

RF EXPOSURE REPORT

REPORT NO.: SA991223E06

MODEL NO.: AW-NH931

FCC ID: TLZ-NH931

ACCORDING: FCC Guidelines for Human Exposure

IEEE C95.1

APPLICANT: AzureWave Technologies, Inc.

- ADDRESS: 8 F., No. 94, Baozhong Rd., Xindian, Taipei, Taiwan 231
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	NA	Feb. 14, 2011

1. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)		POWER DENSITY (mW/cm ²)	AVERAGE TIME (minutes)		
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE						
300-1500			F/1500	30		
1500-100,000			1.0	30		

F = Frequency in MHz

2. MPE CALCULATION FORMULA

Pd = (Pout*G) / (4*pi*r2)

where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

3. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.

4. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

For WLAN

FREQUENCY BAND (MHz)	MAX POWER (dBm)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
2412-2462	21.9	2.98	20	0.061	1.00

For Bluetooth

FREQUENCY BAND (MHz)	MAX POWER (dBm)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
2402-2480	10.6	2.98	20	0.254	1.00

CONCLUSION:

Both of the WLAN and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

$CPD_1 / LPD_1 + CPD_2 / LPD_2 + \dots etc. < 1$

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.061 / 1 + 0.254 / 1 = 0.315, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

----END----