

IEEE 802.11 2x2 MU-MIMO a/b/g/n/ac Wireless LAN + Bluetooth 5.0 M.2 2230 Module

<u>Úser's Manual</u>

Version 0.1

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This device is restricted for indoor use.

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

IMPORTANT NOTE:

This module is intended for OEM integrator. This module is only FCC authorized for the specific rule parts listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

Additional testing and certification may be necessary when multiple modules are used.

USERS MANUAL OF THE END PRODUCT:

In the user's manual of the end product, the end user has to be informed to keep at least 20cm separation with the antenna while this end product is installed and operated. The end user has to be informed that the FCC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

LABEL OF THE END PRODUCT:

The final end product must be labeled in a visible area with the following "Contains TX FCC ID: TLZ-CB250NF".

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

Туре	Antenna Vendor	Part Number	Peak Gain
Dipole	Invax System Technology Corp.	AN2450-5511BRS-SMASFR8- 3100B-4AX00I	2.14 dBi @ 2400~2500MHz 3.61 dBi @ 5150~5850MHz
PIFA	MAG. LAYERS	MSA-4008-25GC1-A2	2.98 dBi @ 2400~2500MHz 5.16 dBi @ 4900~5900MHz

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Revision History

Document release	Date	Modification	Initials	Approved
Version 0.1	2019/10/01	Initial version	Josh Lin	Patrick Lin
				×
		\sim		
			Y	
	S			
\wedge	\mathbf{O}			
N				

Inspired by wireless

Confidential

Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

Table of Contents

1. GENERAL DESCRIPTION	6
1.1 PRODUCT OVERVIEW AND FUNCTIONAL DESCR	RIPTION
1.2 KEY FEATURE	7
1.3 SPECIFICATIONS TABLE	7
2. ELECTRICAL CHARACTERISTIC	
3. HOST INTERFACES	
3.1 PCI EXPRESS INTERFACE	
3.1.1 DIFFERENTIAL TX OUTPUT ELECTRICALS	
3.1.2 DIFFERENTIAL RX OUTPUT ELECTRICALS	
3.2 USB INTERFACE	
3.2.1 USB 2.0 DEVICE INTERFACE DESCRIPTION	
3.2.2 USB 2.0 DEVICE FUNCTIONAL DESCRIPTION	V
3.3 HIGH-SPEED UART INTERFACE	13
3.3.1 UART INTERFACE SIGNAL DESCRIPTION	
3.3.2 UART INTERFACE FUNCTIONAL DESCRIPTI	ON
3.4 PCM INTERFACE	
3.4.1 PCM TIMING SPECIFICATION – MASTER MO	ĎE
3.4.2 PCM TIMING SPECIFICATION – SLAVE MOD	E
4. PIN DEFINITION	
5. MECHANICAL INFORMATION	21
5.1 PACKAGE OUTLINE DRAWING	

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and

1. General Description

1.1 Product Overview and Functional Description

AzureWave Technologies, Inc. introduces the IEEE 802.11ac/a/b/g/n 2X2 MU-MIMO WLAN & Bluetooth NGFF module --- **AW-CB250NF**. The module is targeted to mobile devices including **Notebook, TV, Tablet and Gaming Device** which need small package module, low power consumption, multiple interfaces and OS support. By using AW-CB250NF, the customers can easily enable the Wi-Fi, and BT embedded applications with the benefits of **high design flexibility, short development cycle, and quick time-to-market**.

Compliance with the IEEE 802.11ac/a/b/g/n standard supporting 802 11ac Wave 2, the AW-CB250NF uses Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplexing (OFDM), DBPSK, DQPSK, CCK and QAM baseband modulation technologies. A high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard minimize the system power requirements by using AW-CB250NF. In addition to the support of WPA/WPA2 and WEP 64-bit and 128-bit encryption, the AW-CB250NF also supports the IEEE 802.11i security standard through the implementation of Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), Advanced Encryption Standard (AES)/Cipher-Based Message Authentication Code (CMAC), and WLAN Authentication and Privacy Infrastructure (WAPI) security mechanisms.

For the video, voice and multimedia applications the AW-CB250NF support **802.11e Quality of Service** (**QoS**). The device also supports **802.11h Dynamic Frequency Selection (DFS)** for detecting radar pulses when operating in the 5GHz range.

For Bluetooth operation, AW-CB250NF is **Bluetooth 5.0 (supports Low Energy)**. AW-CB250NF supports **PCIE**, **USB 3.0/2.0**, and high speed **UART interfaces** for WLAN and Bluetooth to the host processor.

AW-CB250NF is suitable for multiple mobile processors for different applications with the support **cellular phone co-existence**. AW-CB250NF module adopts Marvell's latest highly-integrated dual-band WLAN & Bluetooth SoC---**88W8997**. All the other components are implemented by all means to reach the mechanical specification required.

Inspired by wireless

Confidential

 Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

1.2 Key feature

- PCIe M.2 TYPE 2230-S3-E: 22mm(L) x 30mm(W) x 2.3 mm(H)
- PCIe, USB 3.0/2.0 interfaces support for WLAN
- USB 3.0/2.0, UART interfaces support for Bluetooth
- High speed UART,PCM interfaces
- Bluetooth 5.0 complaint with Bluetooth 2.1 + Enhanced Data Rate (EDR)
- Audio Codec interface support
- Cellular phone co-existence support (TBD)
- Sub-meter accuracy Wi-Fi indoor locationing (802.11mc)
- Multiple power saving modes for low power consumption
- IEEE 802.11i for advanced security
- Quality of Service (QoS) support for multimedia applications
- Support China WAPI
- Lead-free design
- Support optional VIO level(3.3V or 1.8V)

1.3 Specifications Table

Model Name	AW-CB250NF
Product Description	IEEE 802.11 2x2 MU-MIMO a/b/g/n/ac Wireless LAN + Bluetooth 5.0 M.2 2230 type Module
WLAN Standard	IEEE 802.11 ac/a/b/g/n, Wi-Fi compliant
Bluetooth Standard	Bluetooth 5.0 complaint with Bluetooth 2.1+Enhanced Data Rate (EDR)
Host Interface	PCIe for WLAN, USB/UART for Bluetooth
Major Chipset	Marvell 88W8997
Dimension	22mm x 30mm x 2.3mm
Weight	TBD
Package	PCIe M.2 type 2230-S3-E
Operating Conditions	
Voltage	3.3V+- 10%
Temperature	Operating: -40~ 85°C ; Storage: -55 ~ 125°C
Electrical Specifications	
Frequency Range	2.4 GHz ISM radio band / 5 GHz Unlicensed National Information Infrastructure (U-NII) band

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Number of Channels	 802.11a: USA-36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165 802.11b: USA, Canada and Taiwan - 1~11 Most European Countries - 1~13 802.11g: USA, Canada and Taiwan - 1~11 Most European Countries - 1~13 802.11n BW20: Channel 1~13 (2412~2472) BW40: Channel 3~9 (2422~2462) 802.11ac BW20: 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165 BW40: 38, 46, 54, 62, 102, 110, 118, 126, 134, 151, 159 BW80: 42, 58, 106, 122, 138, 155
Modulation	DSSS, OFDM, DBPSK, DQPSK, CCK, 16-QAM, 64-QAM and 256-QAM for WLAN GFSK (1Mbps), Π/4 DQPSK (2Mbps) and 8DPSK (3Mbps) for Bluetooth
Antenna Connector	Main Connector: WLAN Aux Connector: WLAN + BT
Medium Access Protocol	CSMA/CA with ACK
Data Rates	WLAN • 802.11b: 1, 2, 5.5, 11Mbps • 802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54Mbps • 802.11n: up to 150Mbps-single • 802.11n: up to 300Mbps-2x2 MIMO • 802.11ac:up to 192.6Mbps (20MHz channel) • 802.11ac:up to 400Mbps (40MHz channel) • 802.11ac:up to 866.7Mbps (80MHz channel) Bluetooth • Bluetooth 5.0 • Bluetooth 2.1+EDR data rates of 1,2, and 3Mbps
Power Consumption	TBD
Operating Range	Open Space: ~300m ; Indoor: ~100m for WLAN Minimum 10 m indoor for Bluetooth (The transmission speed may vary according to the environment)
Security	 WAPI WEP 64-bit and 128-bit encryption with H/W TKIP processing WPA/WPA2 (Wi-Fi Protected Access) AES-CCMP hardware implementation as part of 802.11i security standard
Operating System Compatibility	Linux(Android) (More information please contact AzureWave FAE)
>	

Inspired by wireless

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and
- is a knowledge property to Azurewave. Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

2. Electrical Characteristic

1.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Тур	Max	Units
3.3V	Power supply voltage with respect to VSS		3.3	4.0	V
Tstorage	Storage Temperature	-55		125	, e

1.2 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
3.3V	Power supply voltage with respect to VSS	2.97	3.3	3.63	V
TA	Ambient operating temperature	-40		85	°C

1.3 Clock Specifications

1.3.1 External Sleep Clock Timing

External Sleep Clock is necessary for two reasons:

1. Auto frequency Detection

This is where the internal logic will bin the Ref clock source to figure out what is the reference clock frequency is. This is done so no strapping is needed for telling 88W8997 what the ref clock input is.

2. Allow low current modes for BT to enter sleep modes such as sniff modes.

The AW-CB250NF external sleep clock pin is powered from the 3.3V voltage supply.

Symbol	Parameter	Min	Тур	Мах	Units
CLK	Clock Frequency Range/accuracy +-250ppm (initial, aging, temperature)		32.768		KHz

1.4 Reset Configuration

The AW-CB250NF is reset to its default operating state under the following conditions:

- Power-on reset (POR)
- Software/Firmware reset
- External pin for power down (PDn)

Inspired by wireless

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

1.5 Power up Timing Sequence

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

3. Host Interfaces

1.1 PCI Express Interface

1.1.1 Differential Tx Output Electricals

Sy mbol	Paramete r	Min	Ту р	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 PPM. UI does not account for SSC dictated variations.		400	400.12	ps
V _{Tx_DIFFpp}	Differential peak-to-peak output voltage V _{Tx_DIFFpp} = 2* V _{TX-D+} - V _{TX-D} -	0.800		1.2	V
V _{Tx_DE_RATIO}	De-emphasized differential output voltage (ratio)	-3.0	-3.5	-4.0	db
T _{Rx_EYE}	Minimum Tx eye wid th	0.75			UI
T _{Rx_EYE_MEDIAN_} MAX_JIT	Maximum time between jitter median and maximum deviation from median			0.125	UI
T _{Tx_RISE} , T _{Tx_FALL}	D+/D- Tx output rise/fall time	0.125			UI
V _{Tx_CM_DC_ACTIV} E_IDLE_DELTA	Absolute delta of DC common mode voltage during L0 and electrical idle	0-	-	100	mV
V _{Tx_CM_DC_LINE_} DE LTA	Absolute delta of DC common mode voltage between D+ and D-	0-	-	25	mV
VTx_IDLE_D IFF p	Electrical idle differential peak output voltage	0		20	mV
VTx_RCV_DETECT	Voltage change allowed during receiver detection			600	mV
V _{Tx_DC_CM}	TxDC common mode voltage			3.6	V
ITX_SHORT	Tx short circuit current limit			90	mA
T _{Tx_IDLE_MIN}	Minimum time spent in electrical idle	50			UI
T _{TX_IDLE_SET_TO_}	Maximum time to transition to a valid electrical idle after sending an electrical idle ordered set			20	UI
T _{Tx_IDLE_TO_DIFF_} DATA	Maximum time to transition to valid Tx specifications after leaving an electrical idle condition			20	UI
RL _{Tx_DIFF}	Differential return loss	10			dB
RL _{Tx_CM}	Common mode return loss	6			dB
C _{Tx}	AC coupling capacitor	75		200	nF
T _{Crosstalk}	Crosstalk random timeout	0		1	ms

Inspired by wireless

Confidential

1.1.2 Differential Rx Output Electricals

Symbol	Paramet er		Тур	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 ppm. UI does not account for SSC dictated variations.		400	400.12	ps
V _{Rx_DIFFpp}	Differential peak-to-peak voltage $V_{Rx_DIFFpp} = 2^* V_{RX-D+} - V_{RX-D-} $	0.175		1.2	V
T _{Rx_EYE}	Minimum receiver eye width	0.4			UI
T _{RX_EYE_MEDIAN_MAX_} JIT	T _{Rx_EYE_MEDIAN_MAX_} Maximum time between jitter median and maximum deviation from median			0.3	UI
V _{Rx_CM_ACp}	AC peak common mode input voltage			150	mV
RL _{Rx_DIFF}	Differential return loss	10			dB
RL _{Rx_CM}	Common mode return loss	6			dB
Z _{Rx_DIFF_DC}	DC differential input impedance	80	100	120	Ω
Z _{Rx_DC}	DC input impedance	40	50	60	Ω
Z _{Rx_HIGH_IMP_DC_POS}	Powered down DC input impedance positive	50			k
Z _{Rx_HIGH_IMP_DC_NEG}	Powered down DC input impedance negative	1			kΩ
V _{Rx_IDLE_DET_} DIFFpp	Electrical idle detect threshold	65		175	mV
T _{Rx_IDLE_DET_} DIFF_ENTERTIME	Unexpected electrical idle enter detect threshold integration time			10	ms
L _{Rx_SKEW}	Total skew		-2	0	ns

1.2 USB Interface

The USB device interface is compliant with the Universal Serial Bus Specification, Revision 2.0, April 27, 2000. A USB host uses the USB cable bus and the USB 2.0 device interface to communicate with the chip. The main features of the USB device interface include:

- High/full speed operation (480/12 Mbps)
- Suspend/host resume/device resume (remote wake-up)
- Built-in DMA engine that reduces interrupt loads on the embedded processor and reduces the system bus bandwidth requirement for serving the USB device operation
- The USB 2.0 device interface is designed with 3.3V signal level pads.

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

1.2.1 USB 2.0 Device Interface Description

Table shows the signal mapping between the AW-CB250NF and the USB Specification, Revision 2.0.

Pin Name	USB 2.0 Specification Pin Name	Description
Pin72/ 3V3_USB	VBUS	USB Bus Power Supply On-board regulator regulates voltage from VBUS level to voltage levels used by USB PHY.
	GND	USB Bus Ground Common ground on SoC device.
Pin70/ USB_DP	D+	USB Bus Data Positive. One of the differential data pair.
Pin69/ USB_DN	D-	USB Bus Data Negative. One of the differential data pair.

1.2.2 USB 2.0 Device Functional Description

The device controller uses internal Scatter/Gather DMA engine to transfer the transmit packet from internal SRAM to USB and the receive packet from USB to internal SRAM. The Device IN Endpoint DMA (DIEPDMAn) and Device OUT Endpoint DMA (DOEPDMAn) registers are used by the DMA engine to access the base descriptor. The application is interrupted after the programmed transfer size extracted from the descriptors is transmitted or received. By using registers, interrupts, and special data structures, the device controller can communicate with the device controller driver (application/software) about bus states, host request, and data transfer status. The device controller driver also has all of the routines to respond to the device framework commands issued by a USB host, so it controls the attachment, configuration, operation, and detachment of the device.

1.3 High-Speed UART Interface

The AW-CB250NF supports a high-speed Universal Asynchronous Receiver/Transmitter (UART) interface, compliant to the industry standard 16550 specification. High-speed baud rates are supported to provide the physical transport between the device and the host for exchanging Bluetooth data. Table shows the rates supported.

The UART interface features include:

- FIFO mode permanently selected for transmit and receive operations
- Two pins for transmit and receive operations
- Two flow control pins

Interrupt triggers for low-power, high throughput operation

The UART interface operation includes:

• Upload boot code to the internal CPU (for debug purposes)

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

7

- Support diagnostic tests
- Support data input/output operations for peripheral devices connected through a standard UART interface

UART Baud Rates Supported

Baud Rate						
1200	38400	460800	1500000	3000000		
2400	57600	500000	1843200	3250000		
4800	76800	921600	2000000	3692300		
9600	115200	1000000	2100000	4000000		
19200	230400	1382400	2764800			

1.3.1 UART Interface Signal Description

Table shows the standard UART signal names on the device.

Signal Name	16550 Standard Pin Name	Description
Data Bus		
UART_SIN	SIN	Serial data input from modem, data set, or peripheral device
UART_SOUT	SOUT	Serial data output from modem, data set, or peripheral device
Modem Control		
UART_RTSN	RTS	Request To Send output to modem, data set, or peripheral device (active low)
UART_CTSN	CTS	Clear To Send input from modem, data set, or peripheral device (active low)

1.3.2 UART Interface Functional Description

1.3.2.1 Booting from UART

When booting from the UART, the AW-CB250NF device has the following requirements:

System Requirement	Description
Number of data bits	8 bits
Stop bits	1 bit
Parity	No parity
Baud Rate	115200

Inspired by wireless

Confidential

1.3.2.2 UART as Test Port

Test diagnostic programs may be uploaded to the CPU through the UART interface. During execution, the diagnostic program transmits performance and status information through the UART by performing a write to the PBU address space designated to the UART.

1.4 PCM Interface

1.4 PCM Interface

AN,

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Sy mbol	Parameter	Con diti on	Min	Ту р	Max	Unit s
FBCLK				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK} rise/fall				3		ns
T _{DO}					15	ns
T _{DIS U}			20			ns
T _{DH O}			15			ns
Τ _{BF}					15	ns

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and

1.4.2 PCM Timing Specification – Slave Mode

|--|

Symbol	Parameter	C ond ition	Min	Тур	Max	Unit s
F _{BCLK}				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK rise/fall}				3		ns
T _{DO}					30	ns
T _{DISU}			15			ns
T _{DHO}			10			ns
T _{BFSU}			15			ns
T _{BFHO}			10			ns

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and Confidential

4. Pin Definition

Pin No	Definition	Basic Description	Туре	Level
1	GND	System Ground Pin		
2	3.3V	3.3V VBAT system power supply input	I	3.3V
3	USB_DP	DP USB Serial Differential Data Positive		3.3V
4	3.3V	3.3V VBAT system power supply input	I	3.3V
5	USB_DN	USB Serial Differential Data Negative	I/O	3.3V
6	WLAN_LED	GPIO[2] (output) for WLAN LED	0	3.3V
7	GND	System Ground Pin		
8	GPIO[6]/PCM_CLK	GPIO[6] (input/output)	I/O	VIO
9	NC	NC		
10	GPIO[7]/PCM_SYNC	GPIO[7] (input/output)	I/O	VIO
11	NC	NC		
12	GPIO[4]/PCM_IN	GPIO[4] (input/output)	0	VIO
13	NC	NC		
14	GPIO[5]/PCM_OUT	GPIO[5] (input/output)	I	VIO
15	NC	NC		
16	BT_LED	GPIO[3] (output) for BT LED	0	3.3V
17	NC	NC		
18	GND	System Ground Pin		
19	NC	NC		
20	GPIO[13]/UART WAKE_N	GPIO[13] for UART WAKE_N (output)	0	VIO
21	NC	NC		
22	GPIO[8]/UART RXD	UART_SOUT (output)	0	VIO
23	PDn	Full Power Down (input) (active low)	I	1.8V
24	Connector Key			
25	Connector Key			
26	Connector Key			
27	Connector Key			
28	Connector Key			
29	Connector Key			
30	Connector Key			
31	Connector Key			
32	GPIO[9]/UART TXD	UART_SIN (input)	I	VIO
33	GND	System Ground Pin		
34	GPIO[11]/UART_CTS	UART_RTSn (output)	0	VIO
35	PCIE_RX_P/USB3_RX_P	PCI Express Receive Data—Positive / USB 3.0 RX_P*	I	VIO

Inspired by wireless

Confidential

Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

36	GPIO[10]]/UART_RTS	UART_CTSn (input)	I	VIO
37	PCIE_RX_N/USB3_RX_N	PCI Express Receive Data—Negative / USB 3.0 RX_N*	I	VIO
38	NC	NC		
39	GND	System Ground Pin		
40	NC	NC		
41	PCIE_TX_P/USB 3_TX_P	PCI Express Transmit Data—Positive / USB 3.0 TX_P*	0	VIO
42	BT_WAKE	Host to UART_BT wake up*	I	VIO
43	PCIE_TX_N/USB 3_TX_N	PCI Express Transmit Data—Negative / USB 3.0 TX_N*	0	VIO
44	COEX3	NC		
45	GND	System Ground Pin		
46	COEX2	NC		
47	PCIE_RCLK_P	PCI Express Differential Clock Input—Positive	I	VIO
48	COEX1	NC		
49	PCIE_RCLK_N	PCI Express Differential Clock Input—Negative	I	VIO
50	SLP_CLK	32.768KHz external clock	I	VIO
51	GND	System Ground Pin		
52	PCIE_PERST_N	PCIe host indication to reset the device (input) (active low)	I	VIO
53	PCIE_CLKREQn	PCIe clock request (input/output) (active low)	I/O	VIO
54	GPIO[1]/PDn	USB_VBUS_ON power valid indication/ PDn (optional)*	I	VIO
55	PCIE_WAKEn	PCIe wake signal (output) (active low)	0	VIO
56	PCIE_DISABLE_N	PCIe host indication to disable the WLAN function of the device	I	VIO
57	GND	System Ground Pin		
58	NC	NC		
59	Reserved	NC		
60	NC	NC		
61	Reserved	NC		
62	NC	NC		
63	GND	System Ground Pin		
64	NC	NC	I	
65	NC	NC	I	
66	NC	NC		
67	NC	NC	I	
68	NC	NC		
69	GND	System Ground Pin		
70	NC	NC		
71	NC	NC		
72	3.3V	3.3V VBAT system power supply input	Ι	VIO
73	NC	NC		

Inspired by wireless

Confidential

Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.
- 19 -

74	3.3V	3.3V VBAT system power supply input	I	VIO
75	GND	System Ground Pin		

Notes:

- 1. PCIE Impedance targets: Single-ended Z of 60 ohms +- 15%. Differential Impedance of ~100 ohm +- 20%.
- 2. USB Impedance targets: D+/D- are differential and should have 90ohms impedance.
- 3. * Implement by different hardware version.
- 4. Below table shows the configuration pins as host interface configuration input. (Default as PCIE/USB

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

5. Mechanical Information

5.1 Package Outline Drawing

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.