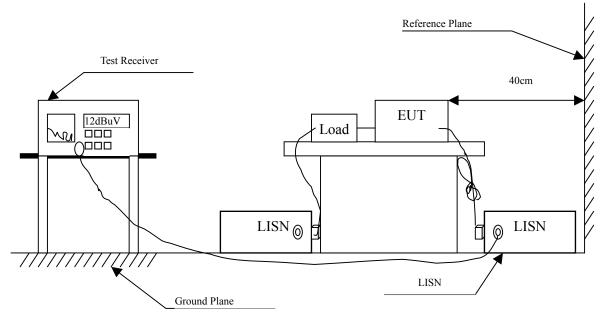
Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2009	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2009	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2009	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2009	
5	No.1 Shielded Roo	m		N/A	

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AVG				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.193	9.711	37.600	47.311	-17.460	64.771
0.259	9.670	31.340	41.010	-21.876	62.886
1.209	9.670	22.140	31.810	-24.190	56.000
3.244	9.690	18.920	28.610	-27.390	56.000
8.037	9.780	22.140	31.920	-28.080	60.000
13.697	9.940	31.590	41.530	-18.470	60.000
Average					
0.193	9.711	26.250	35.961	-18.810	54.771
0.259	9.670	22.560	32.230	-20.656	52.886
1.209	9.670	10.620	20.290	-25.710	46.000
3.244	9.690	10.730	20.420	-25.580	46.000
8.037	9.780	16.190	25.970	-24.030	50.000
13.697	9.940	26.580	36.520	-13.480	50.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item	 802.11b/g/n Wireless USB Mini card Conducted Emission Test 								
Power Line	: Line 2								
Test Mode	: Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW) (2437MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV	dB	dBuV				
Line 2									
Quasi-Peak									
0.189	9.724	37.180	46.904	-17.982	64.886				
0.318	9.660	25.910	35.570	-25.630	61.200				
0.509	9.640	20.030	29.670	-26.330	56.000				
2.318	9.680	22.300	31.980	-24.020	56.000				
4.599	9.700	22.370	32.070	-23.930	56.000				
13.904	9.950	31.170	41.120	-18.880	60.000				
Average									
0.189	9.724	24.070	33.794	-21.092	54.886				
0.318	9.660	15.610	25.270	-25.930	51.200				
0.509	9.640	7.560	17.200	-28.800	46.000				
2.318	9.680	13.590	23.270	-22.730	46.000				
4.599	9.700	14.680	24.380	-21.620	46.000				
13.904	9.950	26.010	35.960	-14.040	50.000				

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2009
Х	Power Sensor	Anritsu	MA2411B/0846193	Jun, 2009
Х	8-WAY Power Divider	JFW	50PD-647/526770 0916	Apr., 2009
NT - 4				

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. The power combiner is used for measure 11n mode.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11b 1Mbps)

Cable	Loss=0.5dB	Peak Power Output					
			Average	Peak			
Channel No.	Frequency (MHz)	For	For different Data Rate (Mbps)				Required Limit
		1	2	5.5	11	1	
1	2412.00	13.20				16.12	1Watt= 30 dBm
6	2437.00	13.68	13.65	13.6	13.55	16.20	1Watt= 30 dBm
11	2462.00	13.00				15.63	1Watt= 30 dBm

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11g 6Mbps)

Cable Loss	=0.5dB		Peak Power Output								
			Average Power								
Channel No.	Frequency		For different Data Rate (Mbps)						-	Power	Required Limit
	(MHz)	6	9	12	18	24	36	48	54	6	
1	2412.00	7.6								17.22	1Watt= 30 dBm
6	2437.00	7.95	7.03	7.01	6.9	6.97	6.89	6.92	7.25	17.35	1Watt= 30 dBm
11	2462.00	6.7								16.62	1Watt= 30 dBm

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n MCS8 14.4Mbps 20M-BW)

Cable Loss=0.5dB Peak Power Output Average Power Peak Frequency For different Data Rate (Mbps) Power Channel No. **Required** Limit (MHz) 28.8 43.4 57.8 86.8 115.6 130 144.4 14.4 14.4 2412.00 6.95 16.3 1Watt= 30 dBm 1 ----------------6 2437.00 7.57 7.53 7.51 7.47 7.43 7.41 7.38 7.37 16.32 1Watt= 30 dBm 11 2462.00 6.4 15.8 1Watt= 30 dBm ------------------

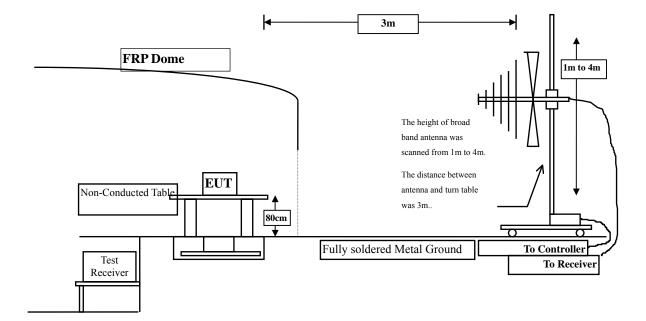
Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW)

Cable Los		Peak Power Output									
		Average Power						Peak			
Channel No.	Frequency		For different Data Rate (Mbps)				Power	Required Limit			
	(MHz)	30	60	90	120	180	240	270	300	30	
1	2422.00	5								14.2	1Watt= 30 dBm
4	2437.00	5.37	5.11	5.05	5.02	4.97	4.93	4.9	4.85	14.36	1Watt= 30 dBm
7	2452.00	4.3								13.64	1Watt= 30 dBm

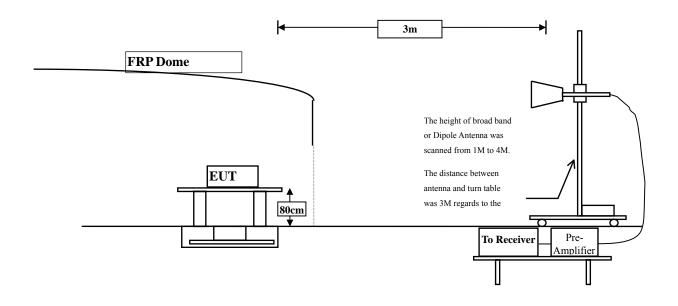
4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	Х	Pre-Amplifier	AGILENT	8447D/2944A09549	Sep., 2009
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Spectrum Analyzer	Advantest	R3162/91700283	Oct., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2009
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	uV/m @3m	dBuV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	9.582	41.330	50.912	-23.088	74.000
7236.000	14.401	34.970	49.371	-24.629	74.000
9648.000	19.795	36.440	56.235	-17.765	74.000
Average					
Detector:					
9648.000	19.795	22.440	42.235	-11.765	54.000
Vertical					
Peak Detector:					
4824.000	8.462	41.690	50.152	-23.848	74.000
7236.000	15.412	37.900	53.312	-20.688	74.000
9648.000	19.005	35.990	54.995	-19.005	74.000
Average					
Detector:					
9648.000	19.005	23.690	42.695	-11.305	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11b/g/n Wireless USB Mini card					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 1:	Transmitter (802	.11b 1Mbps) (2437 M	IHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4874.000	9.473	42.010	51.483	-22.517	74.000	
7311.000	14.540	34.210	48.749	-25.251	74.000	
9748.000	20.024	35.050	55.075	-18.925	74.000	
Average						
Detector:						
9748.000	20.024	24.250	44.275	-9.725	54.000	
Vertical						
Peak Detector:						
4874.000	8.882	43.590	52.471	-21.529	74.000	
7311.000	15.283	34.250	49.533	-24.467	74.000	
9748.000	19.228	37.080	56.309	-17.691	74.000	
Average						
Detector:						
9748.000	19.228	28.350	47.579	-6.421	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11b/g/n Wireless USB Mini card						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmitter (802	.11b 1Mbps) (2462 M	ſHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	9.487	38.330	47.816	-26.184	74.000		
7386.000	14.798	33.820	48.618	-25.382	74.000		
9848.000	20.005	35.730	55.736	-18.264	74.000		
Average							
Detector:							
9848.000	20.005	22.440	42.446	-11.554	54.000		
Vertical							
Peak Detector:							
4924.000	9.415	43.220	52.634	-21.366	74.000		
7386.000	15.269	34.460	49.729	-24.271	74.000		
9848.000	19.191	36.790	55.981	-18.019	74.000		
Average							
Detector:							
9848.000	19.191	26.990	46.181	-7.819	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	 802.11b/g/n Wireless USB Mini card Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11g 6Mbps) (2412MHz) 					
Test Mode	: Mode 2:			112)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4824.000	9.582	38.100	47.682	-26.318	74.000	
7236.000	14.401	35.390	49.791	-24.209	74.000	
9648.000	19.795	35.890	55.685	-18.315	74.000	
Average						
Detector:						
9648.000	19.795	23.220	43.015	-10.985	54.000	
Vertical						
Peak Detector:						
4824.000	8.462	39.740	48.202	-25.798	74.000	
7236.000	15.412	35.580	50.992	-23.008	74.000	
9648.000	19.005	35.320	54.325	-19.675	74.000	
Average						
Detector:						
9648.000	19.005	22.440	41.445	-12.555	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11b/g/n Wireless USB Mini card					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 2:	Transmitter (802	.11g 6Mbps) (2437 M	IHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4874.000	9.473	37.600	47.073	-26.927	74.000	
7311.000	14.540	34.020	48.559	-25.441	74.000	
9748.000	20.024	34.950	54.975	-19.025	74.000	
Average						
Detector:						
9748.000	20.024	23.600	43.625	-10.375	54.000	
Vertical						
Peak Detector:						
4874.000	8.882	36.320	45.201	-28.799	74.000	
7311.000	15.283	34.410	49.693	-24.307	74.000	
9748.000	19.228	35.750	54.979	-19.021	74.000	
Average						
Detector:						
9748.000	19.228	24.090	43.319	-10.681	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11b/g/n Wireless USB Mini card						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2:	Transmitter (802	.11g 6Mbps) (2462 M	ſHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	9.487	36.560	46.046	-27.954	74.000		
7386.000	14.798	34.990	49.788	-24.212	74.000		
9848.000	20.005	35.090	55.096	-18.904	74.000		
Average							
Detector:							
9848.000	20.005	23.600	43.606	-10.394	54.000		
Vertical							
Peak Detector:							
4924.000	9.415	36.210	45.624	-28.376	74.000		
7386.000	15.269	35.810	51.079	-22.921	74.000		
9848.000	19.191	35.910	55.101	-18.899	74.000		
Average							
Detector:							
9848.000	19.191	23.690	42.881	-11.119	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	 802.11b/g/n Wireless USB Mini card Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmitter (802.11n MCS8 14.4Mbps 20M-BW) (2412MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4824.000	9.582	34.190	43.772	-30.228	74.000	
7236.000	14.401	34.590	48.991	-25.009	74.000	
9648.000	19.795	35.660	55.455	-18.545	74.000	
Average						
Detector:						
9648.000	19.795	24.050	43.845	-10.155	54.000	
Vertical						
Peak Detector:						
4824.000	8.462	36.650	45.112	-28.888	74.000	
7236.000	15.412	34.850	50.262	-23.738	74.000	
9648.000	19.005	37.660	56.665	-17.335	74.000	
Average						
Detector:						
9648.000	19.005	24.020	43.025	-10.975	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11b/g/n Wireless USB Mini card						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: Transmitter (802.11n MCS8 14.4Mbps 20M-BW) (2437 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
Trequency	Factor	Level	Level	Iviaigiii	Linnt		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
	uВ	dBuv	uBu v/III	uБ	dBu v/III		
Horizontal							
Peak Detector:							
4874.000	9.473	35.990	45.463	-28.537	74.000		
7311.000	14.540	33.530	48.069	-25.931	74.000		
9748.000	20.024	35.550	55.575	-18.425	74.000		
Average							
Detector:							
9748.000	20.024	24.020	44.045	-9.955	54.000		
Vertical							
Peak Detector:							
4874.000	8.882	36.390	45.271	-28.729	74.000		
7311.000	15.283	34.320	49.603	-24.397	74.000		
9748.000	19.228	36.040	55.269	-18.731	74.000		
Average							
Detector:							
9748.000	19.228	23.660	42.889	-11.111	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item	 802.11b/g/n Wireless USB Mini card Harmonic Radiated Emission Data 							
Test Site	: No.3 OATS							
Test Mode	: Mode 3	: Mode 3: Transmitter (802.11n MCS8 14.4Mbps 20M-BW) (2462 MHz)						
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4924.000	9.487	36.330	45.816	-28.184	74.000			
7386.000	14.798	34.690	49.488	-24.512	74.000			
9848.000	20.005	35.220	55.226	-18.774	74.000			
Average								
Detector:								
9848.000	20.005	24.600	44.606	-9.394	54.000			
Vertical								
Peak Detector:								
4924.000	9.415	36.660	46.074	-27.926	74.000			
7386.000	15.269	35.050	50.319	-23.681	74.000			
9848.000	19.191	34.660	53.851	-20.149	74.000			
Average								

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	 802.11b/g/n Wireless USB Mini card Harmonic Radiated Emission Data No.3 OATS Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW) (2422MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4844.000	9.536	36.590	46.126	-27.874	74.000	
7266.000	14.459	35.490	49.949	-24.051	74.000	
9688.000	19.847	35.090	54.937	-19.063	74.000	
Average						
Detector:						
9688.000	19.847	23.990	43.837	-10.163	54.000	
Vertical						
Peak Detector:						
4844.000	8.627	36.880	45.507	-28.493	74.000	
7266.000	15.363	34.650	50.014	-23.986	74.000	
9688.000	19.057	35.930	54.987	-19.013	74.000	
Average						
Detector:						
9688.000	19.057	23.660	42.717	-11.283	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11b/g/n Wireless USB Mini card						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW) (2437 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	9.473	36.910	46.383	-27.617	74.000		
7311.000	14.540	33.970	48.509	-25.491	74.000		
9748.000	20.024	34.800	54.825	-19.175	74.000		
Average							
Detector:							
9748.000	20.024	23.660	43.685	-10.315	54.000		
Vertical							
Peak Detector:							
4874.000	8.882	37.050	45.931	-28.069	74.000		
7311.000	15.283	33.610	48.893	-25.107	74.000		
9748.000	19.228	35.760	54.989	-19.011	74.000		
Average							
Detector:							
9748.000	19.228	24.050	43.279	-10.721	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item	 802.11b/g/n Wireless USB Mini card Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode	Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW) (2452 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4904.000	9.518	36.550	46.068	-27.932	74.000		
7356.000	14.741	34.490	49.230	-24.770	74.000		
9808.000	20.066	35.550	55.616	-18.384	74.000		
Average							
Detector:							
9808.000	20.066	24.110	44.176	-9.824	54.000		
Vertical							
Peak Detector:							
4904.000	9.235	36.290	45.524	-28.476	74.000		
7356.000	15.318	33.690	49.008	-24.992	74.000		
9808.000	19.266	35.000	54.266	-19.734	74.000		
Average							
Detector:							
9808.000	19.266	24.360	43.626	-10.374	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	 802.11b/g/n Wireless USB Mini card General Radiated Emission Data No.3 OATS Mode 1: Transmitter (802.11b 1Mbps)(2437 MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
43.580	-4.897	35.183	30.285	-9.715	40.000	
264.740	-5.420	41.828	36.408	-9.592	46.000	
299.660	-4.061	42.580	38.519	-7.481	46.000	
332.640	-4.429	39.436	35.007	-10.993	46.000	
464.560	0.067	39.150	39.217	-6.783	46.000	
480.080	-0.784	37.432	36.648	-9.352	46.000	
Vertical						
45.520	-4.715	37.637	32.922	-7.078	40.000	
90.140	-3.376	41.228	37.852	-5.648	43.500	
210.420	-8.281	45.944	37.663	-5.837	43.500	
266.680	-8.654	47.657	39.003	-6.997	46.000	
332.640	-5.159	44.943	39.784	-6.216	46.000	
532.460	-1.092	38.182	37.090	-8.910	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11b/g/n Wireless USB Mini card							
Test Item	: General Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2	: Mode 2: Transmitter (802.11g 6Mbps)(2437 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
31.940	-0.786	33.411	32.625	-7.375	40.000			
231.760	-8.701	40.859	32.158	-13.842	46.000			
270.560	-5.471	41.966	36.495	-9.505	46.000			
321.000	-4.667	38.369	33.702	-12.298	46.000			
480.080	-0.784	37.227	36.443	-9.557	46.000			
534.400	1.540	39.057	40.597	-5.403	46.000			
Vertical								
90.140	-3.376	41.507	38.131	-5.369	43.500			
266.680	-8.654	46.843	38.189	-7.811	46.000			
332.640	-5.159	44.501	39.342	-6.658	46.000			
462.620	-4.298	36.689	32.391	-13.609	46.000			
499.480	-1.342	39.165	37.822	-8.178	46.000			
532.460	-1.092	36.282	35.190	-10.810	46.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site	 802.11b/g/n Wireless USB Mini card General Radiated Emission Data No.3 OATS 						
Test Mode	: Mode 3: 7	Fransmitter (802	.11n MCS8 14.4Mbp	s 20M-BW)(2437	7 MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
41.640	-4.347	37.157	32.810	-7.190	40.000		
90.140	-9.676	41.770	32.094	-11.406	43.500		
268.620	-5.394	40.593	35.199	-10.801	46.000		
338.460	-4.190	40.476	36.286	-9.714	46.000		
480.080	-0.784	37.097	36.313	-9.687	46.000		
532.460	1.428	32.419	33.847	-12.153	46.000		
Vertical							
43.580	-3.387	36.290	32.902	-7.098	40.000		
90.140	-3.376	40.394	37.018	-6.482	43.500		
198.780	-8.679	42.061	33.382	-10.118	43.500		
249.220	-8.023	41.310	33.287	-12.713	46.000		
338.460	-4.530	35.703	31.173	-14.827	46.000		
400.540	-5.660	36.293	30.633	-15.367	46.000		

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	 802.11b/g/n Wireless USB Mini card General Radiated Emission Data No.3 OATS Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW)(2437 MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
45.520	-7.685	36.795	29.110	-10.890	40.000			
262.800	-5.432	43.634	38.202	-7.798	46.000			
299.660	-4.061	43.238	39.177	-6.823	46.000			
365.620	-1.817	35.392	33.575	-12.425	46.000			
462.620	0.712	35.975	36.687	-9.313	46.000			
600.360	3.455	29.243	32.698	-13.302	46.000			
Vertical								
41.640	-2.207	37.267	35.060	-4.940	40.000			
78.500	-6.008	37.683	31.675	-8.325	40.000			
177.440	-8.870	42.846	33.976	-9.524	43.500			
264.740	-8.110	47.676	39.566	-6.434	46.000			
299.660	-7.331	46.837	39.506	-6.494	46.000			
536.340	-0.833	36.145	35.312	-10.688	46.000			

Note:

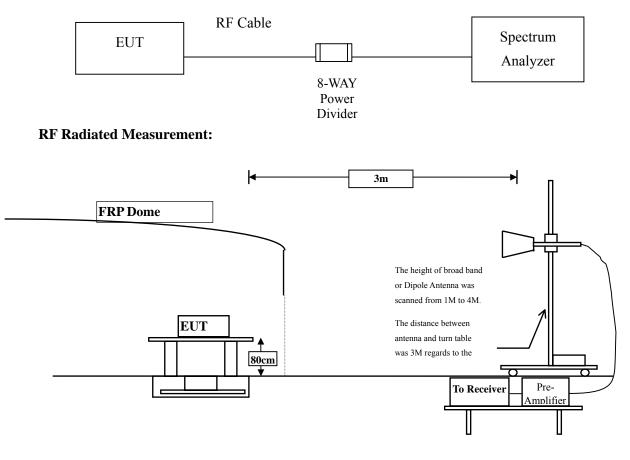
=

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

5. Band Edge

5.1. Test Equipment

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
	Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Pre-Amplifier	AGILENT	8447D/2944A09549	Sep., 2009
Site # 3		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
		Spectrum Analyzer	Advantest	R3162/91700283	Oct., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2009
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


The following test equipments are used during the band edge tests:

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

5.2. Test Setup

RF Conducted Measurement:

5.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

5.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

5.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

5.6. Test Result of Band Edge

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11b 1Mbps)-Channel 1

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	36.613	65.790	102.403	Peak
Horizontal	2412	36.613	58.160	94.773	Average
Vertical	2412	35.629	69.810	105.439	Peak
Vertical	2412	35.629	62.340	97.969	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390.0	102.403	41.1	62.303	Peak
Horizontal	2390.0	94.773	43.02	51.753	Average
Vertical	2390.0	105.439	41.1	64.339	Peak
Vertical	2390.0	97.969	43.02	52.949	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

🐉 start 🛛 🧭 🛤 📾

	ta	ge Del	and Ed	cted B	condu	or of o	ık Detec	Pe			
								er - Swept SA	rum Analyzei	lent Spec	🛛 Agi
Trace/Det	MDec 31, 2009 E 1 2 3 4 5 6 PE MWWWWW	TRAC	ALIGNAUTO e: Log-Pwr	#Avg Typ	NSE:INT		PNO: Fast	Input: RF	50 Ω		u
Select Trace	T 4 GHz		Mk			#Atten: 30	IFGain:Low	трис кн			
Trace 1	4 GH2 49 dBm		IVIN					0 dBm	Ref 10.00	B/div	
			-+1	1							og 0.00
Clear Wri					-						10.0
				3							0.0
Trace Avera	munselmas.	hang		- me	2				_		0.0
		5			and and the second s	1 and a second	consistent and	renter unrengend	and a straight of the state of	and the second	0.0
10 49 40 million											0.0 0.0
Max Ho											0.0
	00.0 MHz	Span 1						z	000 GHz	L ter 2.3	en
Min Ho	1001 pts)	500 ms (#Sweep			1.0 MHz	#VBW		.0 MHz	s BW 1	Re
	ON VALUE	FUNCTIC	NCTION WIDTH	ICTION FL	Bm	6.61 di	13 8 GHz		f	MODE TRO	1
View/Blanl					3m 3m	-44.26 dE -34.49 dE	90 0 GHz 97 4 GHz		f f	N 1 N 1	2
Viev					_					_	4 5 6
					-					-	8 8
Mo					-						9 0
1 0											1
🔍 📿 9:55 F					ovable Disk (f	📄 Rem	Agilent Spectrum An		🧭 🏠 🚥	tart	/ Si

Dook Detecto £ ducted Re d Ed Dolt

🗈 Agilent Spectrum Analyzer - Swept SA ALIGNAUTO 09:56:07 PM Dec 31, 2009 #Avg Type: Log-Pwr TRACE [1 2 3 4 5 6 Type MWWWW DET P N N N N SENSE:INT Marker Marker 3 2.397600000000 GHz PNO: Fast IFGain:Low #Atten: 30 dB Input: RF Select Marker Mkr3 2.397 6 GHz -39.86 dBm Ref 10.00 dBm 10 dB/div Log $\sqrt{1}$ 0.00 Normal -10.0 -20.0 -30.0 **♦**³ 40.0 Delta 2 -50.0 -60.0 -70.0 Fixed⊳ -80.0 Center 2.39000 GHz Span 100.0 MHz #Res BW 1.0 MHz #VBW 10 Hz Sweep 7.80 s (1001 pts) Off MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE Т Υ 3.16 dBm -54.98 dBm -39.86 dBm 1 N 1 f 2 N 1 f 3 N 1 f 2.415 1 GHz 2.390 0 GHz 2.397 6 GHz Properties► 4 5 6 8 9 10 11 12 More 1 of 2 🤇 🔀 9:56 PM

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11b 1Mbps) -Channel 11

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dB(uV)]	[dB(uV/m)]	
Horizontal	2462	36.699	67.110	103.809	Peak
Horizontal	2462	36.704	63.020	99.725	Average
Vertical	2462	36.039	71.090	107.129	Peak
Vertical	2462	36.039	66.690	102.729	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2483.5	103.809	51.6	52.209	Peak
Horizontal	2484.4	99.725	58.01	41.715	Average
Vertical	2483.5	107.129	51.6	55.529	Peak
Vertical	2484.4	102.729	58.01	44.719	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements

per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

Agilent Spectrum Analyzer - 50 Ω	Swept SA	AC SENSE:INT	ALIGNAUTO	09:56:52 PMDec 31, 2009	
arker 2 2.4835000	DOOOOO GHz put: RF PNO: Fast IFGain:Low	Trig: Free Run	#Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Marker
0 dB/div Ref 10.00 (, whiteh of the	Mk	r2 2.483 5 GHz -45.37 dBm	Select Marke
	×1-				Norm
0.0		hart 2	nen han legtre to marile participants (1900-1900)	communition of the second	De
D.0 D.0 D.0					Fixe
enter 2.48350 GHz Res BW 1.0 MHz		BW 1.0 MHz		Span 100.0 MHz 500 ms (1001 pts)	(
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.461 3 GHz 2.483 5 GHz	6.23 dBm -45.37 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	
3 4 5 6					Propertie
7 B 9 0					M d 1 d
1					

💴 Agilent Spectrum Analyzer - 🛛	Swept SA				
ΙΧΙ 50 Ω		SENSE:INT	ALIGNAUTO #Avg Type: Log-Pwr	09:57:21 PM Dec 31, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Marker
10 dB/div Ref 10.00 (put: RF PNO: Fast p	#Atten: 30 dB		DET P N N N N N	Select Marker
-10.0					Normal
-30.0		2 ×			Delta
-60.0					Fixed▷
Center 2.48350 GHz #Res BW 1.0 MHz MKR MODE TRO SCL	#VBW	Y FUN	Sweep	Span 100.0 MHz 7.80 s (1001 pts) FUNCTION VALUE	Of
1 N 1 f 2 N 1 f 3 4 5 5 6 7	2.461 6 GHz 2.484 4 GHz	2.89 dBm -55.12 dBm			Properties)
8 9 10 11 12					More 1 of 2
🛃 start 🛛 🤨 🛤 🚥	🔊 Agilent Spectrum Ana	, 📄 Removable Disk (F:)			🔍 🔀 9:57 PM

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11g 6Mbps) -Channel 1

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m] Reading Level [dBuV]		Emission Level [dBuV/m]	Detector
Horizontal	2412	36.613	61.720	98.333	Peak
Horizontal	2412	36.613	51.580	88.193	Average
Vertical	2412	35.629	65.100	100.729	Peak
Vertical	2412	35.629	54.170	89.799	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390	98.333	49.63	48.703	Peak
Horizontal	2360.1	88.193	52.55	35.643	Average
Vertical	2390	100.729	49.63	51.099	Peak
Vertical	2360.1	89.799	52.55	37.249	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements

per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

	MDec 31, 2009		ALIGN AUTO		AC SENSE:IN			50 Ω		
Marker Select Marker	E 1 2 3 4 5 6 E MWWWW T P N N N N N	TYP	ype: Log-Pwr	#Avg	Trig: Free Run #Atten: 30 dB) GHz PNO: Fast (IFGain:Low	1000000 Input: RF	.400000 I	(er 3 2	lark
	0 GHz 55 dBm		Mk				dBm	Ref 10.00	l/div	0 dB
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							og 0.00
Norm										0.0
		1								0.0
			_	3						0.0
De	Martin	Vinneter	_	and and	2			_		0.0
	the still we are to		_	_	and and the state of the state	and the second	and and all or contraction		day and a	0.0
			-					-		0.0
Fixed			-							0.0
	<u>.</u>							4		0.0
	00.0 MHz	Span 1				0		000 GHz	er 2.39	ent
c			#Sweep		/ 1.0 MHz	#VB		0 MHz	8W 1	Res
	N VALUE	FUNCTIO	FUNCTION WIDTH	FUNCTION	Y		×		IODE TRC	
					2.72 dBm -46.91 dBm	116 4 GHz 390 0 GHz		f f	N 1 N 1	
	IF							f	N 1	
Dranaria					-36.65 dBm	100 0 GHz	2.4	T		
Properties					-36.65 dBm	100 0 GHz	2.4	r		4 5
Properties					-36.65 dBm	100 0 GHz	2.4			4 5 6 7
20. 2019 TO - 7. 20. 2018 TO -					-36.65 dBm	100 0 GHz	2.4			4 5 6 7 8 9
Propertie: Mo 1 o					-36.65 dBm	100 0 GHz	2.4			4 5 6 7 8

🛛 Agilent Spectrum Analyzer -					
4 50 Ω Marker 4 2.400000		]	ALIGNAUTO #Avg Type: Log-Pwr	09:58:48 PMDec 31, 2009 TRACE 1 2 3 4 5 6	Marker
	put: RF PNO: Fast 😱 IFGain:Low	┘ Trig: Free Run #Atten: 30 dB	Mk	r4 2.400 0 GHz -48.24 dBm	Select Marker
0 dB/div Ref 10.00				-40.24 UDIII	Norma
20.0 30.0 40.0 50.0	A 3	<u>2</u>	4		Delta
60.0 -70.0 					Fixed
Center 2.39000 GHz #Res BW 1.0 MHz MKR MODE TRO SOL	#VBW		Sweep	Span 100.0 MHz 7.80 s (1001 pts)	of
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6	2.415 0 GHz 2.390 0 GHz 2.360 1 GHz 2.400 0 GHz	-6.83 dBm -60.38 dBm -59.38 dBm -48.24 dBm			Properties
7 8 9 10 11 12					More 1 of:
🛃 start 🛛 🧭 📾 🚥	💴 Agilent Spectrum Ana	📔 Removable Disk (F:	2		🤇 🔀 9:58 PM

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11g 6Mbps) -Channel 11

Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	2462	36.699	62.770	99.469	Peak
Horizontal	2462	36.699	52.830	89.529	Average
Vertical	2462	36.039	66.470	102.509	Peak
Vertical	2462	36.039	55.410	91.449	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

# Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	$\Delta$ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2496.5	99.469	50.27	49.199	Peak
Horizontal	2483.5	89.529	52.5	37.029	Average
Vertical	2496.5	102.509	50.27	52.239	Peak
Vertical	2483.5	91.449	52.5	38.949	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength =  $F - \Delta$ 

F = Fundamental field Strength (Peak or Average)

	ta	ge Del	Band Ed	ducted	ector of con	Peak Det	P		
						pt SA	Analyzer - Swept	lent Spectrun	🛛 Agi
Marker Select Marker	MDec 31, 2009 E 1 2 3 4 5 6 M WWWWW T P N N N N N	TRAC	ALIGNAUTO ype: Log-Pwr		AC SENSE:IN Trig: Free Run #Atten: 30 dB		Ω 1 <b>965000000</b> Input: RF	ker 3 2.4	a Aarl
Select Markel	6 5 GHz 79 dBm		Mk				f 10.00 dBm	3/div Re	
Norm									. <b>og</b> 0.00 10.0
-									20.0 30.0
Del	mat flate and page	Musculation	مالا غومتو مورده وافت أن الوط	<b>→</b> ³	2 2		Burkeyster		10.0 50.0
Fixe									0.0 0.0
	00.0 MHz		#Sweep		W 1.0 MHz	#\/		ter 2.483 s BW 1.0	en
		FUNCTIO	FUNCTION WIDTH	FUNCTION	2.48 dBm	× 2.463 2 GHz	. ×	N 1 f	KR N
Propertie					-48.98 dBm -47.79 dBm	2.483 5 GHz 2.496 5 GHz		<u>N 1 f</u> N 1 f	2
<b>M</b> c 1 o									8 9 0
< 🔀 10:00 F				isk (F:)	ı Ana 📔 Removable	D Agilent Spectru	û 🖬 🗍	tart 🖉 🧭	2 / si

💴 Agilent Spectrum Analyzer - 🤅	Swept SA				
₩ <u>50 Ω</u> Marker 2 2.4835000		SENSE:INT #/	ALIGNAUTO	10:00:23 PM Dec 31, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Marker
Inj		: 30 dB		DET P N N N N N	Select Marker
10 dB/div Ref 10.00 d	dBm		Mk	r2 2.483 5 GHz -59.77 dBm	2
0.00	1				
-10.0					Norma
-20.0					
-40.0					Delta
-50.0	n n	¢ ²			
-70.0					Fixed▷
-80.0					
Center 2.48350 GHz #Res BW 1.0 MHz	#VBW 10 Hz		Sweep	Span 100.0 MHz 7.80 s (1001 pts)	
MKR MODE TRC SCL	X Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Ofi
1 N 1 f 2 N 1 f 3		7 dBm 7 dBm			·
4 5					Properties ►
6 7 8					
9					More
11 12					1 of 2
🏭 start 🔰 🥙 🛤 🚥	🔊 Agilent Spectrum Ana	Removable Disk (F:)			K 🔀 10:00 PM

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n MCS8 14.4Mbps 20M-BW) -Channel 1

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	36.613	60.860	97.473	Peak
Horizontal	2412	36.613	49.930	86.543	Average
Vertical	2412	35.629	64.280	99.909	Peak
Vertical	2412	35.629	53.160	88.789	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

## Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	$\Delta$ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390	97.473	50.4	47.073	Peak
Horizontal	2360.8	86.543	51.89	34.653	Average
Vertical	2390	99.909	50.4	49.509	Peak
Vertical	2360.8	88.789	51.89	36.899	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements

per the Marker-Delta Method with the following formula:

Band Edge field Strength =  $F - \Delta$ 

F = Fundamental field Strength (Peak or Average)

	la	ge Dei	Danu Eu	icieu I	cona	ector of o	ак Det	Pe			
								yzer - Swept SA		ent Spec	Agile
Marker	MDec 31, 2009 E 1 2 3 4 5 6 E MWWWWW	TRAC	ALIGNAUTO ype: Log-Pwr	#Avg T	e Run		0 GHz PNO: Fast	00000000 Input: RF	^{50 Ω}	er 3	lark
Select Marke	D 0 GHz	1000	in: -10.00 dB	Ext Ga	0 dB	#Atten: 20	IFGain:Low	input. N			
	55 dBm		IVIN					.00 dBm	Ref 10	/div	) dB
		<u></u>	- l'	-							og 0.00
Norm		}	_								0.0
		1		1							0.0
		1		<b>→</b> ³ —							0.0
Del	Now with the second	Manna		and the second s	2 Lander						0.0
1	a de la constitución de la constitu					المحاط ومترجع ومقاسر الهذارية	og lange a far the set of the set	and and a standard program to a second	would be to show	ره جغار المرو <del>ن .</del>	0.0 0.0
											0.0
Fixed											0.0
<u> </u>	00.0 MHz	Onon 1			2		55		9000 G	~ 7 7	L
			#Sweep		<u>.</u>	BW 1.0 MHz	#V		9000 G		
ī	IN VALUE	FUNCTIO	FUNCTION WIDTH	INCTION		Y		×		ODE TRI	
					Bm	2.80 di -47.60 di	416 8 GHz 390 0 GHz	2.	f f	N 1 N 1	2 1
Properties					Bm	-37.55 dE	400 0 GHz	2.	f	N 1	4
Toperae											5 6
											7 8
											9
											0
Мо 1 о											0 1 2

								zer - Swept SA	trum Analy	ent Spec	🚺 Agil
Marker	TRACE 1 2 3 4 5 6	TR	ALIGN AUTO e: Log-Pwr	#Avg Typ	NSE:INT	1		00000000	^{50 Ω}	ker 3	<mark>x</mark> Marl
Select Marker	JET P NNNNN		-10.00 dB Mk	Ext Gain		Trig: Free #Atten: 20	PNO: Fast G IFGain:Low	Input: RF			
	-59.38 dBm		101.5.1.5					00 dBm	Ref 10.	l/div	10 dE
			1								0.00
Norma		1	- V	1							-10.0
											20.0
Delt											-40.0
		~		~	2			3-			-50.0
								*			60.0 70.0
Fixed											-80.0
	an 100.0 MHz	Span						łz	9000 GI	er 2.3	Cent
o	0 s (1001 pts)	7.80 s	Sweep			10 Hz	#VB\		1.0 MHz	5 BW 1	Res
	UNCTION VALUE	FUNC	NCTION WIDTH	CTION FL		-7.49 di	11 3 GHz	× 2.4	f	IODE TRO N 1	
			1		3m 3m	-60.10 dE -59.38 dE	90 0 GHz 60 8 GHz	2.3 2.3	f f	N 1 N 1	3
Properties											4
											6
Mor					_					_	8 9 10
1 of					-						11
11			STATUS							-	ISG

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n MCS8 14.4Mbps 20M-BW) -Channel 11

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dB(uV)]	[dB(uV/m)]	
Horizontal	2462	36.699	62.980	99.679	Peak
Horizontal	2462	36.699	51.990	88.689	Average
Vertical	2462	36.039	66.000	102.039	Peak
Vertical	2462	36.039	54.560	90.599	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

## Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	$\Delta$ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2483.7	99.679	49.29	50.389	Peak
Horizontal	2483.5	88.689	52.44	36.249	Average
Vertical	2483.7	102.039	49.29	52.749	Peak
Vertical	2483.5	90.599	52.44	38.159	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements

per the Marker-Delta Method with the following formula:

Band Edge field Strength = F -  $\Delta$ 

F = Fundamental field Strength (Peak or Average)



			icted Band Ed	ge Dena	
lent Spectrum Analyzer - S 50 Ω Ing	wept SA ut: RF PNO: Fast C IFGain:Low	AC SENSE:INT Trig: Free Run #Atten: 20 dB	ALIGNAUTO #Avg Type: Log-Pwr Ext Gain: -10.00 dB	11:54:40 PM Dec 31, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	System Settin Annotation
B/div Ref 10.00 d				r3 2.483 7 GHz -45.97 dBm	Local Settin
					Then Flat Monochror
anone the transformer		3	the construction of the second states of the second	manuface and and allow	Backlig
					Backi Inten
ter 2.48350 GHz s BW 1.0 MHz	#VB	W 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	
Model         TEC         SCL           N         1         f           N         1         f           N         1         f	X 2.464 1 GHz 2.483 5 GHz 2.483 7 GHz	Y F 3.32 dBm -47.53 dBm -45.97 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	
start 🛛 🤨 🔤 🔤	D Agilent Spectrum	Ana 🛅 Removable Disk (f			< 🔀 11:5

💴 Agilent Spectrum Analyzer - S		
50 Ω	AC SENSE:INT	ALIGNAUTO 11:55:10 PM Dec 31, 2009 #Avg Type: Log-Pwr TRACE 12 3 4 5 6 Type Mutantum
Ing 10 dB/div Ref 10.00 d	IFGain:Low #Atten: 20 dB	Ext Gain: -10.00 dB
		Norma
-30.0	2	Delta
-60.0		Fixed
Center 2.48350 GHz #Res BW 1.0 MHz MKR MODE TRC SCL	#VBW 10 Hz	Span 100.0 MHz Sweep 7.80 s (1001 pts) INCTION FUNCTION WIDTH FUNCTION VALUE
1 N 1 f 2 N 1 f 3 4 5 6 7	2.461 2 GHz -6.92 dBm 2.483 5 GHz -59.36 dBm	Properties
8 9 9 10 11 12 12 1		More 1 of 2
🛃 start 🛛 🧭 🛤 🛤	🗊 Agilent Spectrum Ana 📔 Removable Disk (F	0 🔍 🔍 11:55 PM

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW) -Channel 1

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2422	36.614	55.950	92.564	Peak
Horizontal	2422	36.614	44.420	81.034	Average
Vertical	2422	35.695	59.170	94.865	Peak
Vertical	2422	35.695	48.610	84.305	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

## Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	$\Delta$ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390	92.564	45.6	46.964	Peak
Horizontal	2390	81.034	46.95	34.084	Average
Vertical	2390	94.865	45.6	49.265	Peak
Vertical	2390	84.305	46.95	37.355	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F -  $\Delta$ 

F = Fundamental field Strength (Peak or Average)

and a second sec	
#Avg Type: Log-Pwr	IPMDec 31, 2009         Marker           ACE 1123456         Marker           YPE MWWWWW         Marker           DET P N N N N N         Marker
Mkr2 2.39	Select Marke
	1 1
	Norm
2	De
	Fixed
	100.0 MHz
0 MHz #Sweep 500 ms	
-2.11 dBm	TION VALUE
47.71 dBm	Droportio
4/./1 dBm	Propertie
44.71 dBm	
	Mo

								er - Swept SA			lent Sp	
Marker	ACE 1 2 3 4 5 6	TRA	ALIGNAUTO e: Log-Pwr	#Avg Typ	NSE:INT			0000000	390000	50 s 2 2.3	ker :	a Narl
Select Marker	DET P NNNNN	D		Ext Gain:		⊃ Trig: Free #Atten: 20	PNO: Fast G IFGain:Low	Input: RF				
	.30 dBm			1				0 dBm	f 10.00	Rei	3/div	og
Norma		$\sim$		-								0.00 10.0 20.0
Delta				Í								20.0 30.0 40.0
Den				~J	2							50.0
Fixed												70.0 80.0
	100.0 MHz (1001 pts)		Sween			V 10 Hz	#\/B)	z	0 GHz	.3900		
0	TION VALUE			CTION FU		-12.35 dl		×		TRC  SCL	MODE	_
Properties						-12.35 di -59.30 di	32 2 GHz 90 0 GHz			1 f 1 f	N N	2 3 4 5
												6 7 8
Mor 1 of												9 10 11
< 🔀 11:56 PM					ovable Disk (F:)	na 📔 Rem	l Agilent Spectrum A		😂 🖾	6	tart	

Product	:	802.11b/g/n Wireless USB Mini card
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmitter (802.11n MCS8 30Mbps 40M-BW) -Channel 7

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dB(uV)]	[dB(uV/m)]	
Horizontal	2452	36.645	57.410	94.055	Peak
Horizontal	2452	36.645	46.430	83.075	Average
Vertical	2452	35.920	61.200	97.120	Peak
Vertical	2452	35.920	50.250	86.170	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

# Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	$\Delta$ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2483.5	94.055	44.99	49.065	Peak
Horizontal	2483.5	83.075	46.84	36.235	Average
Vertical	2483.5	97.120	44.99	52.13	Peak
Vertical	2483.5	86.170	46.84	39.33	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength =  $F - \Delta$ 

F = Fundamental field Strength (Peak or Average)

	eita	ge De	and Ed	licted	[•] of cond	etecto	eak Dei	Pe	
							5A	Analyzer - Swept S <i>l</i>	
Marker	11:57:38 PM Dec 31, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N		ALIGNAUTO #Avg Type: Log-Pwr		AC SENSE:INT		DO GHz PNO: Fast	8350000000 Input: RF	rker 2 2.4
Select Marker 2	183 5 GHz 6.66 dBm	r2 2.48	:: -10.00 dB Mk	Ext G	tten: 20 dB	ow #i	IFGain:Lov	10.00 dBm	B/div R
Norm									
Del	an a	apartanya fi partatanga	the material stream on the second	hieroaca.	2				) ) 
Fixed									) ) )
c	n 100.0 MHz s (1001 pts) Iction value	500 ms	#Sweep	UNCTION	Y	VBW 1.0		/Hz ×	nter 2.483 es BW 1.0 MODE TRC 50
Properties					1.67 dBm 6.66 dBm		2.448 5 GHz 2.483 5 GHz		N 1 f N 1 f
<b>Mo</b> 1 of									
🔇 🔀 11:57 F									

							Swept SA	Analyzer - S		t Spec	gilent	l Ag
6 Marker	11:57:54 PM Dec 31, 2009 TRACE 1 2 3 4 5 6	ALIGNAUTO Type: Log-Pwr		SENSE:I	AC			835000	50 G	er 2	rke	/ Nar
Select Marker	DET P N N N N N	Ext Gain: -10.00 dB		Trig: Free Run #Atten: 20 dB		PNO: Fast G	put: RF	Inj				
	2 2.483 5 GHz -58.79 dBm	Mk					dBm	10.00 c	Ref	liv	IB/di	
Norma							-	1	_			.og 0.00
Norma									-		1	10.0 20.0
╢────			-				-				1	30.0
Delt				2-	th				-			40.0
					Jere		5					50.0 60.0
Fixed												70.0
<u> </u>												80.0
	Span 100.0 MHz 7.80 s (1001 pts)	Sweep		Hz	SW 10 I	#VBV		0 GHz /IHz	1.0 N			
٩	FUNCTION VALUE	FUNCTION WIDTH	FUNC	.95 dBm		450 8 GHz	× 2.4		C SCL		MOD N	MKR 1
]				3.79 dBm	-58	183 5 GHz	2.4		f	1	Ν	23
Properties												4 5 6
												7
Mor 1 of								-				9 10
								÷				11 12
< 🔀 11:57 PM			Disk (Ft)	💼 Removable	Ana	Agilent Spectrum A		27 GN	6	t	star	🛃 s

# 6. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs