

Partial FCC Test Report

Report No.: RF170309C18-3

FCC ID: TLZ-CM389NF

Test Model: AW-CM389NF

Received Date: Mar. 09, 2017

Test Date: Mar. 20, 2017 ~ Mar. 21, 2017

Issued Date: Apr. 28, 2017

Applicant: AzureWave Technologies, Inc.

Address: 8F., No. 94, Baozhong Rd., Xindian Dist., New Taipei City Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RF170309C18-3 Page No. 1 / 24 Report Format Version: 6.1.1

Table of Contents

Re	Release Control Record	3
1	1 Certificate of Conformity	4
2	2 Summary of Test Results	5
	Measurement Uncertainty	
3	3 General Information	6
	3.1 General Description of EUT	
4	4 Test Types and Results	11
	4.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Set Up 4.1.6 EUT Operating Conditions 4.1.7 Test Results 4.2 Conducted Emission Measurement 4.2.1 Limits of Conducted Emission Measurement 4.2.2 Test Instruments 4.2.3 Test Procedures 4.2.4 Deviation from Test Standard 4.2.5 Test Setup 4.2.6 EUT Operating Condition 4.2.7 Test Results	
5	5 Pictures of Test Arrangements	23
Αı	Appendix - Information on the Testing Laboratories	24

Release Control Record

Issue No.	Description	Date Issued
RF170309C18-3	Original Release	Apr. 28, 2017

Report No.: RF170309C18-3 Page No. 3 / 24 Report Format Version: 6.1.1

1 Certificate of Conformity

Product: IEEE 802.11 2X2 MIMO a/b/g/n/ac Wireless LAN + Bluetooth Module

Brand: AzureWave

Test Model: AW-CM389NF

Sample Status: Identical Prototype

Applicant: AzureWave Technologies, Inc.

Test Date: Mar. 20, 2017 ~ Mar. 21, 2017

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , Date: Apr. 28, 2017

Rona Chen / Specialist

Approved by: , **Date:** Apr. 28, 2017

David Huang / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause Test Item		Result	Remarks				
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -19.21 dB at 0.25932 MHz.				
15.247(a)(1) (iii)	Number of Hopping Frequency Used	N/A	Refer to Note				
15.247(a)(1) (iii) Dwell Time on Each Channel		N/A	Refer to Note				
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	N/A	Refer to Note				
15.247(b) Maximum Peak Output Power		N/A	Refer to Note				
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -6.88 dB at 2483.52 MHz.				
15.247(d) Band Edge Measurement		N/A	Refer to Note				
15.247(d) Antenna Port Emission		N/A	Refer to Note				
15.203	Antenna Requirement	N/A	Refer to Note				

Note: Test items for AC Power Conducted Emission and Radiated Emissions were performed for this report. For other test data, please refer to BV CPS Report No.: RF140407E07D-3 for module (Brand: AzureWave, Model: AW-CM389NF).

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.93 dB
hadiated Emissions up to 1 GHz	200 MHz ~1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
hadiated Effissions above 1 GHz	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

Report No.: RF170309C18-3 Page No. 5 / 24 Report Format Version: 6.1.1

3 General Information

3.1 General Description of EUT

Product	IEEE 802.11 2X2 MIMO a/b/g/n/ac Wireless LAN + Bluetooth Module		
Brand	AzureWave		
Test Model	AW-CM389NF		
Status of EUT	Identical Prototype		
Power Supply Rating	3.3 Vdc (Host equipment)		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Transfer Rate	1/2/3 Mbps		
Operating Frequency	2402 ~ 2480 MHz		
Number of Channel	79		
Antenna Type	Refer to BV CPS Report No.: RF140407E07D-3		
Antenna Connector	Refer to BV CPS Report No.: RF140407E07D-3		
Accessory Device	N/A		
Data Cable Supplied	N/A		

Note:

1. The EUT is authorized for use in specific End-product. Please refer to below for more details.

Product	Brand	Model
Smart IOT	Compal	EIH3

2. The information of antenna which collocated in the End-product is listed as below.

Antenna Type	Manufacturer	Antenna Gain (dBi)	
Dipole	Speed	3.75	

3. The End-product contains following accessory devices.

Product	Brand	Model	Description
Adamtau	DVE	DOA OADEM 10 ELIC	I/P: 100-240 Vac, 0.8 A
Adapter	DVE	DSA-24PFM-12 FUS	O/P: 12 Vdc, 2 A
BT/WLAN Module	AzureWave	AW-CM389NF	
Zigbee Module	MMBnetwork	Z357PA40-SMT	
Z-Wave Module	Sigma Designs	ZM5202AU	

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

Report No.: RF170309C18-3 Page No. 6 / 24 Report Format Version: 6.1.1

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applicable To		Description
Mode	RE≥1G	RE<1G	PLC	Безсприон
-	V	V	V	-

Where

RE≥1G: Radiated Emission above 1 GHz

RE<1G: Radiated Emission below 1 GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note:

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	78	FHSS	8DPSK	DH5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	78	FHSS	8DPSK	DH5

Test Condition:

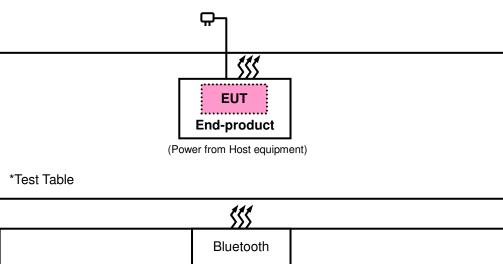
Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Getaz Yang
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Getaz Yang
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Getaz Yang

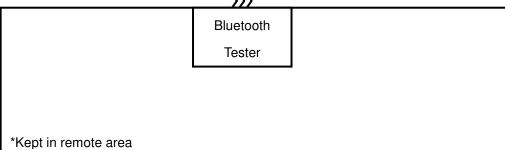
Report No.: RF170309C18-3 Page No. 8 / 24 Report Format Version: 6.1.1

^{1.} For Radiated emission test, pre-tested GFSK, π/4-DQPSK, 8DPSK modulation type and found 8DPSK was the worse, therefore chosen for the final test and presented in the test report.

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Bluetooth Tester	R&S	CBT	100980	N/A


No.	Signal Cable Description Of The Above Support Units
1.	N/A

Nota

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items 1 acted as communication partners to transfer data.

3.3.1 Configuration of System under Test

Report No.: RF170309C18-3 Page No. 9 / 24 Report Format Version: 6.1.1

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Public Notice DA 00-705

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Note: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Report No.: RF170309C18-3 Page No. 10 / 24 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 ~ 0.490	2400/F (kHz)	300		
0.490 ~ 1.705	24000/F (kHz)	30		
1.705 ~ 30.0	30	30		
30 ~ 88	100	3		
88 ~ 216	150	3		
216 ~ 960	200	3		
Above 960	500	3		

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RF170309C18-3 Page No. 11 / 24 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Feb. 17, 2017	Feb. 16, 2018
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 16, 2016	Dec. 15, 2017
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 13, 2016	Dec. 12, 2017
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 26, 2016	Dec. 27, 2017
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Dec. 12, 2016	Dec. 13, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 14, 2016	Dec. 13, 2017
Loop Antenna	BW-N10W5+	NA	Jul. 08, 2016	Jul. 07, 2017
Bluetooth Tester	CBT	100980	Apr. 27, 2015	Apr. 26, 2017
Preamplifier EMCI	EMC 012645	980115	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 184045	980116	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 330H	980112	Oct. 21, 2016	Oct. 20, 2017
Power Meter Anritsu	ML2495A	1232002	Sep. 08, 2016	Sep. 07, 2017
Power Sensor Anritsu	MA2411B	1207325	Sep. 08, 2016	Sep. 07, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 21, 2016	Oct. 20, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 21, 2016	Oct. 20, 2017
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 21, 2016	Oct. 20, 2017
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC7450F-10.

Report No.: RF170309C18-3 Page No. 12 / 24 Report Format Version: 6.1.1

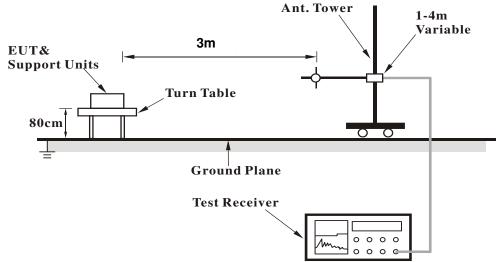
4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

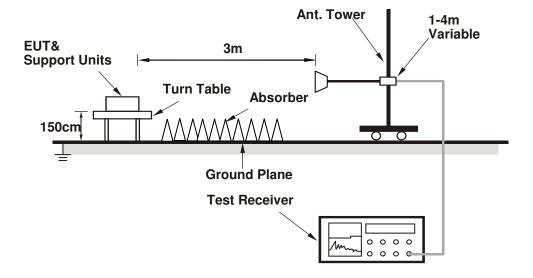
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz & 360 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1/T for Average (Duty cycle < 98 %) at frequency above 1 GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4	Deviation	from	Test	Standard


No deviation.

Report No.: RF170309C18-3 Page No. 13 / 24 Report Format Version: 6.1.1



4.1.5 Test Set Up

<Frequency Range below 1 GHz>

<Frequency Range above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1 GHz DATA:

8DPSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2369.76	46.38	52.95	74	-27.62	26.86	4.07	37.5	205	281	Peak
2389.92	36.53	43.06	54	-17.47	26.91	4.08	37.52	205	281	Average
2402	89.2	95.72			26.91	4.09	37.52	205	281	Average
2402	92.08	98.6			26.91	4.09	37.52	205	281	Peak
4804	34.83	50.17	54	-19.17	30.97	6.79	53.1	174	87	Average
4804	45.24	60.58	74	-28.76	30.97	6.79	53.1	174	87	Peak
		Δ	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2362.29	38.73	45.34	54	-15.27	26.81	4.07	37.49	208	279	Average
2381.73	49.14	55.7	74	-24.86	26.86	4.08	37.5	208	279	Peak
2402	102.2	108.72			26.91	4.09	37.52	208	279	Average
2402	104.82	111.34			26.91	4.09	37.52	208	279	Peak
4804	42.67	58.01	54	-11.33	30.97	6.79	53.1	208	226	Average
4804	48.56	63.9	74	-25.44	30.97	6.79	53.1	208	226	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2402 MHz: Fundamental frequency.

Report No.: RF170309C18-3 Page No. 15 / 24 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2375.97	47.67	54.24	74	-26.33	26.86	4.07	37.5	201	282	Peak
2382.27	36.41	42.97	54	-17.59	26.86	4.08	37.5	201	282	Average
2441	89.54	95.75			27.06	4.12	37.39	201	282	Average
2441	92.39	98.6			27.06	4.12	37.39	201	282	Peak
2494.32	36.95	42.84	54	-17.05	27.2	4.16	37.25	201	282	Average
2499.6	47.38	53.27	74	-26.62	27.2	4.16	37.25	201	282	Peak
4882	34.51	49.65	54	-19.49	31.06	6.85	53.05	184	66	Average
4882	42.83	57.97	74	-31.17	31.06	6.85	53.05	184	66	Peak
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2340.6	38.41	45.09	54	-15.59	26.77	4.04	37.49	208	279	Average
2369.31	48.27	54.84	74	-25.73	26.86	4.07	37.5	208	279	Peak
2441	101.84	108.05			27.06	4.12	37.39	208	279	Average
2441	104.68	110.89			27.06	4.12	37.39	208	279	Peak
2483.52	48.27	54.29	74	-25.73	27.15	4.15	37.32	208	279	Peak
2491.28	37.89	43.85	54	-16.11	27.2	4.16	37.32	208	279	Average
4882	35.89	51.03	54	-18.11	31.06	6.85	53.05	209	283	Average
4882	43.79	58.93	74	-30.21	31.06	6.85	53.05	209	283	Peak

Remarks:

- 1. Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level Limit value
- 2. 2441 MHz: Fundamental frequency.

Report No.: RF170309C18-3 Page No. 16 / 24 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	89.21	95.23			27.15	4.15	37.32	196	282	Average
2480	92.12	98.14			27.15	4.15	37.32	196	282	Peak
2483.52	37.8	43.82	54	-16.2	27.15	4.15	37.32	196	282	Average
2486.76	47.69	53.71	74	-26.31	27.15	4.15	37.32	196	282	Peak
4960	34.68	49.65	54	-19.32	31.16	6.91	53.04	184	66	Average
4960	44.9	59.87	74	-29.1	31.16	6.91	53.04	184	66	Peak
		Δ	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	101.66	107.68			27.15	4.15	37.32	208	278	Average
2480	104.4	110.42			27.15	4.15	37.32	208	278	Peak
2483.52	47.12	53.14	54	-6.88	27.15	4.15	37.32	208	278	Average
2483.56	55.86	61.88	74	-18.14	27.15	4.15	37.32	208	278	Peak
4960	36.33	51.3	54	-17.67	31.16	6.91	53.04	200	290	Average
4960	42.75	57.72	74	-31.25	31.16	6.91	53.04	200	290	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level - Limit value
- 2. 2480 MHz: Fundamental frequency.

Report No.: RF170309C18-3 Page No. 17 / 24 Report Format Version: 6.1.1

9 kHz ~ 30 MHz DATA:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz WORST-CASE DATA:

EUT Test Condition		Measurement Detail				
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz			
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)			
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang			

Antenna Polarity & Test Distance: Horizontal at 3 m									
Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
32.61	51.04	43.5	-10.89	12.14	1.14	31.71	111	284	Peak
39.09	59.6	43.5	-4.41	9.77	1.33	31.61	108	263	Peak
36.66	55.69	46	-9.34	11.4	1.48	31.91	128	165	Peak
41.08	57.82	46	-4.92	13.45	1.69	31.88	110	118	Peak
31.64	47	46	-14.36	14.73	1.84	31.93	120	275	Peak
34.64	48.26	46	-11.36	16.37	1.99	31.98	138	109	Peak
	A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
40.05	60.67	43.5	-3.45	9.69	1.33	31.64	110	84	Peak
36.78	55.51	46	-9.22	11.65	1.51	31.89	118	235	Peak
41.64	58.21	46	-4.36	13.57	1.7	31.84	107	170	Peak
36.89	52.09	46	-9.11	14.91	1.86	31.97	108	127	Peak
	Level (dBuV/m) 32.61 39.09 36.66 41.08 31.64 34.64 Emission Level (dBuV/m) 40.05 36.78 41.64	Emission Level (dBuV/m) (dBuV) 32.61 51.04 39.09 59.6 36.66 55.69 41.08 57.82 31.64 47 34.64 48.26 Emission Read Level (dBuV/m) (dBuV) 40.05 60.67 36.78 55.51 41.64 58.21	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) 32.61 51.04 43.5 39.09 59.6 43.5 36.66 55.69 46 41.08 57.82 46 31.64 47 46 34.64 48.26 46 Emission Level (dBuV/m) (dBuV) 40.05 60.67 43.5 36.78 55.51 46 41.64 58.21 46	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) 32.61 51.04 43.5 -10.89 39.09 59.6 43.5 -4.41 36.66 55.69 46 -9.34 41.08 57.82 46 -4.92 31.64 47 46 -14.36 34.64 48.26 46 -11.36 Antenna Polarity & Margin (dBuV/m) Level (dBuV/m) Limit (dBuV/m) (dB) 40.05 60.67 43.5 -3.45 36.78 55.51 46 -9.22 41.64 58.21 46 -4.36	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) 32.61 51.04 43.5 -10.89 12.14 39.09 59.6 43.5 -4.41 9.77 36.66 55.69 46 -9.34 11.4 41.08 57.82 46 -4.92 13.45 31.64 47 46 -14.36 14.73 34.64 48.26 46 -11.36 16.37 Antenna Polarity & Test Distance Emission Level (dBuV/m) Limit (dBuV/m) (dB) Antenna Factor (dB/m) 40.05 60.67 43.5 -3.45 9.69 36.78 55.51 46 -9.22 11.65 41.64 58.21 46 -4.36 13.57	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) 32.61 51.04 43.5 -10.89 12.14 1.14 39.09 59.6 43.5 -4.41 9.77 1.33 36.66 55.69 46 -9.34 11.4 1.48 41.08 57.82 46 -4.92 13.45 1.69 31.64 47 46 -14.36 14.73 1.84 34.64 48.26 46 -11.36 16.37 1.99 Emission Level (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) 40.05 60.67 43.5 -3.45 9.69 1.33 36.78 55.51 46 -9.22 11.65 1.51 41.64 58.21 46 -4.36 13.57 1.7	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 32.61 51.04 43.5 -10.89 12.14 1.14 31.71 39.09 59.6 43.5 -4.41 9.77 1.33 31.61 36.66 55.69 46 -9.34 11.4 1.48 31.91 41.08 57.82 46 -4.92 13.45 1.69 31.88 31.64 47 46 -14.36 14.73 1.84 31.93 34.64 48.26 46 -11.36 16.37 1.99 31.98 Emission Level (dBuV/m) (dB) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 40.05 60.67 43.5 -3.45 9.69 1.33 31.64 36.78 55.51 46 -9.22 11.65 1.51 31.89 41.64 58.21 46 -4.36 13.57	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) 32.61 51.04 43.5 -10.89 12.14 1.14 31.71 111 39.09 59.6 43.5 -4.41 9.77 1.33 31.61 108 36.66 55.69 46 -9.34 11.4 1.48 31.91 128 41.08 57.82 46 -4.92 13.45 1.69 31.88 110 31.64 47 46 -14.36 14.73 1.84 31.93 120 34.64 48.26 46 -11.36 16.37 1.99 31.98 138 Emission Level (dBuV/m) (dBuV) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Height (cm) 40.05 60.67 43.5 -3.45 9.69 1.33 31.64 110 36.78 55.51 46 -9.22 11.65	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) Table Angle (Degree) 32.61 51.04 43.5 -10.89 12.14 1.14 31.71 111 284 39.09 59.6 43.5 -4.41 9.77 1.33 31.61 108 263 36.66 55.69 46 -9.34 11.4 1.48 31.91 128 165 41.08 57.82 46 -4.92 13.45 1.69 31.88 110 118 31.64 47 46 -14.36 14.73 1.84 31.93 120 275 34.64 48.26 46 -11.36 16.37 1.99 31.98 138 109 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) Angle (Degree) 40.05 60.67 43.5 -3.45 9.69

16.48

17.88

2

2.14

31.99

31.63

127

123

245

145

Peak

Peak

524.7 Remarks:

457.77

34.65

31.67

48.16

43.28

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

-11.35

-14.33

46

46

Report No.: RF170309C18-3 Page No. 18 / 24 Report Format Version: 6.1.1

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MH=)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

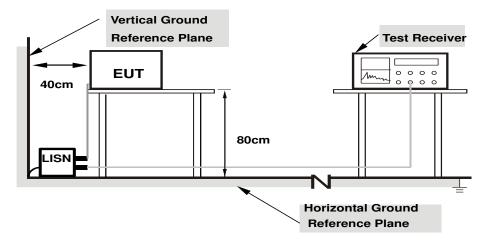
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 21, 2016	Nov. 20, 2017
RF signal cable Woken	5D-FB	Cable-cond1-01	Dec. 22, 2016	Dec. 21, 2017
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Mar. 10, 2017	Mar. 09, 2018
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 28, 2016	Jul. 27, 2017
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

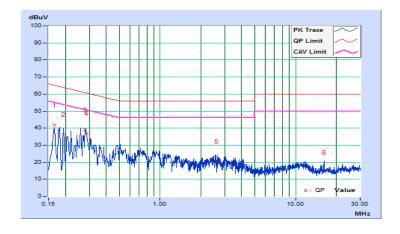
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

Report No.: RF170309C18-3 Page No. 20 / 24 Report Format Version: 6.1.1

4.2.7 Test Results

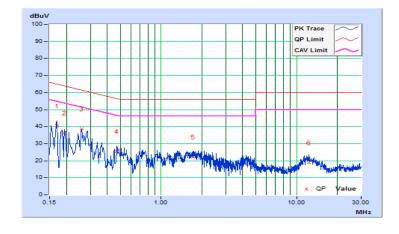

CONDUCTED WORST-CASE DATA: 8DPSK

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Getaz Yang	Test Date	2017/3/20

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	Reading Value		Emission Level		Limit		gin
No		Factor	(dB	uV)	(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16564	10.35	31.32	15.55	41.67	25.90	65.18	55.18	-23.51	-29.28
2	0.19301	10.37	26.01	9.91	36.38	20.28	63.91	53.91	-27.53	-33.63
3	0.27988	10.38	28.69	20.46	39.07	30.84	60.82	50.82	-21.75	-19.98
4	0.28798	10.38	26.77	20.24	37.15	30.62	60.58	50.58	-23.43	-19.96
5	2.62622	10.49	10.01	4.60	20.50	15.09	56.00	46.00	-35.50	-30.91
6	16.22392	11.15	2.93	-0.84	14.08	10.31	60.00	50.00	-45.92	-39.69

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Getaz Yang	Test Date	2017/3/20

	Phase Of Power : Neutral (N)									
	Frequency	Correction	Readin	Reading Value		Emission Level		Limit		rgin
No		Factor	(dB	uV)	(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16955	10.12	30.35	12.79	40.47	22.91	64.98	54.98	-24.51	-32.07
2	0.19305	10.14	26.09	9.91	36.23	20.05	63.90	53.90	-27.67	-33.85
3	0.25932	10.15	28.43	22.09	38.58	32.24	61.45	51.45	-22.87	-19.21
4	0.47062	10.16	15.47	7.83	25.63	17.99	56.50	46.50	-30.87	-28.51
5	1.72883	10.21	12.18	5.65	22.39	15.86	56.00	46.00	-33.61	-30.14
6	12.40003	10.65	8.22	2.49	18.87	13.14	60.00	50.00	-41.13	-36.86

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5	Pictures of Test Arrangements
	se refer to the attached file (Test Setup Photo).

Report No.: RF170309C18-3 Page No. 23 / 24 Report Format Version: 6.1.1

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF170309C18-3 Page No. 24 / 24 Report Format Version: 6.1.1