

FCC TEST REPORT (15.247)

REPORT NO.: RF130726E06B MODEL NO.: AW-AM691NF

FCC ID: TLZ-AM691NF

RECEIVED: Oct. 28, 2013

TESTED: Oct. 28 to 29, 2013

ISSUED: Oct. 29, 2013

APPLICANT: AzureWave Technologies, Inc.

ADDRESS: 8 F., No. 94, Baozhong Rd., Xindian, Taipei,

Taiwan 231

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, LAB ADDRESS:

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, **TEST LOCATION (1):**

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, **TEST LOCATION (2):**

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

1 of 44

Table of Contents

RELEA	ASE CONTROL RECORD	
1.	CERTIFICATION	
2.	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	7
3.	GENERAL INFORMATION	8
3.1	GENERAL DESCRIPTION OF EUT	8
3.2	DESCRIPTION OF TEST MODES	10
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	11
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3.4		
3.5	Duty cycle of test signal DESCRIPTION OF SUPPORT UNITS	15
3.6	CONFIGURATION OF SYSTEM UNDER TEST	15
4.	TEST TYPES AND RESULTS	
4.1	CONDUCTED EMISSION MEASUREMENT	
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURES	
4.1.4	DEVIATION FROM TEST STANDARD	
4.1.5	TEST SETUP	17
4.1.6	EUT OPERATING CONDITIONS	17
4.1.7	TEST RESULTS	
4.1.7	RADIATED EMISSION AND BANDEDGE MEASUREMENT	
4.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	
4.2.1	TEST INSTRUMENTS	
4.2.2	TEST PROCEDURES	
4.2.4	DEVIATION FROM TEST STANDARD	
4.2.4		
4.2.6	TEST SETUPEUT OPERATING CONDITIONS	25
4.2.7	TEST RESULTS	
4.2.7	6dB BANDWIDTH MEASUREMENT	20
_	LIMITS OF 6dB BANDWIDTH MEASUREMENT	
4.3.1		
4.3.2 4.3.3	TEST INSTRUMENTS	
	TEST PROCEDURE	
4.3.4	DEVIATION FROM TEST STANDARD	
4.3.5	TEST SETUP	
4.3.6		
	TEST RESULTS	
4.4	CONDUCTED OUTPUT POWER MEASUREMENT	
	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	
	INSTRUMENTS	
	TEST PROCEDURES	
	DEVIATION FROM TEST STANDARD	
4.4.5	TEST SETUP	33
	EUT OPERATING CONDITIONS	
	TEST RESULTS	
4.5	Average Output Power	
	FOR REFERENCE	
	TEST INSTRUMENTS	
	TEST PROCEDURES	
4.5.4	TEST SETUP	34

4.5.5	EUT OPERATING CONDITIONS	34
4.5.6	TEST RESULTS	
4.6	POWER SPECTRAL DENSITY MEASUREMENT	36
4.6.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	36
4.6.2	TEST INSTRUMENTS	36
4.6.3	TEST PROCEDURE	36
4.6.4	DEVIATION FROM TEST STANDARD	
4.6.5	TEST SETUP	36
4.6.6	EUT OPERATING CONDITION	36
4.6.7	TEST RESULTS	
4.7	CONDUCTED OUT-BAND EMISSION MEASUREMENT	38
4.7.1	LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT	
4.7.2		
4.7.3	TEST PROCEDURE	38
4.7.4	DEVIATION FROM TEST STANDARD	
4.7.5		
4.7.6	EUT OPERATING CONDITION	
4.7.7		
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	42
6.	INFORMATION ON THE TESTING LABORATORIES	43
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING	G CHANGES
	TO THE EUT BY THE LAB	44

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF130726E06B	Original release	Oct. 29, 2013

1. CERTIFICATION

PRODUCT: IEEE 802.11 a/b/g/n Wireless LAN and Bluetooth

Combo LGA Module

BRAND NAME: AzureWave

MODEL NO.: AW-AM691NF

TEST SAMPLE: ENGINEERING SAMPLE

APPLICANT: AzureWave Technologies, Inc.

TESTED: Oct. 28 to 29, 2013

STANDARDS: FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10-2009

The above equipment (Model: AW-AM691NF) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : , DATE: Oct. 29, 2013

(Lori Chung, Specialist V

5 of 44

(May Chen, Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)							
STANDARD SECTION	TEST TYPE	RESULT	REMARK				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -12.62dB at 0.15000MHz.				
15.247(d) 15.209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -2.6dB at 663.10MHz				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.				
15.247(b)	Conducted power	PASS	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	Antenna connector is I-PEX not a standard connector.				

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.98 dB
Radiated emissions (30MHz-1GHz)	5.46 dB
Radiated emissions (1GHz -6GHz)	3.73 dB
Radiated emissions (6GHz -18GHz)	3.90 dB
Radiated emissions (18GHz -40GHz)	4.11 dB

7 of 44

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	IEEE 802.11 a/b/g/n Wireless LAN and Bluetooth Combo LGA Module					
MODEL NO.	AW-AM691NF					
POWER SUPPLY	DC 3.3V					
MODULATION TYPE	DTS					
MODULATION TECHNOLOGY	DTS					
TRANSFER RATE	BT-LE (GFSK): 1Mbps					
OPERATING FREQUENCY	2.402 ~ 2.480GHz					
NUMBER OF CHANNEL	40 for BT-LE(GFSK)					
MAXIMUM OUTPUT POWER	6.668mW					
ANTENNA TYPE	Please see NOTE					
DATA CABLE	NA					
I/O PORTS	Refer to user's manual					
ASSOCIATED DEVICES	NA					

NOTE:

- 1. This report is prepared for FCC Class II change. The difference compared with the Report No.: RF130726E06 design is as the following:
 - Upgrade Bluetooth technology to BT 4.0.
- 2. According to above condition, all test items of the BT-LE mode need to be performed. And all data was verified to meet the requirements.
- 3. There are Bluetooth technology and WLAN technology used for the EUT (WLAN and Bluetooth technology cannot transmit at same time).
- 4. 2.4GHz and 5GHz technology cannot transmit at same time.
- 5. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

6. The antennas provided to the EUT, please refer to the following table:

Ant.	Brand	Model	Antenna Type	Connector	Antenna Gain <include cable lose> (dB)</include 	Antenna Cable Loss (dB)	_	Frequency range (MHz to MHz)		
1	MAG.LAYERS	MSA-4008-25GC1-A1	PIFA	I-PEX	2.98 5.16	0.5	150	2400 ~ 2500 4900 ~ 5900		
2	INPAQ	WA-C-XT-02-001	PIFA	I-PEX	2.40 2.06	1	721	2400 ~ 2500 5150 ~ 5850		
3	INPAQ	WA-P-LB-02-035	PIFA	I-PEX	2.97 2.77	1	440	2400 ~ 2500 5150 ~ 5850		
4	WHA YU	SSR-31604	PIFA	I-PEX	2.6 4.3	0.5	125	2400 ~ 2500 4900 ~ 5825		
	Smart Approach Co				-0.56 1.25	0.66 0.98		2400 ~ 2500 5150 ~ 5350		
5	Smart Approach Co. Ltd	SE-ECJH0-001	PIFA	A I-PEX	0.08	1.03	206	5740 ~ 5725		
		SE-ECJH0-002			0.75 -0.57	1.06 0.14		5725 ~ 5850 2400 ~ 2500		
6	Smart Approach Co. Ltd		' SE-ECJH0-002	PIFA I-PEX	PIFA	PIFA	PIFA	-0.64 1.79	0.20 0.22	43
					1.27 1.82	0.22 0.76		5725 ~ 5850 2400 ~ 2500		
7	JiengtaiCorporation	JT1301209Y0311	PIFA	I-PEX	0.45 0.76	1.22	208	5150 ~ 5350		
			0.76	0.38	1.32		5740 ~ 5725 5725 ~ 5850			
8	JiengtaiCorporation	JT1301209Y1511	PIFA	I-PEX	-0.44 2.08	0.13 0.25	48	2400 ~ 2500 5150 ~ 5350		
	olengialoorpolation	01100120011011	1 11 / 1	TT EX	2.48 1.66	0.26 0.33	40	5740 ~ 5725 5725 ~ 5850		
	Hua Chen				-1.04 -1.67	0.12 0.19		2400 ~ 2500 5150 ~ 5350		
9	Technology Co.,Ltd	0ACCN013008N PIFA	PIFA	PIFA I-PEX	-0.64 -0.75	0.20	213	5740 ~ 5725 5725 ~ 5850		
					-5.82	0.5		2400 ~ 2500		
10	Hua Chen Technology Co.,Ltd	0ACCN013009N	PIFA	I-PEX	2.33	0.77	49	5150 ~ 5350 5740 ~ 5725		
					2.33	0.82		5725 ~ 5850		

From the above antennas, antenna 1 was selected for the test and its data was recorded in this report.

3.2 DESCRIPTION OF TEST MODES

40 channels are provided for Bluetooth LE mode:

CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		Al	PPLICABLE 1	го		DEGODIDATION
CONFIGURE MODE	PLC	RE < 1G	RE≥1G	APCM	ОВ	DESCRIPTION
-	V	\checkmark	\checkmark	V	V	-

Where PLC: Power Line Conducted Emission RE < 1G: Radiated Emission below 1GHz

RE ≥ **1G**: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement

OB: Conducted Out-Band Emission Measurement

NOTE: 1. "-"means no effect.

2. The EUT's antenna had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane**.

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
BT-LE	0 to 39	39	DTS	GFSK	1

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATIO	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	N TYPE	(Mbps)
BT-LE	0 to 39	39	DTS	GFSK	1

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL		MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
BT-LE	0 to 39	0, 19, 39	DTS	GFSK	1

ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL		MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
BT-LE	0 to 39	0, 19, 39	DTS	GFSK	1

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
BT-LE	0 to 39	0, 19, 39	DTS	GFSK	1

TEST CONDITION:

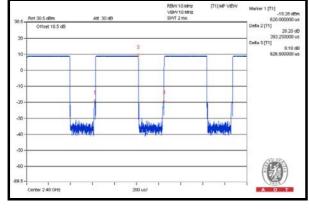
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
PLC	24deg. C,68%RH	120Vac, 60Hz	Andy Ho
RE<1G	24deg. C, 65%RH	120Vac, 60Hz	Andy Ho
RE≥1G	22deg. C, 66%RH	120Vac, 60Hz	Andy Ho
APCM	25deg. C, 60%RH	120Vac, 60Hz	Robert Cheng
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Robert Cheng

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)
558074 D01 DTS Meas Guidance v03r01
ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.



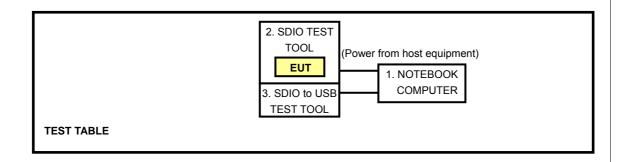
3.4 DUTY CYCLE OF TEST SIGNAL

BT-LE mode

If duty cycle of test signal is < 98%, duty factor shall be considered.

<u>Duty cycle = 0.393 ms/0.627 ms = 0.627, Duty factor = 10 * log(1/0.627) = 2</u>

3.5 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
I 1	NOTEBOOK COMPUTER	ASUS	NA	NA	NA
1 2	SDIO TEST TOOL	AzureWave	NA	NA	NA
3	SDIO to USB TEST TOOL	AzureWave	NA	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS			
1	USB cable, 1.8m			
2	NA			
3	NA			

NOTE: All power cords of the above support units are non shielded (1.8m).

3.6 CONFIGURATION OF SYSTEM UNDER TEST

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	D LIMIT (dBμV)
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.1.2 TEST INSTRUMENTS

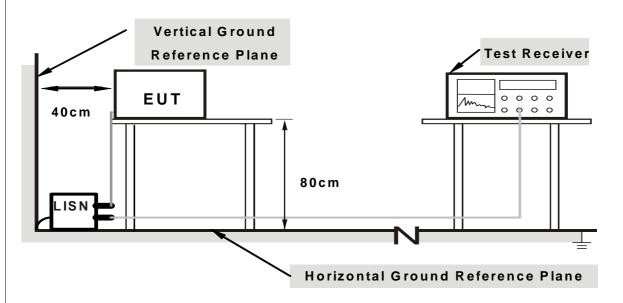
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS 30	100375	Mar. 08, 2013	Mar. 07, 2014
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK8127	8127-522	Sep. 05, 2013	Sep. 04, 2014
Line-Impedance Stabilization Network (for Peripheral)	ENV216	100072	June 06, 2013	June 05, 2014
RF Cable (JYEBAO)	5DFB	COCCAB-001	Mar. 11, 2013	Mar. 10, 2014
50 ohms Terminator	50	EMC-03	Sep. 24, 2013	Sep. 23, 2014
Software ADT	BV ADT_Cond_V7.3.7.	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: Oct. 28, 2013

4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN.
- b. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- c. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- d. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.


NOTE:

1. The resolution bandwidth of test receiver is 9kHz for Quasi-peak detection (QP) & Average detection (AV).

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

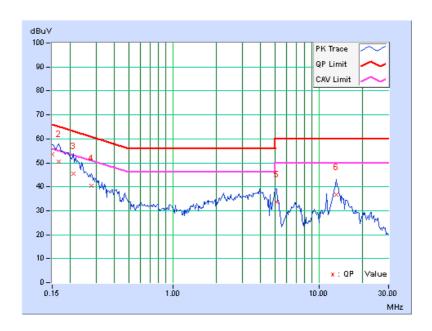
Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

1.	Connect the EUT with the support unit 1 (Notebook Computer) which is placed
	on a testing table.

2.	The communication partner run test program "Braodcom command (Linux)" to
	enable EUT under transmission/receiving condition continuously at specific
	channel frequency.

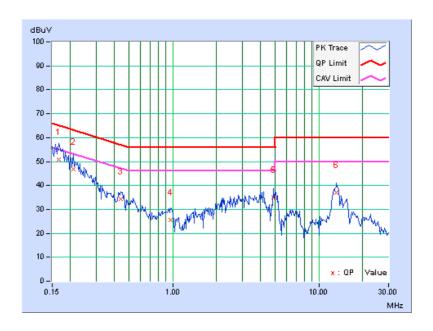

4.1.7 TEST RESULTS

PHASE Line (L)	DETECTOR FUNCTION	Quasi-Peak (QP) / Average (AV)
----------------	-------------------	-----------------------------------

	Freq.	Corr.	Rea Va	ding lue	Emis Le	ssion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	0.10	53.28	35.08	53.38	35.18	66.00	56.00	-12.62	-20.82
2	0.16563	0.11	50.53	34.26	50.64	34.37	65.18	55.18	-14.54	-20.81
3	0.20861	0.12	45.28	29.43	45.40	29.55	63.26	53.26	-17.86	-23.71
4	0.27890	0.14	40.32	25.78	40.46	25.92	60.85	50.85	-20.39	-24.93
5	5.17193	0.36	33.39	27.13	33.75	27.49	60.00	50.00	-26.25	-22.51
6	13.21876	0.71	36.03	29.41	36.74	30.12	60.00	50.00	-23.26	-19.88

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



DUACE	Noutral (NI)	DETECTOR	Quasi-Peak (QP) /
PHASE	Neutral (N)	FUNCTION	Average (AV)

	Freq.	Corr.	Rea Val	ding lue	Emission Limit Marg		Limit		gin	
No		Factor	[dB ((uV)]	[dB	(uV)])] [dB (uV)]		(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16565	0.15	50.64	36.53	50.79	36.68	65.18	55.18	-14.38	-18.49
2	0.20857	0.16	46.58	31.49	46.74	31.65	63.26	53.26	-16.52	-21.61
3	0.44295	0.19	34.32	30.35	34.51	30.54	57.01	47.01	-22.49	-16.46
4	0.97425	0.23	25.28	21.41	25.51	21.64	56.00	46.00	-30.49	-24.36
5	4.89846	0.37	34.59	27.05	34.96	27.42	56.00	46.00	-21.04	-18.58
6	13.25390	0.63	36.41	30.11	37.04	30.74	60.00	50.00	-22.96	-19.26

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB.

4.2.2 TEST INSTRUMENTS

For below 1GHz test:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
MXE EMI Receiver Agilent	N9038A	MY50010156	Jan. 16, 2013	Jan. 15, 2014
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 14, 2012	Nov. 13, 2013
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Mar. 25, 2013	Mar. 24, 2014
RF Cable	NA	CHHCAB_001	Oct. 06, 2013	Oct. 05, 2014
Horn_Antenna AISI	AIH.8018	0000220091110	Nov. 27, 2012	Nov. 26, 2013
Pre-Amplifier Agilent	8449B	3008A01923	Oct. 30, 2012	Oct. 29, 2013
RF Cable	NA	RF104-205 RF104-207 RF104-202	Dec. 26, 2012	Dec. 25, 2013
Spectrum Analyzer Agilent	E4446A	MY48250253	Aug. 28, 2013	Aug. 27, 2014
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Nov. 14, 2012	Nov. 13, 2013
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 08, 2013	Oct. 07, 2014
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3 The test was performed in 966 Chamber No. H.
- 4. The FCC Site Registration No. is 797305.
- 5 The CANADA Site Registration No. is IC 7450H-3.
- 6 Tested Date: Oct. 28, 2013

For above 1GHz test:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
MXE EMI Receiver Agilent	N9038A	MY51210105	Jan. 29,2013	Jan. 28,2014
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-03	Nov. 14, 2012	Nov. 13, 2013
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-360	Mar. 19, 2013	Mar. 18, 2014
RF Cable	NA	CHGCAB_001	Oct. 05, 2013	Oct. 04, 2014
Horn_Antenna AISI	AIH.8018	0000320091110	Nov. 19, 2012	Nov. 18, 2013
Pre-Amplifier Agilent	8449B	3008A02578	June 25, 2013	June 24, 2014
RF Cable	NA	RF104-201 RF104-203 RF104-204	Dec. 25, 2012	Dec. 24, 2013
Spectrum Analyzer Agilent	E4446A	MY48250253	Aug. 28, 2013	Aug. 27, 2014
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Nov. 14, 2012	Nov. 13, 2013
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 08, 2013	Oct. 07, 2014
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

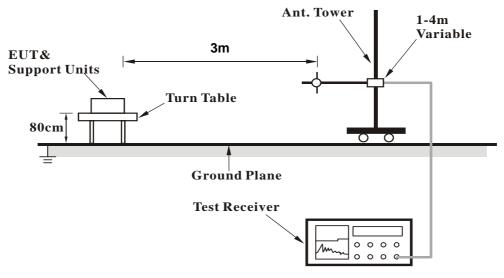
Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3 The test was performed in 966 Chamber No. G.
- 4. The FCC Site Registration No. is 966073.
- 5 The VCCI Site Registration No. is G-137.
- 6 The CANADA Site Registration No. is IC 7450H-2.
- 7 Tested Date: Oct. 29, 2013

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the EUT transiting at duty cycle is < 98%, the duty cycle correction is required that emission.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6

4.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

BT_LE-GFSK

CHANNEL	TX Channel 39	DETECTOR	Ouggi Book (OB)
FREQUENCY RANGE	Below 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA I	POLARITY 8	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	96.08	30.1 QP	43.5	-13.5	1.64 H	211	48.55	-18.50
2	272.91	41.2 QP	46.0	-4.9	1.00 H	203	54.35	-13.20
3	542.15	41.6 QP	46.0	-4.4	1.00 H	162	48.60	-7.02
4	555.00	39.4 QP	46.0	-6.7	1.00 H	197	46.02	-6.67
5	663.10	43.4 QP	46.0	-2.6	1.24 H	173	47.76	-4.38
6	863.43	38.5 QP	46.0	-7.5	1.22 H	259	39.49	-1.01
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	142.11	39.2 QP	43.5	-4.4	1.28 V	261	52.70	-13.55
2	213.25	39.2 QP	43.5	-4.3	1.80 V	211	55.21	-16.04
3	431.12	40.6 QP	46.0	-5.4	1.49 V	261	49.28	-8.70
4	638.05	38.1 QP	46.0	-7.9	1.32 V	211	42.55	-4.49
5	710.22	40.1 QP	46.0	-5.9	1.02 V	209	44.04	-3.93
6	853.31	38.2 QP	46.0	-7.8	1.38 V	103	39.37	-1.19

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

ABOVE 1GHz DATA

BT_LE-GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	53.5 PK	74.0	-20.5	1.11 H	309	55.65	-2.15
2	2390.00	41.4 AV	54.0	-12.6	1.11 H	309	43.55	-2.15
3	*2402.00	104.2 PK			1.11 H	309	106.31	-2.11
4	*2402.00	91.4 AV			1.11 H	309	93.51	-2.11
5	4804.00	53.8 PK	74.0	-20.2	1.00 H	205	47.78	6.02
6	4804.00	41.5 AV	54.0	-12.5	1.00 H	205	35.48	6.02
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	53.7 PK	74.0	-20.3	1.50 V	162	55.85	-2.15
2	2390.00	41.5 AV	54.0	-12.5	1.50 V	162	43.65	-2.15
3	*2402.00	96.2 PK			1.50 V	162	98.31	-2.11
4	*2402.00	85.3 AV			1.50 V	162	87.41	-2.11
5	4804.00	54.1 PK	74.0	-19.9	1.00 V	210	48.08	6.02
6	4804.00	41.7 AV	54.0	-12.3	1.00 V	210	35.68	6.02

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	104.0 PK			1.00 H	307	105.97	-1.97	
2	*2440.00	91.2 AV			1.00 H	307	93.17	-1.97	
3	4880.00	53.5 PK	74.0	-20.5	1.00 H	218	47.22	6.28	
4	4880.00	41.4 AV	54.0	-12.6	1.00 H	218	35.12	6.28	
5	7320.00	61.3 PK	74.0	-12.7	1.04 H	91	47.28	14.02	
6	7320.00	49.9 AV	54.0	-4.1	1.04 H	91	35.88	14.02	
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	96.2 PK			1.00 V	172	98.17	-1.97	
2	*2440.00	85.0 AV			1.00 V	172	86.97	-1.97	
3	4880.00	54.2 PK	74.0	-19.8	1.00 V	221	47.92	6.28	
4	4880.00	41.8 AV	54.0	-12.2	1.00 V	221	35.52	6.28	
5	7320.00	61.3 PK	74.0	-12.7	1.04 V	281	47.28	14.02	
6	7320.00	49.8 AV	54.0	-4.2	1.04 V	281	35.78	14.02	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	101.0 PK			1.09 H	324	102.84	-1.84		
2	*2480.00	87.0 AV			1.09 H	324	88.84	-1.84		
3	4960.00	53.5 PK	74.0	-20.5	1.00 H	202	46.91	6.59		
4	4960.00	41.2 AV	54.0	-12.8	1.00 H	202	34.61	6.59		
5	7440.00	61.4 PK	74.0	-12.6	1.00 H	105	47.59	13.81		
6	7440.00	49.7 AV	54.0	-4.3	1.00 H	105	35.89	13.81		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	93.9 PK			1.00 V	268	95.74	-1.84		
2	*2480.00	77.7 AV			1.00 V	268	79.54	-1.84		
3	4960.00	53.8 PK	74.0	-20.2	1.02 V	235	47.21	6.59		
4	4960.00	41.5 AV	54.0	-12.5	1.02 V	235	34.91	6.59		
5	7440.00	61.5 PK	74.0	-12.5	1.00 V	105	47.69	13.81		
6	7440.00	49.8 AV	54.0	-4.2	1.00 V	105	35.99	13.81		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

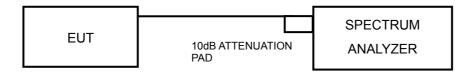
The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Nov. 01, 2012	Oct. 31, 2013

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Oct. 29, 2013


4.3.3 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 100kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Sweep = auto couple.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP

4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF130726E06B Reference No.: 131029E01 30 of 44

4.3.7 TEST RESULTS

BT_LE-GFSK

CHANNEL	FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	0.71	0.5	PASS
19	2440	0.71	0.5	PASS
39	2480	0.71	0.5	PASS

4.4 CONDUCTED OUTPUT POWER MEASUREMENT

4.4.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 INSTRUMENTS

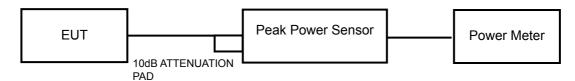
DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER	WIODEL NO.	NO.	DATE	UNTIL
Power Meter	ML2495A	1014008	Apr. 23, 2013	Apr. 22, 2014
Power Sensor	MA2411B	0917122	Apr. 23, 2013	Apr. 22, 2014

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date: Oct. 29, 2013

4.4.3 TEST PROCEDURES


The peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the peak power level.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation.

4.4.5 TEST SETUP

4.4.6 EUT OPERATING CONDITIONS

Same as Item 4.3.6

4.4.7 TEST RESULTS

BT_LE-GFSK

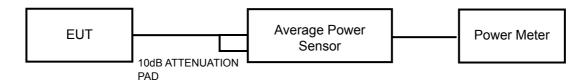
CHANNEL	FREQUENCY (MHz)	PEAK POWER (mW)	PEAK POWER (dBm)	LIMIT (dBm)	PASS/FAIL
0	2402	5.702	7.56	30	PASS
19	2440	6.324	8.01	30	PASS
39	2480	6.668	8.24	30	PASS

4.5 AVERAGE OUTPUT POWER

4.5.1 FOR REFERENCE.

4.5.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER	WIODEL NO.	NO.	DATE	UNTIL
Power Meter	ML2495A	1014008	Apr. 23, 2013	Apr. 22, 2014
Power Sensor	MA2411B	0917122	Apr. 23, 2013	Apr. 22, 2014


Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Oct. 29, 2013

4.5.3 TEST PROCEDURES

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.5.4 TEST SETUP

4.5.5 EUT OPERATING CONDITIONS

Same as Item 4.3.6

4.5.6 TEST RESULTS

BT_LE-GFSK

CHANNEL	FREQUENCY (MHz)	AVERAGE POWER (mW)	AVERAGE POWER (dBm)
0	2402	5.483	7.39
19	2440	6.067	7.83
39	2480	6.427	8.08

4.6 POWER SPECTRAL DENSITY MEASUREMENT

4.6.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

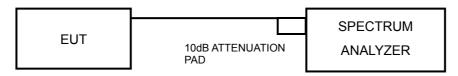
The Maximum of Power Spectral Density Measurement is 8dBm.

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100037	Nov. 01, 2012	Oct. 31, 2013

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Oct. 29, 2013


4.6.3 TEST PROCEDURE

- 1. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- 2. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 3. Use the peak marker function to determine the maximum amplitude level.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

4.6.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.6.7 TEST RESULTS

BT_LE-GFSK

Channel	FREQUENCY (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
0	2402	-6.23	8	PASS
19	2440	-5.93	8	PASS
39	2480	-5.36	8	PASS

4.7 CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.7.1 LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100037	Nov. 01, 2012	Oct. 31, 2013

Note

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Oct. 29, 2013

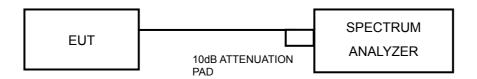
4.7.3 TEST PROCEDURE

Measurement Procedure - Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

Measurement Procedure –Unwanted Emission Level

- Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

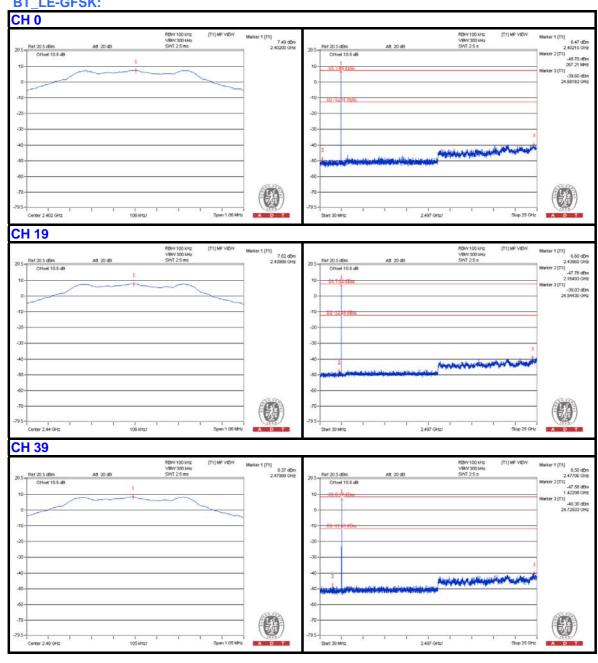

Report No.: RF130726E06B Reference No.: 131029E01 38 of 44

4.7.4 DEVIATION FROM TEST STANDARD

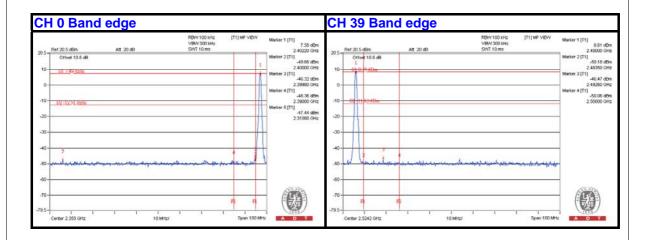
No deviation

4.7.5 TEST SETUP

4.7.6 EUT OPERATING CONDITION


Same as Item 4.3.6

4.7.7 TEST RESULTS


The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

BT_LE-GFSK:

5. PHOTOGRAPHS OF THE TEST CONFIGURATION
Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com **Web Site**: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.
END