Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Certificate No: D2450V2-924_Nov14 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 924 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 19, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M. Weber | | Approved by: | Katja Pokovic | Technical Manager | BULL | | | | | | Issued: November 20, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52. 7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.9 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.8 Ω + 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.3 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.3 Ω + 4.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 26, 2013 | #### DASY5 Validation Report for Head TSL Date: 18.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.6 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) =
13.2 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 17.4 W/kg 0 dB = 17.4 W/kg = 12.41 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 19.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.44 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.05 W/kg Maximum value of SAR (measured) = 17.4 W/kg 0 dB = 17.4 W/kg = 12.41 dBW/kg ## Impedance Measurement Plot for Body TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Certificate No: D5GHzV2-1006_Sep14 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1006 Calibration procedure(s) QA CAL-22,v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: September 25, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | | 1 | | | |-----------------------------|--------------------|-----------------------------------|------------------------| | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-13 (No. EX3-3503_Dec13) | Dec-14 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | | | $\triangle I$ | | | Name | Function | Signature | Calibrated by: Claudio Leubler Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 25, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1006_Sep14 Page 1 of 15 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" - c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.54 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.64 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - 4 4 4 | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.72 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 86.6 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.49 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | to F All Ma | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.65 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W
 85.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 2000 | | ## SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.1 ± 6 % | 5.40 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.81 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 77.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.18 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.9 ± 6 % | 5.53 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 5.93 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 85.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.1 ± 6 % | 6.21 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.90 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.18 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 49.5 Ω - 9.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.8 dB | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 52.1 Ω - 2.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.3 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.9 Ω - 3.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.0 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 55.3 Ω + 1.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 51.9 Ω - 9.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.5 dB | #### Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 55.5 Ω + 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 57.1 Ω - 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.1 dB | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 57.1 Ω + 7.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.6 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.200 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 28, 2003 | #### **DASY5 Validation Report for Head TSL** Date: 25.09.2014 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1006 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.54 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5300 MHz; $\sigma = 4.64 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5600 MHz; $\sigma = 4.93 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5800 MHz; $\sigma = 5.14 \text{ S/m}$; $\varepsilon_r = 34.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.07 V/m; Power Drift = 0.09 dB
Peak SAR (extrapolated) = 30.0 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 18.5 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.19 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 8.72 W/kg; SAR(10 g) = 2.49 W/kg Maximum value of SAR (measured) = 19.9 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.89 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 8.65 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 20.5 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.52 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 34.8 W/kg SAR(1 g) = 8.36 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 20.1 W/kg 0 dB = 20.1 W/kg = 13.03 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 24.09.2014 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1006 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 5.53$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.93$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.30 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.4 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.98 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.2 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.91 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 37.8 W/kg SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 21.0 W/kg Certificate No: D5GHzV2-1006_Sep14 Page 13 of 15 ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.36 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 7.9 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg = 12.92 dBW/kg ## Impedance Measurement Plot for Body TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Accreditation No.: SCS 108 Certificate No: DAE4-778_Aug14 ## **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 778 Calibration procedure(s) QA CAL-06.v26 Calibration procedure for the data acquisition electronics (DAE) Calibration date: August 21, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 01-Oct-13 (No:13976) | Oct-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 07-Jan-14 (in house check) | In house check: Jan-15 | | | | 07-Jan-14 (in house check) | In house check: Jan-15 | Name Function Signatur Calibrated by: R.Mayoraz Technician R.Mayoraz Approved by: Fin Bomholt Deputy Technical Manager Issued: August 21, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-778_Aug14 Page 1 of 5 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-778_Aug14 Page 2 of 5 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , 61nV , full range = -100...+300 mV Low Range: 1LSB = full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.660 ± 0.02% (k=2) | 403.462 ± 0.02% (k=2) | 405.008 ± 0.02% (k=2) | | Low Range | 3.98608 ± 1.50% (k=2) | 3.96528 ± 1.50% (k=2) | 3.99925 ± 1.50% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system 283.5 ° ± 1 ° | |---| |---| Certificate No: DAE4-778_Aug14 # Appendix (Additional assessments outside the scope of SCS108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199995.84 | -1.56 | -0.00 | | Channel X | + Input | 20003.72 | 2.74 | 0.01 | | Channel X | - Input | -19999.08 | 1.97 | -0.01 | | Channel Y | + Input | 199996.07 | -1.42 | -0.00 | | Channel Y | + Input | 20001.31 | 0.31 | 0.00 | | Channel Y | - Input | -20000.87 | 0.11 | -0.00 | | Channel Z | + Input | 199998.93 | 0.77 | 0.00 | | Channel Z | + Input | 19999.69 | -1.30 | -0.01 | | Channel Z | - Input | -20003.57 | -2.56 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.21 | 0.06 | 0.00 | | Channel X | + Input | 202.70 | 1.25 | 0.62 | | Channel X | - Input | -197.74 | 0.80 | -0.40 | | Channel Y | + Input | 2001.16 | 0.12 | 0.01 | | Channel Y | + Input | 201.92 | 0.49 | 0.24 | | Channel Y | - Input | -200.16 | -1.65 | 0.83
 | Channel Z | + Input | 2000.68 | -0.34 | -0.02 | | Channel Z | + Input | 200.74 | -0.52 | -0.26 | | Channel Z | - Input | -200.20 | -1.64 | 0.82 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|--------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -4.66 | -5.89 | | | - 200 | 7.17 | 5.70 | | Channel Y | 200 | -2.41 | -2.68 | | | - 200 | -1.01 | -0.40 | | Channel Z | 200 | -9.89 | -9.65 | | | - 200 | 7.53 | 7.85 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -1.80 | -2.22 | | Channel Y | 200 | 9.60 | - | 0.93 | | Channel Z | 200 | 3.92 | 6.62 | 1 | Certificate No: DAE4-778_Aug14 #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16054 | 16785 | | Channel Y | 16177 | 16252 | | Channel Z | 16434 | 15484 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μ V) | Std. Deviation
(μV) | |-----------|--------------|------------------|---------------------------|------------------------| | Channel X | 0.87 | -0.07 | 1.83 | 0.47 | | Channel Y | -0.91 | -2.65 | 0.63 | 0.61 | | Channel Z | -0.54 | -1.74 | 0.70 | 0.54 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | | |----------------|-------------------|--|--| | Supply (+ Vcc) | +7.9 | | | | Supply (- Vcc) | -7.6 | | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-778_Aug14 Page 5 of 5 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Certificate No: DAE4-1399 Nov14 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 1399 Calibration procedure(s) QA CAL-06.v28 Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 13, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date_(Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|---------------------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Oct-14 (No:15573) | Oct-15 | | | 1 | | | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | | | Official Pate (III floado) | Ochedalea Oheck | | Auto DAE Calibration Unit | - | 07-Jan-14 (in house check) | In house check: Jan-15 | | | SE UWS 053 AA 1001 | · · · · · · · · · · · · · · · · · · · | | Name Calibrated by: Dominique Steffen Function Technician Signature Approved by: Fin Bomhoft Deputy Technical Manager Issued: November 13, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1399_Nov14 Page 1 of 5 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$ Low Range: $1LSB = 61 \ nV$, full range = $-1......+3 \ mV$ DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Y | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.595 ± 0.02% (k=2) | 403.856 ± 0.02% (k=2) | 403.711 ± 0.02% (k=2) | | Low Range | 3.99125 ± 1.50% (k=2) | 3.98907 ± 1.50% (k=2) | 3.95088 ± 1.50% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 303.0 ° ± 1 ° | |---|---------------| | Connected Angle to be used in Brio (System | 000.0 ± 1 | # Appendix (Additional assessments outside the scope of SCS108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199994.98 | -1.69 | -0.00 | | Channel X + Input | 20001.44 | 0.30 | 0.00 | | Channel X - Input | -19999.26 | 1.43 | -0.01 | | Channel Y + Input | 199999.25 | 1.98 | 0.00 | | Channel Y + Input | 19999.03 | -2.18 | -0.01 | | Channel Y - Input | -20001.89 | -1.19 | 0.01 | | Channel Z + Input | 199997.44 | 0.45 | 0.00 | | Channel Z + Input | 19998.57 | -2.49 | -0.01 | | Channel Z - Input | -20002.47 | -1.62 | 0.01 | | | | | | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.40 | 0.25 | 0.01 | | Channel X | + Input | 202.15 | 0.53 | 0.26 | | Channel X | - Input | -197.74 | 0.52 | -0.26 | | Channel Y | + Input | 2001.28 | 0.25 | 0.01 | | Channel Y | + Input | 200.41 | -1.14 | -0.57 | | Channel Y | - Input | -199.61 | -1.35 | 0.68 | | Channel Z | + Input | 2000.99 | 0.04 | 0.00 | | Channel Z | + Input | 200.81 | -0.68 | -0.34 | | Channel Z | - Input | -199.21 | -0.81 | 0.41 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μ ν) | |-----------|-----------------------------------|------------------------------------|--| | Channel X | 200 | -5.17 | -6.60 | | | - 200 | 8.22 | 6.53 | | Channel Y | 200 | -6.32 | -6.77 | | | - 200 | 4.36 | 4.06 | | Channel Z | 200 | -7.31 | -7.07 | | | - 200 | 5.86 | 5.56 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 4.40 | -1.63 | | Channel Y | 200 | 9.43 | - | 6.68 | | Channel Z | 200 | 8.64 | 6.47 | - | #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3
sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15820 | 17016 | | Channel Y | 16103 | 16959 | | Channel Z | 15890 | 15243 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.27 | -0.44 | 1.00 | 0.35 | | Channel Y | -1.31 | -2.29 | -0.54 | 0.36 | | Channel Z | -1.04 | -2.25 | 1.02 | 0.47 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | ~7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Accreditation No.: SCS 108 S C Certificate No: ES3-3270_Sep14 ## **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3270 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 26, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | | | | | | Secondary Standards | ID . | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 27, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3270_Sep14 Page 2 of 11 ES3DV3 – SN:3270 September 26, 2014 # Probe ES3DV3 SN:3270 Manufactured: Calibrated: February 25, 2010 September 26, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 1.11 | 1.20 | 1.22 | ± 10.1 % | | DCP (mV) ⁸ | 101.5 | 103.0 | 103.0 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc | |-----|---------------------------|---|-----|-------|-----|------|-------|--------| | | | | dB | dB√μV | | dB | m۷ | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 197.5 | ±3.5 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 208.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 208.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. $^{^{}A}$ The uncertainties of NormX,Y,Z do not affect the E 2 -field uncertainty inside TSL (see Pages 5 and 6). ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270 #### Calibration Parameter Determined in Head Tissue Simulating Media | | | I | | | | | G | | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | | 750 | 41.9 | 0.89 | 6.62 | 6.62 | 6.62 | 0.25 | 2.10 | ± 12.0 % | | 835 | 41.5 | 0.90 | 6.43 | 6.43 | 6.43 | 0.45 | 1.43 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.27 | 6.27 | 6.27 | 0.23 | 2.15 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.25 | 5.25 | 5.25 | 0.66 | 1.26 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.05 | 5.05 | 5.05 | 0.65 | 1.29 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 5.05 | 5.05 | 5.05 | 0.57 | 1.40 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.52 | 4.52 | 4.52 | 0.80 | 1.24 | ± 12.0 % | ^c
Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to \pm 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. GAIpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 6.17 | 6.17 | 6.17 | 0.43 | 1.56 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.15 | 6.15 | 6.15 | 0.80 | 1.17 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.95 | 4.95 | 4.95 | 0.41 | 1.78 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.70 | 4.70 | 4.70 | 0.61 | 1.47 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.29 | 4.29 | 4.29 | 0.79 | 1.08 | ± 12.0 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to Certificate No: ES3-3270_Sep14 Page 6 of 11 F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. September 26, 2014 ES3DV3-SN:3270 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) September 26, 2014 ES3DV3-SN:3270 # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) September 26, 2014 ES3DV3-SN:3270 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) September 26, 2014 # **Conversion Factor Assessment** Error (ϕ, ϑ) , f = 900 MHz # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -20 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 2 mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Accreditation No.: SCS 108 Certificate No: EX3-3955_Nov14 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3955 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: November 21, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID | | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------------------------|--|-----------------------------------|------------------------| | Power meter E4419B GB41293874 | | 03-Apr-14 (No. 217-01911) | Арг-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | Reference 30 dB Attenuator SN: S5129 (30b) | | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E US37390585 | | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Deton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 24, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx, v, z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A. B. C. D modulation dependent linearization parameters Polarization φ φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., 9 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close - proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside wavequide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are
given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3955_Nov14 Page 2 of 11 # Probe EX3DV4 SN:3955 Manufactured: August 6, 2013 Calibrated: November 21, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.35 | 0.42 | 0.31 | ± 10.1 % | | DCP (mV) ⁸ | 98.0 | 100.8 | 98.7 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^t
(k≃2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 135.4 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | | 146.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 136.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No: EX3-3955_Nov14 Page 4 of 11 A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.61 | 10.61 | 10.61 | 0.66 | 0.64 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.04 | 10.04 | 10.04 | 0.18 | 1.25 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.79 | 9.79 | 9.79 | 0.25 | 0.94 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.90 | 8.90 | 8.90 | 0.46 | 0.75 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.50 | 8.50 | 8.50 | 0.44 | 0.79 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.34 | 8.34 | 8.34 | 0.51 | 0.70 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.46 | 7.46 | 7.46 | 0.29 | 1.01 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.21 | 7.21 | 7.21 | 0.39 | 0.88 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.13 | 5.13 | 5.13 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.92 | 4.92 | 4.92 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.74 | 4.74 | 4.74 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.56 | 4.56 | 4.56 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.63 | 4.63 | 4.63 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to \pm 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.16 | 10.16 | 10.16 | 0.28 | 1.11 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.03 | 10.03 | 10.03 | 0.38 | 0.88 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.34 | 8.34 | 8.34 | 0.35 | 0.99 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.89 | 7.89 | 7.89 | 0.42 | 0.90 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.32 | 7.32 | 7.32 | 0.76 | 0.62 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.09 | 7.09 | 7.09 | 0.63 | 0.69 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.61 | 4.61 | 4.61 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.44 | 4.44 | 4.44 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.13 | 4.13 | 4.13 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.11 | 4.11 | 4.11 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.26 | 4.26 | 4.26 | 0.50 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) November 21, 2014 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -51 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm |