

FCC C2PC Test Report

FCC ID : TLZ-NM230NF

Equipment : IEEE 802.11 b/g/n Wireless LAN and Bluetooth

combo M.2 1216 module

Model No. : AW-NM230NF-H

Brand Name : AzureWave

Applicant : AzureWave Technologies, Inc.

Address : 8F, No. 94, Baozhong Rd., Xindian Dist., New

Taipei City, Taiwan 231

Standard : 47 CFR FCC Part 15.247

Received Date : Jul. 21, 2017

Tested Date : Jul. 31 ~ Aug. 09, 2017

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen Assistant Manager Gary Chang / Manager

Testing Laboratory 2732

Report No.: FR550703-05AD Page: 1 of 30

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Test Standards	
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	Unwanted Emissions into Restricted Frequency Bands	14
4	TEST LABORATORY INFORMATION	30

Release Record

Report No.	Version	Description	Issued Date
FR550703-05AD	Rev. 01	Initial issue	Aug. 18, 2017

Report No.: FR550703-05AD Page: 3 of 30

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207		[dBuV]: 0.458MHz 39.31 (Margin -17.42dB) - QP	Pass
15.247(d) 15.209		[dBuV/m at 3m]: 73.65MHz 35.82 (Margin -4.18dB) - PK	Pass

Report No.: FR550703-05AD Page: 4 of 30

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a supplementary report to original ICC report no. FR550703AD. The modification is concerned with additional Monopole antennas. In this report, conducted emission and radiated emission tests had been re-tested and only its data was presented in the following sections.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz) Bluetooth Ch. Frequency Channel Number Data Rate						
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

1.1.2 Antenna Details (New set of antenna was marked in boldface)

Ant. No.	Brand	Model	Туре	Connector	Gain (dBi)
1	Walsin	RFMTA340715IMLB301	PIFA	I-PEX	3
2	JOYMAX	IHX-323XRSXX-999	Monopole	I-Pex	2.36

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	3.3Vdc from host

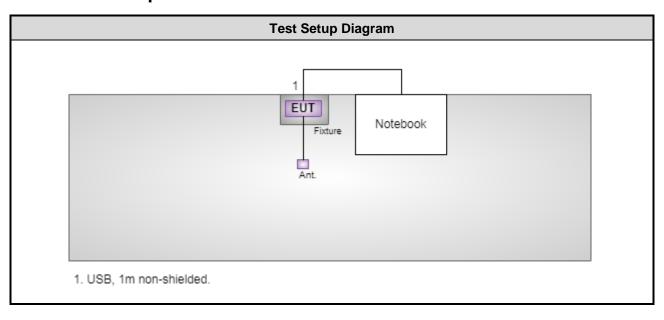
1.1.4 Accessories

N/A

Report No.: FR550703-05AD Page: 5 of 30

1.1.5 Channel List

	Frequency	band (MHz)		2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		


Report No.: FR550703-05AD Page: 6 of 30

1.2 Local Support Equipment List

	Support Equipment List				
No.	No. Equipment Brand Model FCC ID Signal cable / Length (m)				
1	Notebook	DELL	Latitude E5420	DoC	USB, 1m non-shielded.

1.3 Test Setup Chart

Report No.: FR550703-05AD Page: 7 of 30

1.4 The Equipment List

Test Item	Conducted Emission						
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)					
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration Until						
Receiver	R&S	ESR3	101657	Dec. 21, 2016	Dec. 20, 2017		
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 08, 2016	Nov. 07, 2017		
RF Cable-CON	EMC	EMCCFD300-BM-B M-6000	50821	Dec. 20, 2016	Dec. 19, 2017		
Measurement Software AUDIX e3 6.120210k NA NA NA							
Note: Calibration Interval of instruments listed above is one year.							

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03Cl	H01-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Nov. 25, 2016	Nov. 24, 2017
Receiver	R&S	ESR3	101658	Nov. 24, 2016	Nov. 23, 2017
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 25, 2017	Jul. 24, 2018
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 21, 2016	Dec. 20, 2017
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 25, 2016	Oct. 24, 2017
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 10, 2016	Nov. 09, 2017
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 09, 2016	Dec. 08, 2017
Preamplifier	EMC	EMC02325	980225	Jul. 28, 2017	Jul. 27, 2018
Preamplifier	Agilent	83017A	MY39501308	Oct. 06, 2016	Oct. 05, 2017
Preamplifier	EMC	EMC184045B	980192	Aug. 24, 2016	Aug. 23, 2017
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 09, 2016	Dec. 08, 2017
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 09, 2016	Dec. 08, 2017
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 09, 2016	Dec. 08, 2017
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	16052	Dec. 09, 2016	Dec. 08, 2017
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 09, 2016	Dec. 08, 2017
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 09, 2016	Dec. 08, 2017
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Inter	rval of instruments liste	d above is one year.			

Report No.: FR550703-05AD Page: 8 of 30

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty			
Parameters	Uncertainty		
AC conducted emission	±2.90 dB		
Radiated emission ≤ 1GHz	±3.66 dB		
Radiated emission > 1GHz	±5.63 dB		

Report No.: FR550703-05AD Page: 9 of 30

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	20°C / 57%	Alex Tsai
Radiated Emissions	03CH01-WS	23-24°C / 62-64%	Vincent Yeh

FCC Designation No.: TW2732
 FCC site registration No.: 181692
 IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration		
Conducted Emissions	GFSK	2402	1Mbps			
Radiated Emissions ≤ 1GHz	GFSK	2402	1Mbps			
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps			

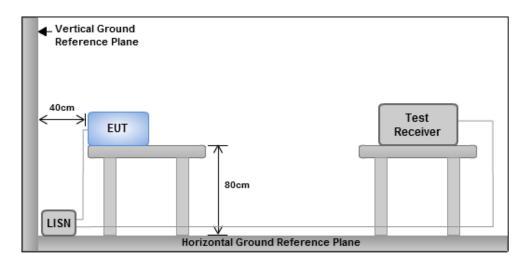
NOTE:

Report No.: FR550703-05AD Page: 10 of 30

^{1.} The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

3 Transmitter Test Results

3.1 Conducted Emissions

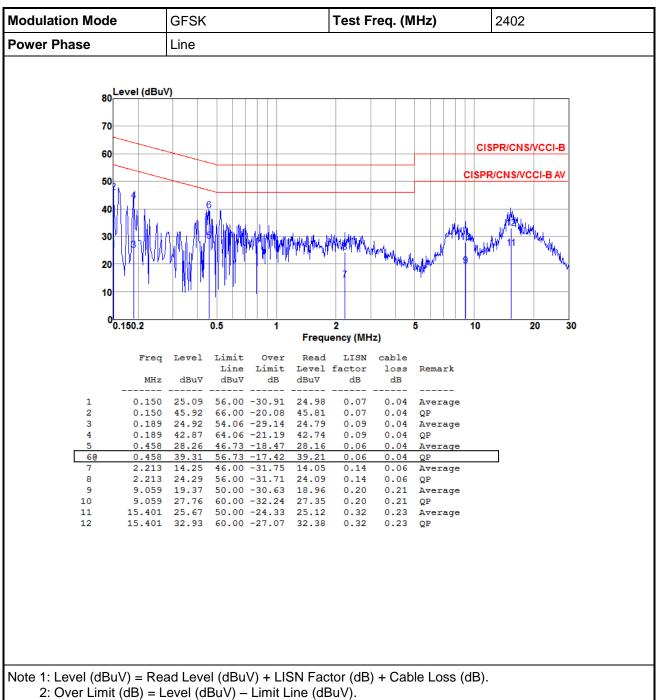

3.1.1 Limit of Conducted Emissions

	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	m of the frequency.	1

3.1.2 Test Procedures

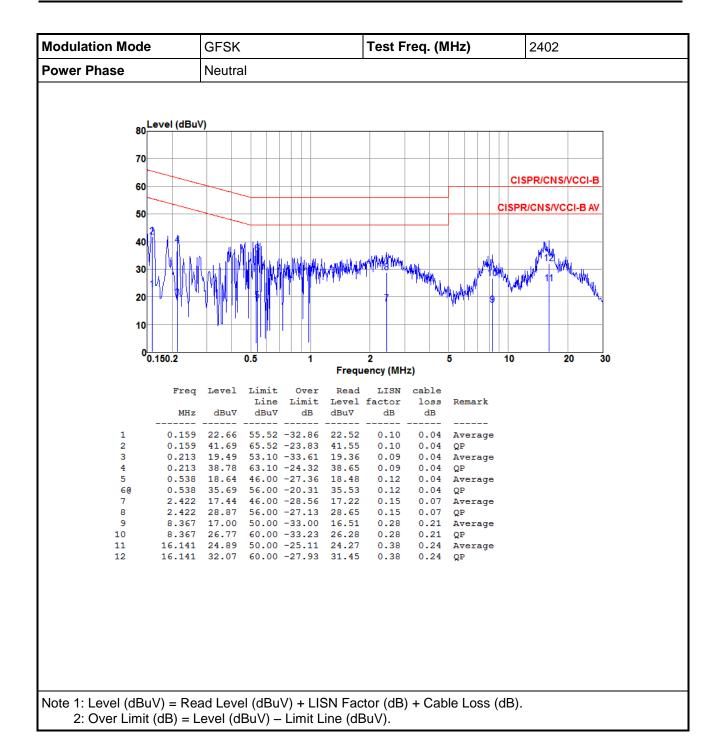
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR550703-05AD Page: 11 of 30



Test Result of Conducted Emissions 3.1.4

Report No.: FR550703-05AD Page: 12 of 30

Report No.: FR550703-05AD Page: 13 of 30

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

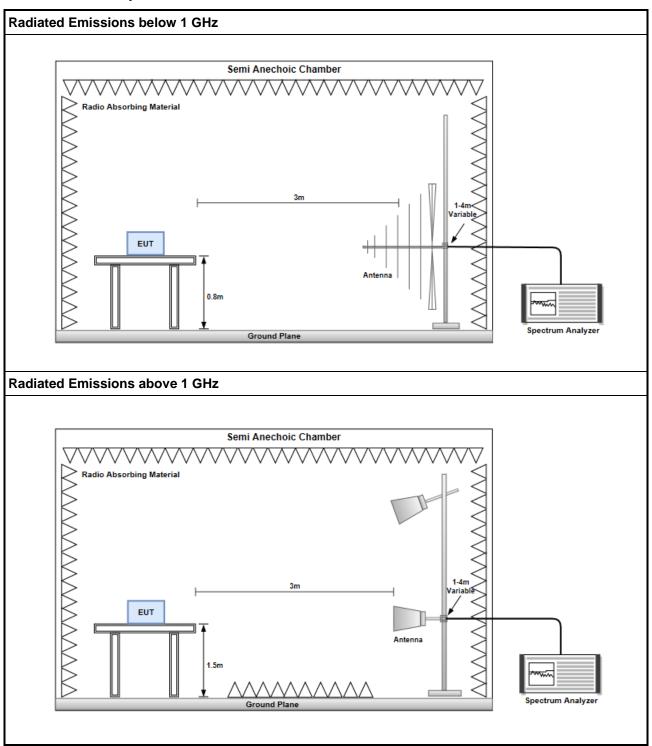
- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

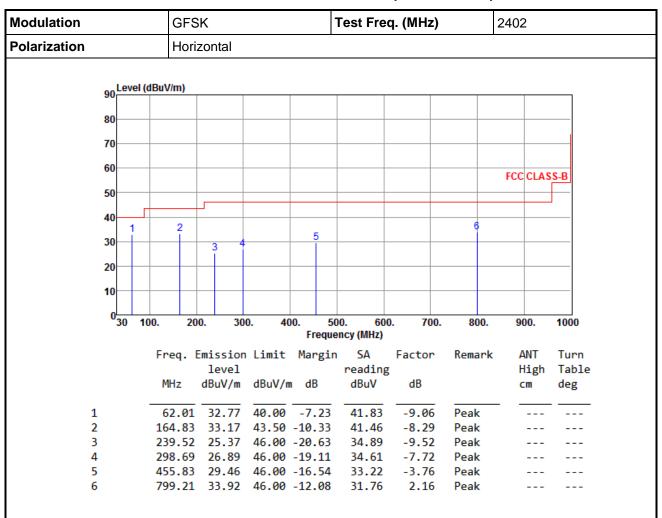
Radiated emission above 1GHz / Average value for harmonics

The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


3.
$$\frac{1s / 1600 * 5}{20 \log (\text{Duty cycle}) = 20 \log \frac{100 \text{ ms}}{100 \text{ ms}}} = -30.1 \text{dB}$$

4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz, VBW=1/T and Peak detector

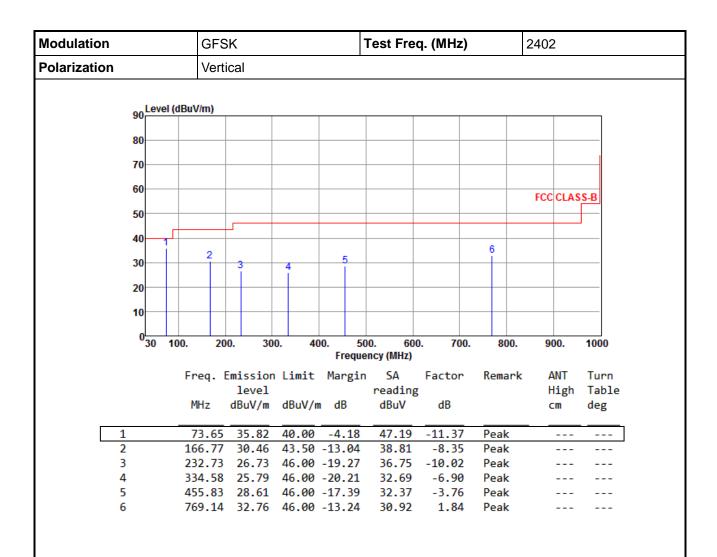
Report No.: FR550703-05AD Page: 14 of 30


3.2.3 Test Setup

Report No.: FR550703-05AD Page: 15 of 30

3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

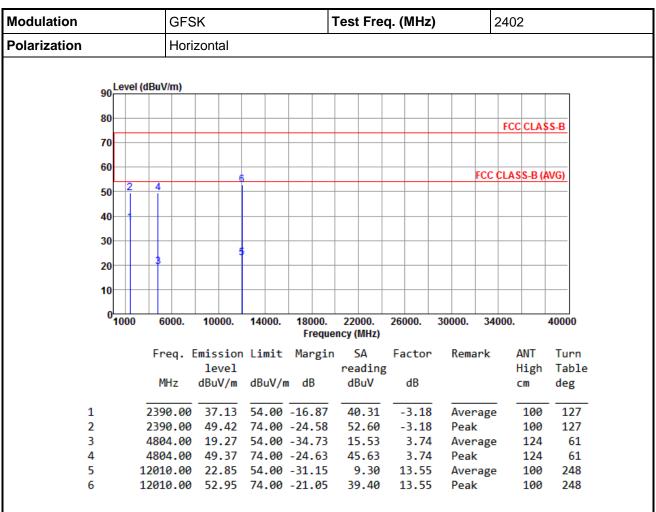

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR550703-05AD Page: 16 of 30

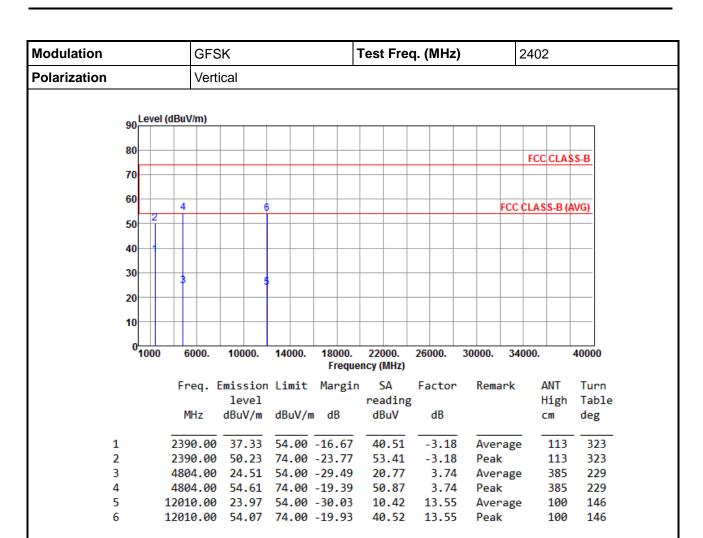
*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR550703-05AD Page: 17 of 30

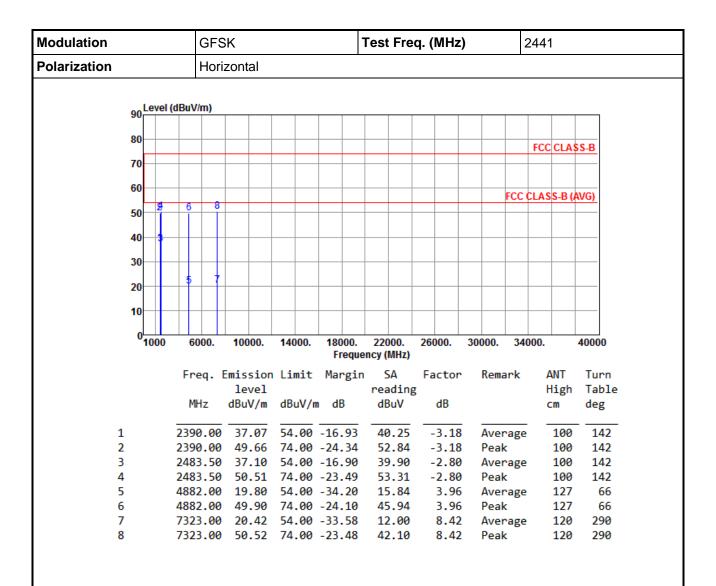
3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

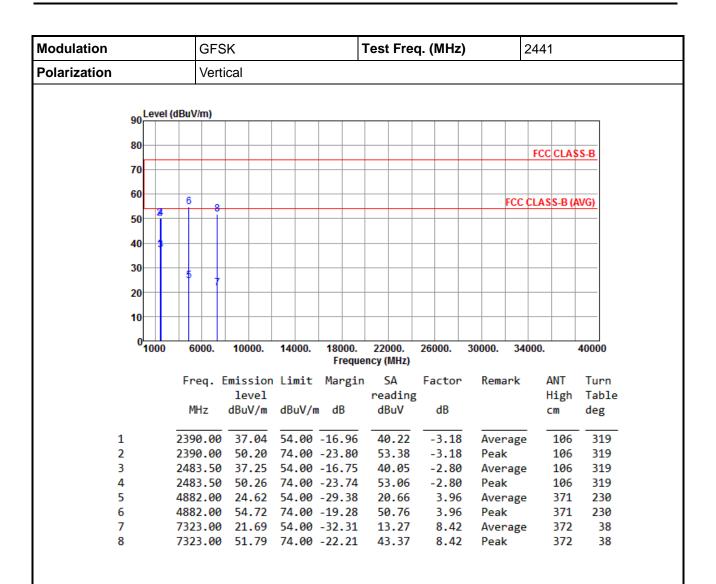
Report No.: FR550703-05AD Page: 18 of 30



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

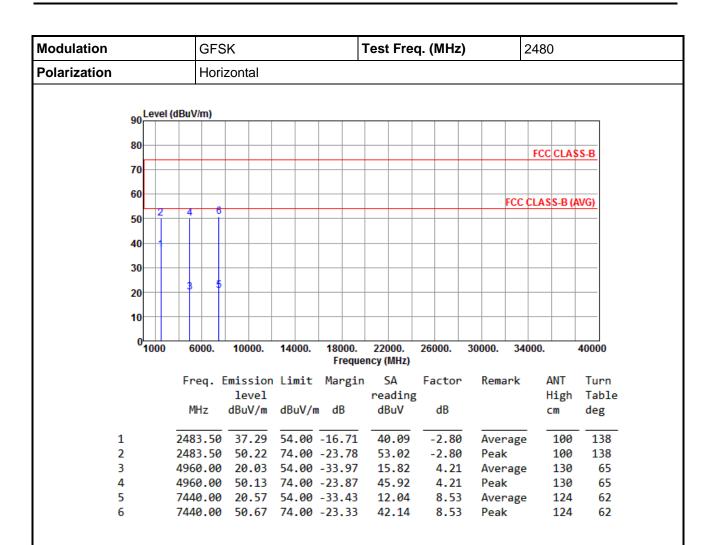
Report No.: FR550703-05AD Page: 19 of 30



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

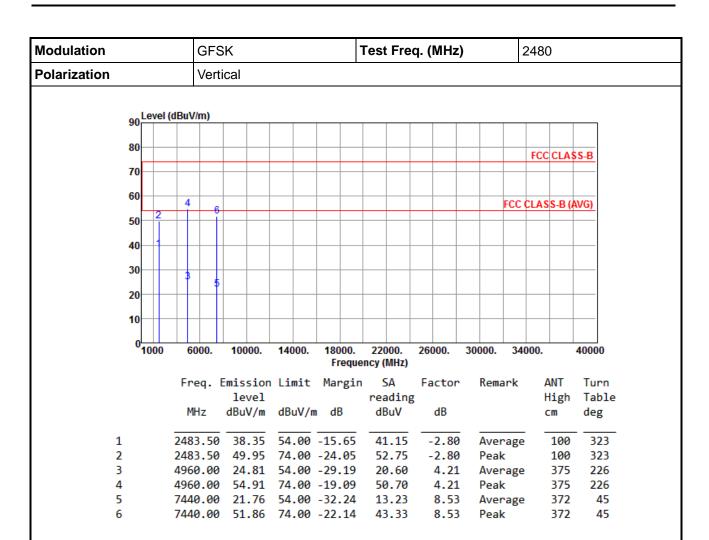
Report No.: FR550703-05AD Page: 20 of 30



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 21 of 30



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 22 of 30

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 23 of 30

3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 24 of 30

Modulation			8DP	SK			Test Fre	2402	2402			
Polarization	Vertical											
	90 Le	evel	(dBuV/m)									
	80-											
	00									FCC CL	ASS-B	
	70											
	60	-							FC	CCLACCI	D (AVC)	
	50	2	4)				FC	C CLASS-E	B (AVG)	
	40	1										
	30	+										
	20		3									
	10											
	010	000	6000.	10000.	14000.	18000.	22000.	26000.	30000. 3	34000.	40000	
			F		1224		ency (MHz)	F+	DI	ANT	T	
			rreq.	Emission level	LIMIT	margi	n SA reading	Factor	Remark	c ANT Hig		
			MHz	dBuV/m	dBuV/ı	n dB	dBuV	dB		CM	deg	
	1		2390.00	37.26	54.00	-16.74	40.44	-3.18	Averag		14 322	
	2		2390.00					-3.18		11		
	3		4804.00			-33.21		3.74	_	-		
•	4		4804.00	50.89	/4.00	-23.11	47.15	3.74	Peak	33	32 142	

100

100

13.55

13.55

Average

Peak

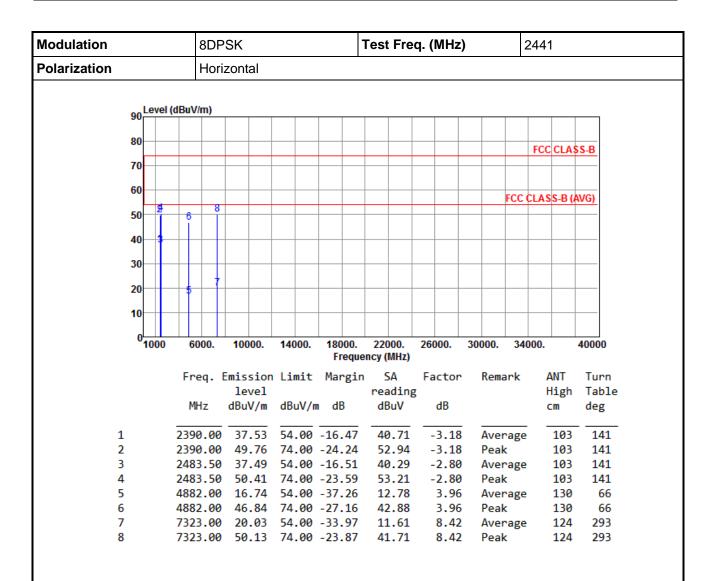
152

152

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

12010.00 23.84 54.00 -30.16 10.29

12010.00 53.94 74.00 -20.06 40.39


*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 25 of 30

Report Version: Rev. 01

5

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 26 of 30

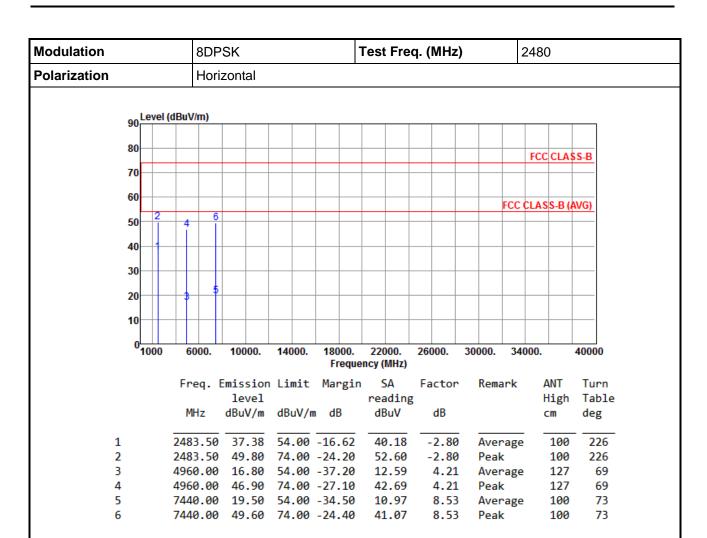
Modulation				8DPSK						Test	Fre	q. (MHz))	1	244 ⁻	1	
Polarization			Vertical															
	90	Level	(dBu\	//m)														
	80							\dashv								FCC	CLAS	SS-B
	70																JEII	
	60		1_					\neg							FCC	CLAS	S-B (AVG)
	50	2	- 6	8														
	40	1																
	30)——						-							-			
			\$	+														
	20																	
	10) 			-			-							-	-		
	0																	
	·	1000	6	000.	100	000.	1400	0.	18000.		000.	260	000.	30000.	34	000.		40000
									Frequ									
			Fr	eq.			Limi	it	Margi				ctor	Rem	ark		ANT	Turi
			м	Hz		vel V/m	dBu\	//m	дB		nding BuV		dB				High cm	Tab deg
			P	112	ubu	v / III	ubu	// III	ub	uı	ouv		ub			•	CIII	ueg
:	1		239	0.00	37	.48	54.6	90 -	-16.52	46	0.66	_	3.18	Ave	rage		106	32
	2		239	0.00	49	.66	74.6	90 -	-24.34		.84		3.18		_		106	
	3								-16.38		.42		2.80		rage	•	106	
	4								-24.05		2.75		2.80				106	
	5								-32.71		7.33		3.96		rage	•	338	
	5 7								-22.61 -34.44		7.43 1.14		3.96 8.42		k rage		338 322	14 17
	_		/52	٥٠.٠٠	15	. 50	54.0		-54.44	11	4		0.42	Ave	age		322	1/

8.42

Peak

322

172


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7323.00 49.66 74.00 -24.34 41.24

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 27 of 30

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 28 of 30

Modulation	8DPS	SK		-	Test Fre	24	2480					
Polarization	Vertical											
90 Level (di	BuV/m)											
80												
80								F	FCC CLA	SS-B		
70												
60												
50 2	4 6							FCC CL	ASS-B (AVG)		
50												
40												
30												
20	3 5											
10												
0 1000	6000.	10000.	14000.	18000. Freque	22000. ency (MHz)	26000.	30000.	3400	0.	40000		
	Freq. En	mission	Limit	Margin	SA	Factor	Rema	rk	ANT	Turn		
		level			reading				High	Table		
	MHz o	dBuV/m	dBuV/m	ı dB	dBuV	dB			cm	deg		
1 2	2483.50	37.41	54.00	-16.59	40.21	-2.80	Aver	age	100	321		
2 2	2483.50	50.04	74.00	-23.96	52.84	-2.80		_	100	321		
	1960.00				17.40	4.21		_	381	235		
	1960.00 7440.00				47.50 11.58	4.21 8.53			381 376	235 55		
	7440.00				41.68	8.53			376	55 55		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR550703-05AD Page: 29 of 30

4 **Test laboratory information**

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Tel: 886-2-2601-1640

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

__END__

Report No.: FR550703-05AD Page: 30 of 30