

Partial FCC Test Report

Report No.: RFBECO-WTW-P20100054F-2

FCC ID: TLZ-CM276NF

Test Model: AW-CM276NF

Received Date: Mar. 18, 2022

Test Date: Apr. 18 ~ Jun. 14, 2022

Issued Date: Jul. 01, 2022

Applicant: AzureWave Technologies, Inc.

Address: 8F., No.94, Baozhong Rd., Xindian Dist., New Taipei City, Taiwan 231

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

Test Location (2): No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan

FCC Registration /

788550 / TW0003

Designation Number (1):

FCC Registration /

281270 / TW0032

Designation Number (2):

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/ops/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFBECO-WTW-P20100054F-2 Page No. 1 / 25 Report Format Version: 6.1.1 Reference No.: BDBQ-WTW-P22030274

Table of Contents

Re	elease Control Record	3
1	Certificate of Conformity	4
2	Summary of Test Results	5
	2.1 Measurement Uncertainty	
3	General Information	6
	3.1 General Description of EUT 3.2 Description of Test Modes 3.2.1 Test Mode Applicability and Tested Channel Detail 3.3 Description of Support Units 3.3.1 Configuration of System under Test 3.4 General Description of Applied Standards and References	
4	Test Types and Results	12
	 4.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Set Up 4.1.6 EUT Operating Conditions 4.1.7 Test Results 4.2 Conducted Output Power Measurement 4.2.1 Limits of Conducted Output Power Measurement 4.2.2 Test Setup 4.2.3 Test Instruments 4.2.4 Test Procedures 4.2.5 Deviation from Test Standard 4.2.6 EUT Operating Conditions 4.2.7 Test Results 	
	Pictures of Test Arrangements	
Ar	nnex A- Band Edge Measurement	24
Ar	ppendix - Information of the Testing Laboratories	25

Release Control Record

Issue No.	Description	Date Issued
RFBECO-WTW-P20100054F-2	Original Release	Jul. 01, 2022

Report No.: RFBECO-WTW-P20100054F-2 Page No. 3 / 25 Reference No.: BDBQ-WTW-P22030274 Page No. 3 / 25

1 Certificate of Conformity

Product: IEEE 802.11 2X2 MU-MIMO ac/a/b/g/n Wireless LAN + Bluetooth NGFF Module

Brand: AzureWave

Test Model: AW-CM276NF

Sample Status: Engineering Sample

Applicant: AzureWave Technologies, Inc.

Test Date: Apr. 18 ~ Jun. 14, 2022

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	Grina Wu	, Date:	Jul. 01, 2022	
_				

Gina Liu / Specialist

Approved by : ______, Date: _____, Dul. 01, 2022

Jeremy Lin / Project Engineer

Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274 Page No. 4 / 25

Report Format Version: 6.1.1

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item		Remarks				
15.207	AC Power Conducted Emission	N/A	Refer to Note				
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -1.00 dB at 4824.00 MHz.				
15.247(d)	Antenna Port Emission	N/A	Refer to Note				
15.247(a)(2)	6 dB Bandwidth	N/A	Refer to Note				
	Occupied Bandwidth Measurement	N/A	Refer to Note				
15.247(b)	Conducted power	Pass	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	N/A	Refer to Note				
15.203	Antenna Requirement	Pass	Antenna connector is I-PEX not a standard connector.				

Note:

- This report is a partial report, and only test items of RF Output Power, Spurious Emissions and Band Edge tests. The radiated emission test is performed on the worst channel of the original reported radiated emission. Other testing data please refer to BV CPS report no.: RFBECO-WTW-P20100054E for module (Brand: AzureWave, Model: AW-CM276NF, FCC ID: TLZ-CM276NF).
- 2. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9 kHz ~ 30 MHz	3.00 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.91 dB
	200 MHz ~ 1000 MHz	2.92 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.76 dB
Naulateu Ellissions above 1 GHZ	18 GHz ~ 40 GHz	1.77 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	IEEE 802.11 2X2 MU-MIMO ac/a/b/g/n Wireless LAN + Bluetooth NGFF
Troduct	Module
Brand	AzureWave
Test Model	AW-CM276NF
Status of EUT	Engineering Sample
Power Supply Rating	DC 3.3V from host equipment
Madulation Tyma	CCK, DQPSK, DBPSK for DSSS
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
	802.11b: 11.0 / 5.5 / 2.0 / 1.0 Mbps
Transfer Rate	802.11g: 54.0 / 48.0 / 36.0 / 24.0 / 18.0 / 12.0 / 9.0 / 6.0 Mbps
	802.11n: up to 300.0 Mbps
Operating Frequency	2412 ~ 2462 MHz
Noushan of Ohammal	11 for 802.11b, 802.11g, 802.11n (HT20)
Number of Channel	7 for 802.11n (HT40)
Output Power	803.526 mW
Antenna Type	Refer to Note as below
Antenna Connector	Refer to Note as below
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

- 1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report to BV CPS report no. RFBECO-WTW-P20100054E. The difference compared with original report is adding new antennas and specific End-product.
- 2. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

Modulation Mode	Tx Function
802.11b	2TX
802.11g	2TX
802.11n (HT20)	2TX
802.11n (HT40)	2TX

^{*} The modulation and bandwidth are similar for 802.11n mode for HT20 / HT40 and 802.11ac mode for HT20 / HT40, therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1)

3. The EUT is authorized for use in specific End-product. All models are listed as below. Model TD540-W are the representative for final test.

the representative for final test.						
Product	10" Touch Display					
Brand	Trin	nble				
Function	Mo	del				
Function	TD540-W	TD540				
Wireless	With	Without				
Bluetooth	With	Without				
NFC	With With					
Note: The difference between TD540 and TD540-W is software disable WIFI/BT.						

Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274

4. The antennas provided to the EUT, please refer to the following table:

Antenna Set	Brand	Model	Chain No.	Antenna Net. Gain (dBi)	Frequency Range (MHz)	Antenna Type	Connector Type	Cable Length	
4	MACLAYERS	MCA 4000 250C4 A4	Chain 0(Aux)	2.98 5.16	2400~2500 4900~5900	PIFA	i nov(MUE)	15cm	
1	MAG.LAYERS	MAG.LAYERS MSA-4008-25GC1-A1	Chain 1(Main)	2.98 5.16	2400~2500 4900~5900	PIFA	i-pex(MHF)	15cm	
			Chain 0(Aux)	1.9 3.6	2400~2500 4900~5800			120mm	
2	Bondale	G-RA0K10090176-1436B	Chain 1(Main)	1.9	2400~2500 4900~5800	Dipole	RP-SMA	120mm	
			Chain 0(Aux)	2.4	2400~2500 4900~5800			120mm	
3	San Jose	UEN-201	Chain 1(Main)	2.4	2400~2500 4900~5800	Dipole	RP-SMA	120mm	
			Chain 0(Aux)	1.6 4.8	2400-2500 5150~5850	РСВ	I-pex	100±5mm	
4	Unictron	H2B1PC1A1C175L	Chain 1(Main)	1.6 4.8	2400-2500 5150~5850	PCB	I-pex	100±5mm	
5	LSR	001-0012	Chain 0(Aux)	2 2	2400-2500 5150~5850	Dipole	RP-SMA	100mm	
5	LSK	001-0012	Chain 1(Main)	2	2400-2500 5150~5850	Dipole	RP-SMA	100mm	
6	Loird	MA E04054	Chain 0(Aux)	2.4 3.4	2400-2500 5150~5850	Dipole	RP-SMA	100mm	
b	Lairu	Laird MAF94051		Chain 1(Main)	2.4 3.4	2400-2500 5150~5850	Dipole	RP-SMA	100mm
7	Taoglas	GW.59.3153		Chain 0(Aux)	2.86 4.74	2400-2500 5150~5850	Dipole	RP-SMA	100mm
7			Chain 1(Main)	2.86 4.74	2400-2500 5150~5850	Dipole	RP-SMA	100mm	
8	Chang Hong	DA-2458-02-SMR	Chain 0(Aux)	2.85 2.17	2400-2500 5150~5850	Dipole	RP-SMA	100mm	
0	Chang Hong	DA-2430-02-3IVIK	Chain 1(Main)	2.85 3.13	2400-2500 5150~5850	Dipole	RP-SMA	100mm	
9	Unictron	H2B1PD1A1C385L	Chain 0(Aux)	2.8 4.2	2400-2500 5150~5850	PCB	I-pex	100mm	
<i>3</i>	Offiction	HZDIFDIAIC303L	Chain 1(Main)	2.8 4.2	2400-2500 5150~5850	PCB	I-pex	100mm	
10	Molex	2042811100	Chain 0(Aux)	2.562 3.094	2400-2500 5150~5850	PCB	I-pex	100mm	
10	IVIOLEX	20 1 2011100	Chain 1(Main)	2.562 3.094	2400-2500 5150~5850	PCB	I-pex	100mm	
11	Molay	1464524400	Chain 0(Aux)	1.829 2.485	2400-2500 5150~5850	PCB	I-pex	100mm	
11	Molex	1461531100	Chain 1(Main)	1.829 2.485	2400-2500 5150~5850	PCB	I-pex	100mm	
4-5		NO. 4000 5-201 1-	Chain 0(Aux)	2.98 5.16	2400-2500 5150~5850	PIFA	i-pex(MHF)		
12	MAG.LAYERS	MAG.LAYERS	MSA-4008-25GC1-A2	Chain 1(Main)	2.98 5.16	2400-2500 5150~5850	PIFA	i-pex(MHF)	NA

Newly	Newly								
Antenna Set	Brand	Model	Chain No.	Antenna Net. Gain (dBi)	Frequency Range (MHz)	Antenna Type	Connector Type	Cable Length	
	INPAQ				2.68	2400-2500			4.45
40		WA-W-LB-01-128	Chain 0(Aux)	4.19	5150-5850	PIFA	ipex(MHF)	145 mm	
13			2.44	2400-2500					
		WA-M-LB-02-262	Chain 1(Main)	4.08	5150-5850	PIFA	ipex(MHF)	215 mm	

- 5. The above Antenna information refers to the manufacturer's antenna specifications, the laboratory shall not be held responsible.
- 6. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

11 channels are provided for 802.11b, 802.11g and 802.11n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

7 channels are provided for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	7	2442
4	2427	8	2447
5	2432	9	2452
6	2437		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applicable To		Description.
Mode	RE≥1G	RE<1G	Power	Description
-	V	√	V	-

Where

RE≥1G: Radiated Emission above 1 GHz

RE<1G: Radiated Emission below 1 GHz

Power: Maximum Output Power Measurement

NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

NOTE: "-"means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

□ Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11b	1 to 11	11	DSSS	DBPSK	1.0

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

□ Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode Available Tested Channel		Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11b	1 to 11	11	DSSS	DBPSK	1.0

Maximum Output Power Measurement:

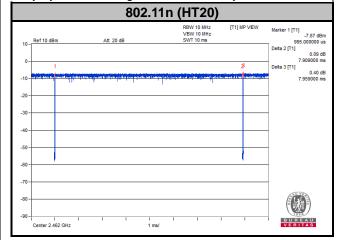
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode		Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1.0
-	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
-	802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5
-	802.11n (HT40)	3 to 9	3, 6, 9	OFDM	BPSK	13.5

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	22 deg. C, 66 % RH	12 Vdc	Wade Huang
RE<1G	23 deg. C, 67 % RH	12 Vdc	Edison Lee
APCM	25 deg. C, 65 % RH	12 Vdc	Jay Chang


Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274

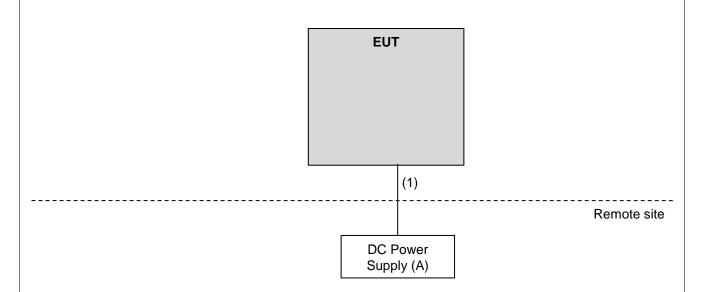
Page No. 9 / 25

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	DC Power Supply	NA	NA	NA	NA	-

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item A acted as communication partners to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.0	Ζ	0	Provided by client

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274 Page No. 11 / 25

Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RFBECO-WTW-P20100054F-2 Page No. 12 / 25 Report Format Version: 6.1.1 Reference No.: BDBQ-WTW-P22030274

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver KEYSIGHT	N9038B	MY60180018	Feb. 18, 2022	Feb. 17, 2023
Spectrum Analyzer KEYSIGHT	N9020B	MY60110462	Dec. 21, 2021	Dec. 20, 2022
BILOG Antenna SCHWARZBECK	VULB9168	9168-995	Oct. 28, 2021	Oct. 27, 2022
HORN Antenna RF SPIN	DRH18-E	210104A18E	Nov. 14, 2021	Nov. 13, 2022
HORN Antenna SCHWARZBECK	BBHA 9170	9170-995	Nov. 14, 2021	Nov. 13, 2022
Loop Antenna EMCI	EM-6879	269	Sep. 16, 2021	Sep. 15, 2022
Loop Antenna TESEQ	HLA 6121	45745	Jul. 21, 2021	Jul. 20, 2022
Preamplifier EMCI	EMC330N	980783	Jan. 17, 2022	Jan. 16, 2023
Preamplifier EMCI	EMC118A45SE	980810	Dec. 30, 2021	Dec. 29, 2022
Preamplifier EMCI	EMC184045SE	980787	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC104-SM-SM-(9 000+3000+2000+1 000)	201230+ 201242+201238+ 210101	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMCCFD400-NM-N M-(9000+3000+500 +500)	201252+ 201250+201247+ 201245	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC101G-KM-KM- (5000+3000+2000)	201259+201256+20125 3	Jan. 17, 2022	Jan. 16, 2023
Software BV CPS	ADT_Radiated_V7. 6.15.9.5	NA	NA	NA
Turn Table Max-Full	MFT-151SS-0.5T	NA	NA	NA
Turn Table Controller Max-Full	MF-7802BS	MF780208675	NA	NA
Antenna Tower KaiTuo	NA	NA	NA	NA
Antenna Tower Controller KaiTuo	KT-2000	NA	NA	NA
Wideband Power Sensor KEYSIGHT	N1923A	MY58020002	Jan. 17, 2022	Jan. 16, 2023
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	Jan. 18, 2022	Jan. 17, 2023
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100979	Mar. 25, 2022	Mar. 24, 2023

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in WM Chamber 7.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

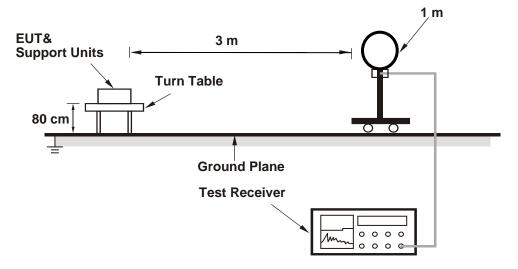
For Radiated Emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

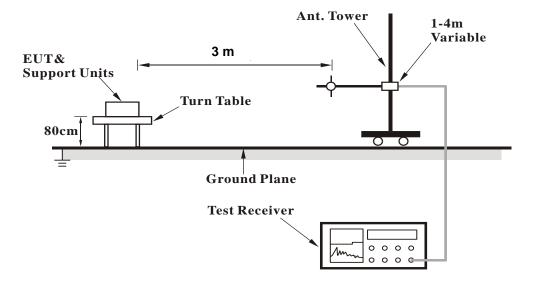
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

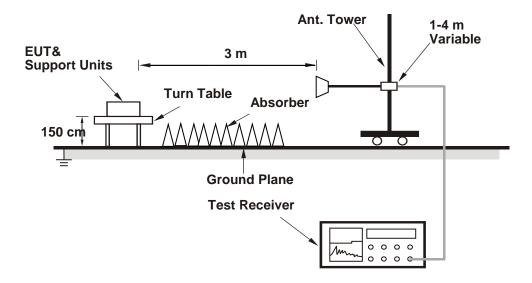

No deviation.

Report No.: RFBECO-WTW-P20100054F-2 Page No. 14 / 25 Report Format Version: 6.1.1 Reference No.: BDBQ-WTW-P22030274



4.1.5 Test Set Up

<Radiated Emission below 30 MHz>



<Radiated Emission 30 MHz to 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274

4.1.7 Test Results

Above 1 GHz Data:

802.11b

Frequency Range	1 GHz ~ 25 GHz	Channel	CH 11: 2462 MHz
Input Power	12 Vdc	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Tested By	Wade Huang	Environmental Conditions	22°C, 66% RH

	Antenna Polarity & Test Distance : Horizontal at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	2390.00	59.40 PK	74.00	-14.60	2.44 H	62	27.50	31.90					
2	2390.00	44.50 AV	54.00	-9.50	2.44 H	62	12.60	31.90					
3	*2412.00	106.20 PK			2.44 H	62	74.30	31.90					
4	*2412.00	104.40 AV			2.44 H	62	72.50	31.90					
5	4824.00	55.40 PK	74.00	-18.60	1.66 H	34	53.30	2.10					
6	4824.00	53.00 AV	54.00	-1.00	1.66 H	34	50.90	2.10					
		A	tanna Dalani	0 T (D:		' I - 1 O							

	Antenna Polarity & Test Distance : Vertical at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	2390.00	58.60 PK	74.00	-15.40	2.99 V	95	26.70	31.90					
2	2390.00	43.90 AV	54.00	-10.10	2.99 V	95	12.00	31.90					
3	*2412.00	104.90 PK			2.99 V	95	73.00	31.90					
4	*2412.00	102.30 AV			2.99 V	95	70.40	31.90					
5	4824.00	54.50 PK	74.00	-19.50	2.00 V	111	52.40	2.10					
6	4824.00	51.90 AV	54.00	-2.10	2.00 V	111	49.80	2.10					

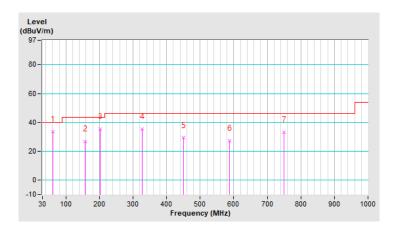
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274

Page No. 17 / 25

Report Format Version: 6.1.1

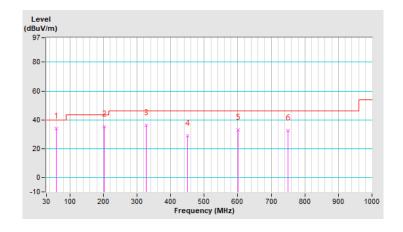

9 kHz ~ 1 GHz Worst-Case Data:

F	RF Mode	TX 802.11b	Channel	CH 11: 2462 MHz
li	nput Power	112 Vac	Detector Function & Bandwidth	(QP) RB = 120kHz
T	ested By	Edison Lee	Environmental Conditions	23°C, 67% RH

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	61.04	33.40 QP	40.00	-6.60	1.49 H	18	47.50	-14.10			
2	158.04	26.90 QP	43.50	-16.60	1.00 H	2	40.00	-13.10			
3	201.69	35.50 QP	43.50	-8.00	1.00 H	214	52.40	-16.90			
4	327.79	35.40 QP	46.00	-10.60	1.99 H	132	47.50	-12.10			
5	450.01	29.20 QP	46.00	-16.80	1.00 H	180	38.20	-9.00			
6	586.78	27.20 QP	46.00	-18.80	1.49 H	192	33.40	-6.20			
7	749.74	33.00 QP	46.00	-13.00	1.49 H	125	36.30	-3.30			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz \sim 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX 802.11b	Channel	CH 11: 2462 MHz
Input Power	12 Vdc	Detector Function & Bandwidth	(QP) RB = 120kHz
Tested By	Edison Lee	Environmental Conditions	23°C, 67% RH

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	59.10	33.90 QP	40.00	-6.10	1.01 V	358	47.60	-13.70			
2	201.69	35.40 QP	43.50	-8.10	1.01 V	210	52.30	-16.90			
3	327.79	36.40 QP	46.00	-9.60	1.99 V	108	48.50	-12.10			
4	450.01	29.00 QP	46.00	-17.00	1.01 V	190	38.00	-9.00			
5	600.36	33.00 QP	46.00	-13.00	1.51 V	183	38.90	-5.90			
6	749.74	32.40 QP	46.00	-13.60	1.51 V	119	35.70	-3.30			

Remarks:

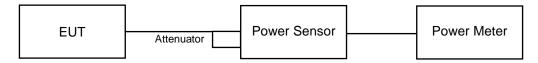
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Conducted Output Power Measurement 4.2

Limits of Conducted Output Power Measurement 4.2.1

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,


Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = 5 log(Nant/Nss) dB or 3 dB, whichever is less for 20 MHz channel widths with Nant ≥ 5.

For power measurements on all other devices: Array Gain = 10 log(N_{ANT}/N_{SS}) dB.

4.2.2 Test Setup

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 **Test Procedures**

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

Deviation from Test Standard 4.2.5

No deviation.

EUT Operating Conditions 4.2.6

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274

Page No. 20 / 25

4.2.7 Test Results

Peak Power

802.11b

Channel	Frequency Peak Power (dBm)		Total Power	Total Power	Limit	Pass /	
Channel	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
1	2412	20.45	20.08	212.814	23.28	30	Pass
6	2437	20.32	20.10	209.894	23.22	30	Pass
11	2462	20.18	20.02	204.644	23.11	30	Pass

802.11g

Channal	Frequency (MHz)	requency Peak Power (dBm)		Total	Total	Limit	Pass /
Channel		Chain 0	Chain 1	Power (mW)	Power (dBm)	(dBm)	Fail
1	2412	22.21	20.47	277.971	24.44	30	Pass
6	2437	26.11	25.97	803.526	29.05	30	Pass
11	2462	21.49	22.24	308.319	24.89	30	Pass

802.11n (HT20)

Channel	Frequency Peak Power (dBm)		ver (dBm)	Total Power	Total Power	Limit	Pass /
Channel	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
1	2412	20.49	20.41	221.820	23.46	30	Pass
6	2437	25.82	24.52	665.273	28.23	30	Pass
11	2462	21.44	21.28	273.527	24.37	30	Pass

802.11n (HT40)

	-/						
Channal	Frequency	Peak Power (dBm)		Total	Total Power	Limit	Pass /
Channel	(MHz)	Chain 0	Chain 1	Power (mW)	(dBm)	(dBm)	Fail
3	2422	18.25	18.21	133.045	21.24	30	Pass
6	2437	23.15	22.94	403.645	26.06	30	Pass
9	2452	18.98	18.93	157.398	21.97	30	Pass

Average Power

802.11b

Channal	nnel Frequency (MHz)	Average Po	Total Power	Total	
Channel		Chain 0	Chain 1	(mW)	Power (dBm)
1	2412	18.10	17.57	121.619	20.85
6	2437	17.87	17.58	118.577	20.74
11	2462	17.84	17.54	117.490	20.70

802.11g

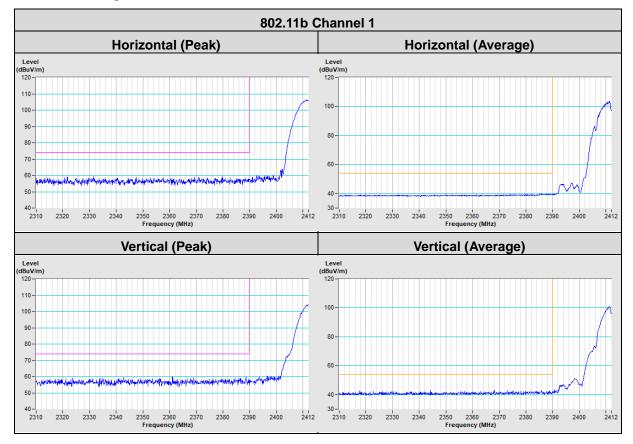
Channel	Frequency	Average Po	ower (dBm)	Total Power	Total
Channel	(MHz)	Chain 0	Chain 1	(mW)	Power (dBm)
1	2412	12.37	11.92	32.810	15.16
6	2437	17.43	17.25	108.393	20.35
11	2462	13.16	12.75	39.537	15.97

802.11n (HT20)

Channal	Frequency	Average Po	ower (dBm)	Total Power	Total
Channel	(MHz)	Chain 0	Chain 1	(mW)	Power (dBm)
1	2412	12.51	12.10	34.041	15.32
6	2437	18.12	17.80	125.026	20.97
11	2462	13.33	13.04	41.687	16.20

802.11n (HT40)

Channel	Frequency	Average Po	ower (dBm)	Total Power	Total
Channel	(MHz)	Chain 0	Chain 1	(mW)	Power (dBm)
3	2422	10.38	10.11	21.184	13.26
6	2437	15.17	14.82	63.241	18.01
9	2452	11.32	11.01	26.182	14.18



5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Report No.: RFBECO-WTW-P20100054F-2 Reference No.: BDBQ-WTW-P22030274

Annex A- Band Edge Measurement

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFBECO-WTW-P20100054F-2 Page No. 25 / 25 Report Format Version: 6.1.1 Reference No.: BDBQ-WTW-P22030274