

RADIO TEST REPORT

Test Report No. 14898177H

Customer	CITIZEN SYSTEMS JAPAN CO., LTD.
Description of EUT	Digital Photo Printer
Model Number of EUT	DP-DS820DX
FCC ID	TLGD10C0
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	September 27, 2023
Remarks	-

Representative test engineer

Tomoya Sone
Engineer

Approved by

Satofumi Matsuyama
Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.

There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 22.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
It does not cover administrative issues such as Manual or non-Radio test related Requirements.
(if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where
UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in SECTION 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 14898177H

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	14898177H	September 27, 2023	-

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT).....	5
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	9
SECTION 5: Conducted Emission.....	11
SECTION 6: Radiated Emission (Fundamental, Spurious Emission and Spectrum Mask)	12
SECTION 7: Other test.....	14
APPENDIX 1: Test data	15
Conducted Emission.....	15
Fundamental Emission and Spectrum Mask	17
Spurious Emission	19
Radiated Spurious Emission.....	20
20 dB Bandwidth and 99% Occupied Bandwidth.....	21
Frequency Tolerance	23
APPENDIX 2: Test instruments	24
APPENDIX 3: Photographs of test setup.....	25
Conducted Emission	25
Radiated Emission	26
Frequency Tolerance	28

SECTION 1: Customer Information

Company Name	CITIZEN SYSTEMS JAPAN CO., LTD.
Address	6-1-12, Tanashi-cho, Nishi-Tokyo-Shi, Tokyo 188-8511 Japan
Telephone Number	+81-42-468-4986
Contact Person	Jun Ogawa

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Digital Photo Printer
Model Number	DP-DS820DX
Serial Number	Refer to SECTION 4.2
Condition	Production prototype (Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 5, 2023
Test Date	September 6 to 7, 2023

2.2 Product Description

General Specification

Rating	AC 100 V to 240 V, 3.9 A to 1.6 A, 50 / 60 Hz
Operating Temperature	+5 deg. C to +35 deg. C

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	13.56 MHz
Type of Modulation	ASK

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C The latest version on the first day of the testing period
Title	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted limits Section 15.225 Operation within the band 13.110-14.010 MHz.

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.207	6.37 dBm 13.56000 MHz, Without Tag	Complied	-
	<ISED> RSS-Gen 8.8	<ISED> RSS-Gen 8.8			
Electric Field Strength of Fundamental Emission	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.225(a)	83.66 dB 13.56000 MHz, QP, 0 deg.,	Complied	Radiated
	<ISED> RSS-Gen 6.4, 6.12	<ISED> RSS-210 B.6	Without Tag		
Spectrum Mask	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.225(b)(c)	44.53 dB, 14.01000 MHz, QP, 0 deg.,	Complied	Radiated
	<ISED> RSS-Gen 6.4, 6.13	<ISED> RSS-210 B.6	Without Tag		
20 dB Bandwidth	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section15.215(c)	See data	Complied	Radiated
	<ISED> -	<ISED> -			
Electric Field Strength of Spurious Emission	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.209, Section 15.225 (d)	8.22 dB 39.915 MHz, Vertical, QP,	Complied	Radiated
	<ISED> RSS-Gen 6.4, 6.13	<ISED> RSS-210 B.6 RSS-Gen 8.9	Without Tag		
Frequency Tolerance	<FCC> ANSI C63.10:2013 6 Standard test methods	<FCC> Section 15.225(e)	See data	Complied	Radiated
	<ISED> RSS-Gen 6.11, 8.11	<ISED> RSS-210 B.6			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

However, the supply voltage was varied and tested at 85 % and 115 % of the nominal rated supply voltage during frequency tolerance test according to Section 15.225(e).

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% emission bandwidth	<ISED>RSS-Gen 6.7	-	N/A	-	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement.
Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor $k = 2$.

Conducted emission

Item	Frequency Range	Unit	Calculated Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	dB	3.7
	0.15 MHz to 30 MHz	dB	3.3

Radiated emission

Measurement distance	Frequency Range	Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz	dB	3.3
		dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	4.8
		Vertical	5.0
	200 MHz to 1000 MHz	Horizontal	5.1
		Vertical	6.2
10 m	30 MHz to 200 MHz	Horizontal	4.8
		Vertical	4.8
	200 MHz to 1000 MHz	Horizontal	4.9
		Vertical	5.0
3 m	1 GHz to 6 GHz	dB	4.9
	6 GHz to 18 GHz	dB	5.2
1 m	10 GHz to 26.5 GHz	dB	5.5
	26.5 GHz to 40 GHz	dB	5.4

20 dB Bandwidth and 99% Occupied Bandwidth, Frequency Tolerance

Item	Unit	Calculated Uncertainty (+/-)
Bandwidth (OBW)	%	0.96
Frequency Readout (Frequency counter)	ppm	0.67
Frequency Readout (Spectrum analyzer frequency readout function)	ppm	1.61

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan
Telephone: +81-596-24-8999

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919
ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

The mode is used:

Test mode	Remarks
1) Transmitting mode (Tx)	The EUT Transmits and Receives at the same time and there is no receiving mode.

The EUT was operated in a manner similar to typical use during the tests.

*Power of the EUT was set by the software as follows;

Software: DP-DS820DX 0085 Version: 0085EMI

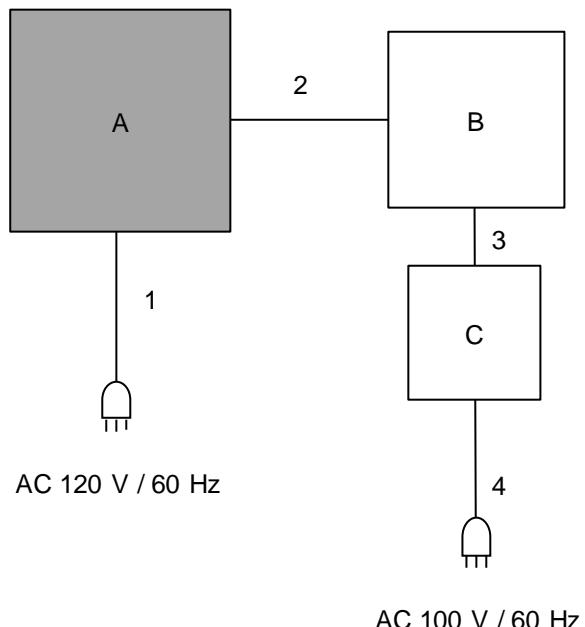
(Date: 2023.09 04, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.


Test Item	Operating mode
Conducted Emission	Tx Mod on, Without Tag / With Tag
Electric Field Strength of Fundamental Emission	Tx Mod on, Without Tag / With Tag
Spectrum Mask	Tx Mod on, Without Tag / With Tag
20 dB Bandwidth and 99 % Occupied Bandwidth	Tx Mod on, Without Tag / With Tag
Electric Field Strength of Spurious Emission*	Tx Mod on, Without Tag
Frequency Tolerance*	Tx Mod on, Without Tag

* After the comparison of the test data between with Tag and without Tag, the tests were performed with the worst case.

Frequency Tolerance	
Temperature	-20 deg. C to +50 deg. C Step 10 deg. C
Voltage	Normal Voltage AC 120 V Maximum Voltage AC 138 V (AC 120 V +15 %) Minimum Voltage AC 102 V (AC 120 V -15 %)

*This EUT provides stable voltage constantly to RF Part regardless of input voltage

4.2 Configuration and peripherals

* Cabling and setup were taken into consideration and test data was taken under worse case conditions.

*As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remark
A	Digital Photo Printer	DP-DS820DX	055	CITIZEN SYSTEMS JAPAN CO., LTD.	EUT
B	Laptop PC	PR63PBAA337AD	6F053913H	TOSHIBA	-
C	AC Adapter	PA51770-1ACA	FX10800NSKACC	TOSHIBA	-

List of Cables Used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	AC Cable	1.8	Unshielded	Unshielded	-
2	USB Cable	3.0	Shielded	Shielded	-
3	DC Cable	1.7	Unshielded	Unshielded	-
4	AC Cable	0.8	Unshielded	Unshielded	-

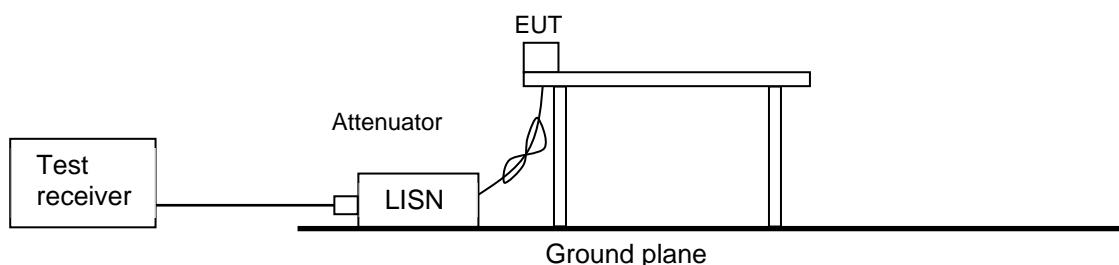
SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN)/ Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)


I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

Figure 1: Test Setup

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement range	: 0.15 MHz to 30 MHz
Test data	: APPENDIX
Test result	: Pass

SECTION 6: Radiated Emission (Fundamental, Spurious Emission and Spectrum Mask)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[Limit conversion]

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohms. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to $45.5 - 51.5 = -6.0$ dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

[Frequency: From 9 kHz to 30 MHz]

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 3 about Direction of the Loop Antenna.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane. However test results were confirmed to pass against standard limit.

[Frequency: From 30 MHz to 1 GHz]

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

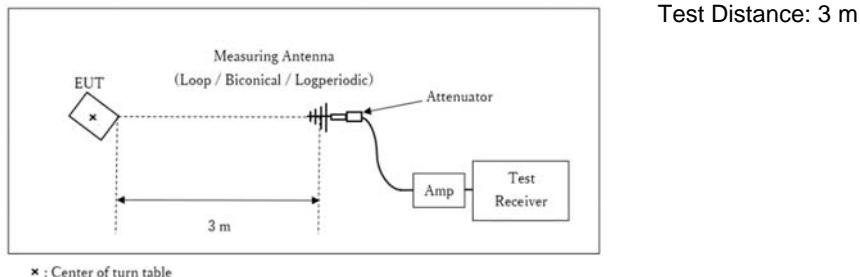
The measurements were performed for both vertical and horizontal antenna polarization.

[Test instruments and test settings]

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

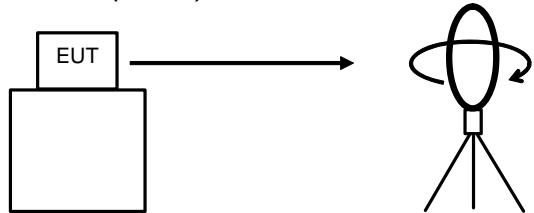
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.


Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz
Instrument used	Test Receiver				
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

*1) Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

*2) Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$


Figure 2: Test Setup

Below 1 GHz

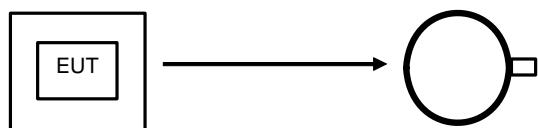
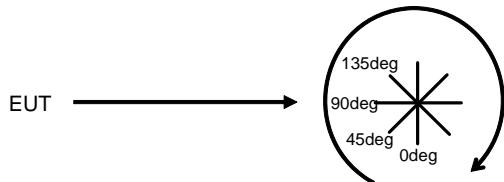


Figure 3: Direction of the Loop Antenna

Side View (Vertical)



Top View (Horizontal)

Antenna was not rotated.

Top View (Vertical)

Front side: 0 deg.
Forward direction: clockwise

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

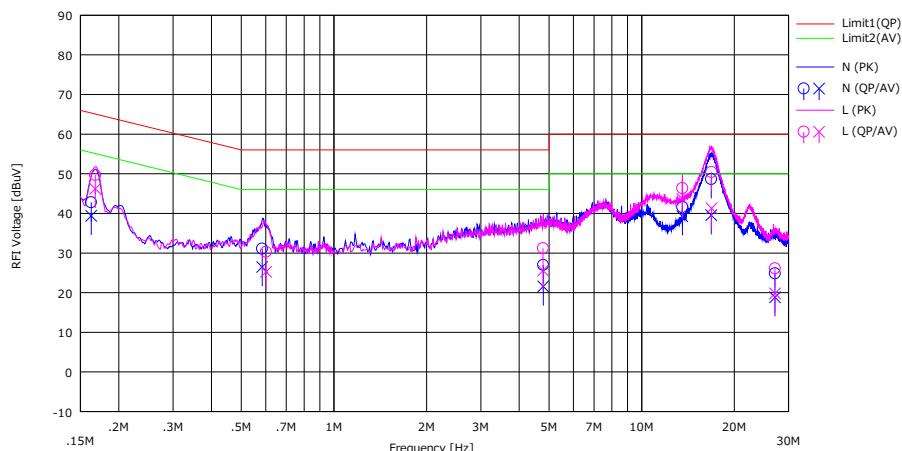
The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz to 1 GHz
Test data : APPENDIX
Test result : Pass

SECTION 7: Other test

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	200 kHz	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
Frequency Tolerance	-	-	-	-	-	-	Spectrum Analyzer *2)

*1) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %.
Peak hold was applied as Worst-case measurement.
*2) The measurement was performed with Marker Frequency Counter Function.


Test data : APPENDIX
Test result : Pass

APPENDIX 1: Test data

Conducted Emission

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.2
 Date September 7, 2023
 Temperature / Humidity 20 deg. C / 59% RH
 Engineer Tomoya Sone
 Mode Mode 1 Without Tag

Limit : FCC_Part 15 Subpart C(15.207)

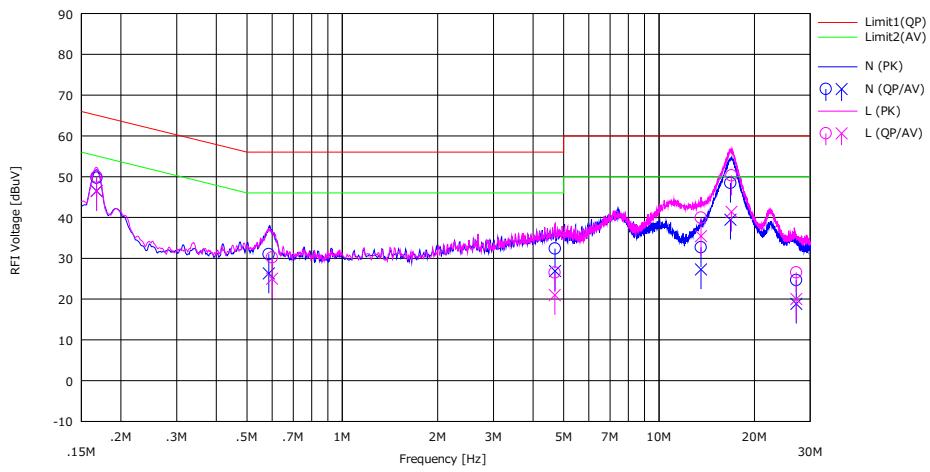

No.	Freq. [MHz]	Reading		LISN [dB]	LOSS [dB]	Results		Limit		Margin		Phase	Comment
		(QP) [dBuV]	(AV) [dBuV]			(QP) [dBuV]	(AV) [dBuV]	(QP) [dBuV]	(AV) [dBuV]	(QP) [dB]	(AV) [dB]		
1	0.16261	29.60	26.20	0.08	13.11	42.79	39.39	65.33	55.33	22.54	15.94	N	
2	0.58441	17.80	13.20	0.08	13.19	31.07	26.47	56.00	46.00	24.93	19.53	N	
3	4.78900	13.20	7.80	0.15	13.61	26.96	21.56	56.00	46.00	29.04	24.44	N	
4	13.56000	27.20	24.90	0.33	14.05	41.58	39.28	60.00	50.00	18.42	10.72	N	
5	16.83210	34.10	25.00	0.36	14.18	48.64	39.54	60.00	50.00	11.36	10.46	N	
6	27.12000	9.80	3.80	0.51	14.53	24.84	18.84	60.00	50.00	35.16	31.16	N	
7	0.16772	36.50	33.00	0.07	13.11	49.68	46.18	65.07	55.07	15.39	8.89	L	
8	0.60199	17.00	12.00	0.08	13.20	30.28	25.28	56.00	46.00	25.72	20.72	L	
9	4.78180	17.40	11.80	0.18	13.61	31.19	25.59	56.00	46.00	24.81	20.41	L	
10	13.56000	31.90	29.20	0.38	14.05	46.33	43.63	60.00	50.00	13.67	6.37	L	
11	16.86700	35.84	26.69	0.41	14.18	50.43	41.28	60.00	50.00	9.57	8.72	L	
12	27.12000	11.00	4.70	0.58	14.53	26.11	19.81	60.00	50.00	33.89	30.19	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT)
Except for the above table: adequate margin data below the limits.

Conducted Emission

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.2
 Date September 7, 2023
 Temperature / Humidity 20 deg. C / 59% RH
 Engineer Tomoya Sone
 Mode Mode 1 With Tag

Limit : FCC_Part 15 Subpart C(15.207)

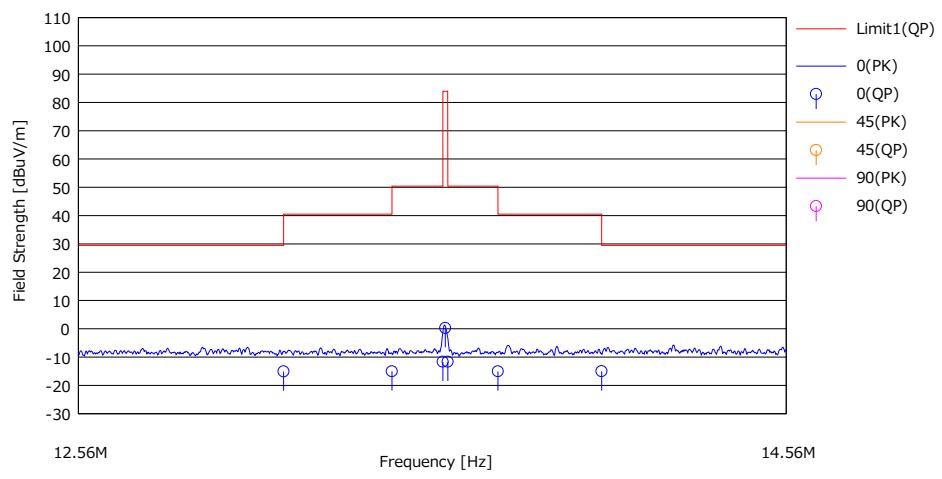

No.	Freq. [MHz]	Reading		LISN [dB]	LOSS [dB]	Results		Limit		Margin		Phase	Comment
		$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]			$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]	$\langle QP \rangle$ [dBuV]	$\langle AV \rangle$ [dBuV]	$\langle QP \rangle$ [dB]	$\langle AV \rangle$ [dB]		
1	0.16756	36.50	33.30	0.08	13.11	49.69	46.49	65.08	55.08	15.39	8.59	N	
2	0.58575	17.70	13.00	0.08	13.19	30.97	26.27	56.00	46.00	25.03	19.73	N	
3	4.69400	18.60	13.10	0.15	13.61	32.36	26.86	56.00	46.00	23.64	19.14	N	
4	13.56000	18.30	12.90	0.33	14.05	32.68	27.28	60.00	50.00	27.32	22.72	N	
5	16.81210	33.90	24.90	0.36	14.18	48.44	39.44	60.00	50.00	11.56	10.56	N	
6	27.12000	9.60	3.80	0.51	14.53	24.64	18.84	60.00	50.00	35.36	31.16	N	
7	0.16762	36.80	33.30	0.07	13.11	49.98	46.48	65.08	55.08	15.10	8.60	L	
8	0.60019	16.90	11.70	0.08	13.20	30.18	24.98	56.00	46.00	25.82	21.02	L	
9	4.68701	12.70	7.20	0.17	13.60	26.47	20.97	56.00	46.00	29.53	25.03	L	
10	13.56000	25.50	21.00	0.38	14.05	39.93	35.43	60.00	50.00	20.07	14.57	L	
11	16.92900	35.70	26.80	0.41	14.18	50.29	41.39	60.00	50.00	9.71	8.61	L	
12	27.12000	11.40	4.90	0.58	14.53	26.51	20.01	60.00	50.00	33.49	29.99	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT)
Except for the above table: adequate margin data below the limits.

Fundamental Emission and Spectrum Mask

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.2
 Date September 6, 2023
 Temperature / Humidity 23 deg. C / 59 % RH
 Engineer Yuta Moriya
 Mode Mode 1 Without Tag

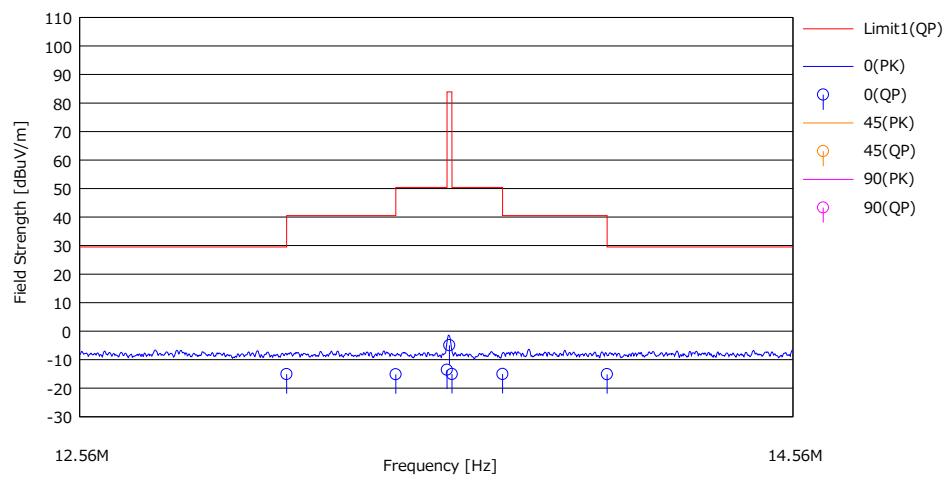
Limit : FCC15.225(a), 9-90kHz:PK, 110-490kHz:PK, other:QP

No.	Freq. [MHz]	Reading (QP) [dBuV]	Ant.Fac [dB/m]	Loss [dB]	Gain [dB]	Result (QP) [dBuV/m]	Limit (QP) [dBuV/m]	Margin (QP) [dB]	Antenna	Table [deg]	Comment
						(QP)	(QP)	(QP)			
1	13.11000	29.60	20.55	-33.03	32.20	-15.08	29.50	44.58	0	41	
2	13.41000	29.60	20.55	-33.02	32.19	-15.06	40.50	55.56	0	41	
3	13.55300	33.00	20.54	-33.01	32.19	-11.66	50.40	62.06	0	41	
4	13.56000	44.90	20.54	-33.01	32.19	0.24	83.90	83.66	0	41	
5	13.56700	33.00	20.54	-33.01	32.19	-11.66	50.40	62.06	0	41	
6	13.71000	29.60	20.54	-33.00	32.19	-15.05	40.50	55.55	0	41	
7	14.01000	29.60	20.54	-32.98	32.19	-15.03	29.50	44.53	0	41	

RESULT = READING + ANT FACTOR + LOSS (CABLE + Attenuator + Distance Factor*) - GAIN(AMP))

*) Distance Factor: $40 \times \log(3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Result of the fundamental Emission at 3 m without Distance factor


QP											
Ant Deg [deg]	Frequency [MHz]	Detector	Reading [dBuV]	Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
0	13.56000	QP	44.90	20.54	6.99	32.19	-	40.24	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier)

Fundamental Emission and Spectrum Mask

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.2
 Date September 6, 2023
 Temperature / Humidity 23 deg. C / 59 % RH
 Engineer Yuta Moriya
 Mode Mode 1 With Tag

Limit : FCC15.225(a), 9-90kHz:PK, 110-490kHz:PK, other:QP

No.	Freq. [MHz]	Reading (QP)		Ant.Fac [dB/m]	Loss [dB]	Gain [dB]	Result (QP)		Limit (QP)		Margin [dB]	Antenna	Table [deg]	Comment
		Reading [dBuV]	Ant.Fac [dB/m]				Result [dBuV/m]	Limit [dBuV/m]						
1	13.11000	29.60	20.55	-33.03	32.20	-15.08	29.50	44.58	0	63				
2	13.41000	29.50	20.55	-33.02	32.19	-15.16	40.50	55.66	0	63				
3	13.55300	31.10	20.54	-33.01	32.19	-13.56	50.40	63.96	0	63				
4	13.56000	39.70	20.54	-33.01	32.19	-4.96	83.90	88.86	0	63				
5	13.56700	29.60	20.54	-33.01	32.19	-15.06	50.40	65.46	0	63				
6	13.71000	29.60	20.54	-33.00	32.19	-15.05	40.50	55.55	0	63				
7	14.01000	29.50	20.54	-32.98	32.19	-15.13	29.50	44.63	0	63				

RESULT = READING + ANT FACTOR + LOSS (CABLE + Attenuator + Distance Factor*) - GAIN(AMP))

*) Distance Factor: $40 \times \log(3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Result of the fundamental Emission at 3 m without Distance factor

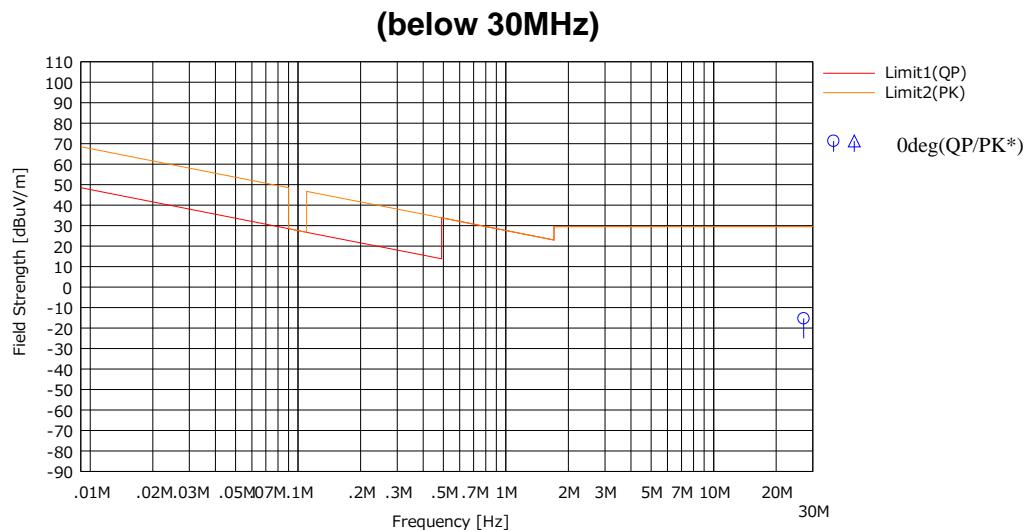
QP												
Ant Deg [deg]	Frequency [MHz]	Detector	Reading [dBuV]	Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark	
0	13.56000	QP	39.70	20.54	6.99	32.19	-	35.04	-	-	Fundamental	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier)

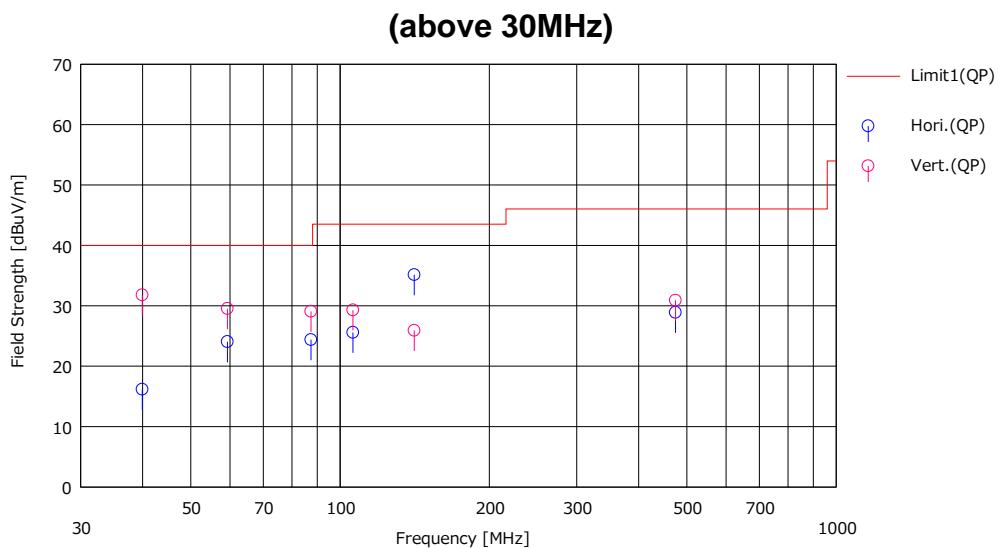
Spurious Emission

Test place Ise EMC Lab.
Semi Anechoic Chamber No.2
Date September 6, 2023
Temperature / Humidity 23 deg. C / 59 % RH
Engineer Yuta Moriya
(Below 30 MHz)
Mode Mode 1 Without Tag

No.2
September 7, 2023
20 deg. C / 59% RH
Tomoya Sone
(Above 30 MHz)


PK or QP

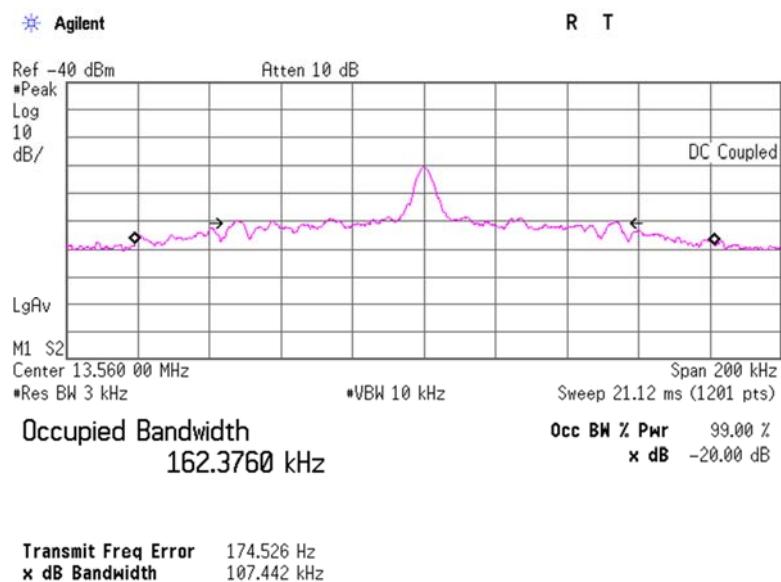
Ant Deg [deg] or Polarity [Hori/Vert]	Frequency [MHz]	Detector	Reading [dBuV]	Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
0deg	27.120	QP	29.40	19.90	-32.49	32.17	-	-15.36	29.5	44.86	
Hori.	39.915	QP	26.80	14.78	6.77	32.17	-	16.18	40.0	23.82	
Hori.	59.304	QP	41.20	8.00	6.99	32.15	-	24.04	40.0	15.96	
Hori.	87.376	QP	41.30	7.95	7.26	32.13	-	24.38	40.0	15.62	
Hori.	106.182	QP	39.20	11.08	7.43	32.12	-	25.59	43.5	17.93	
Hori.	141.180	QP	45.00	14.54	7.68	32.09	-	35.13	43.5	8.39	
Hori.	474.600	QP	34.00	17.22	9.66	31.97	-	28.91	46.0	17.11	
Vert.	39.915	QP	42.40	14.78	6.77	32.17	-	31.78	40.0	8.22	
Vert.	59.304	QP	46.70	8.00	6.99	32.15	-	29.54	40.0	10.46	
Vert.	87.376	QP	46.00	7.95	7.26	32.13	-	29.08	40.0	10.92	
Vert.	106.182	QP	42.90	11.08	7.43	32.12	-	29.29	43.5	14.23	
Vert.	141.180	QP	35.80	14.54	7.68	32.09	-	25.93	43.5	17.59	
Vert.	474.600	QP	36.00	17.22	9.66	31.97	-	30.91	46.0	15.11	


Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier)

Radiated Spurious Emission
(Plot data, Worst case for Spurious Emission)

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.2	
Date	September 6, 2023	September 7, 2023
Temperature / Humidity	23 deg. C / 59 % RH	20 deg. C / 59% RH
Engineer	Yuta Moriya (Below 30 MHz)	Tomoya Sone (Above 30 MHz)
Mode	Mode 1 Without Tag	

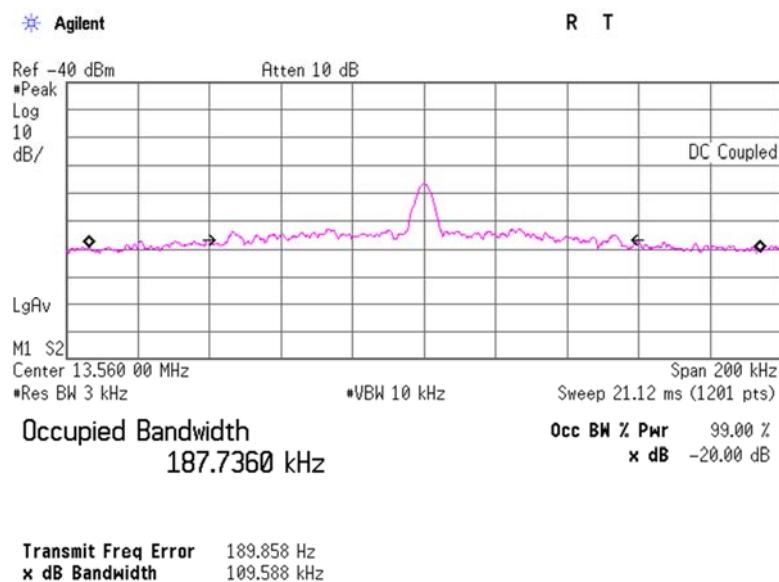
* Data above 490 kHz were measured using a QP detector.



*These plots data contains sufficient number to show the trend of characteristic features for EUT.

20 dB Bandwidth and 99% Occupied Bandwidth

Test place Ise EMC Lab.
Semi Anechoic Chamber No.2
Date September 7, 2023
Temperature / Humidity 20 deg. C / 59% RH
Engineer Tomoya Sone
Mode Mode 1 Without Tag


FREQ [MHz]	20dB Bandwidth [kHz]	99% Occupied Bandwidth [kHz]
13.56	107.442	162.3760

20 dB Bandwidth and 99% Occupied Bandwidth

Test place Ise EMC Lab.
Semi Anechoic Chamber No.2
Date September 7, 2023
Temperature / Humidity 20 deg. C / 59% RH
Engineer Tomoya Sone
Mode Mode 1 With Tag

FREQ [MHz]	20dB Bandwidth [kHz]	99% Occupied Bandwidth [kHz]
13.56	109.588	187.7360

Frequency Tolerance

Test place Ise EMC Lab.
Semi Anechoic Chamber No.8
Date September 7, 2023
Temperature / Humidity 24 deg. C / 51 % RH
Engineer Hiroki Numata
Mode Mode 1 Without Tag

Temp. [deg. C]	Voltage [V]	Tested timing	Measured frequency [MHz]	Frequency error [MHz]	Result		Limit [+/- %]
					[%]	[ppm]	
50	120	Power on	13.559957	-0.000043	-0.00032	-3.2	0.01
		+ 2 min.	13.559983	-0.000017	-0.00013	-1.3	0.01
		+ 5 min.	13.559991	-0.000009	-0.00007	-0.7	0.01
		+ 10 min.	13.560026	0.000026	0.00019	1.9	0.01
40	120	Power on	13.559987	-0.000013	-0.00010	-1.0	0.01
		+ 2 min.	13.559988	-0.000012	-0.00008	-0.8	0.01
		+ 5 min.	13.560000	0.000000	0.00000	0.0	0.01
		+ 10 min.	13.559979	-0.000021	-0.00015	-1.5	0.01
30	120	Power on	13.559983	-0.000017	-0.00013	-1.3	0.01
		+ 2 min.	13.560014	0.000014	0.00010	1.0	0.01
		+ 5 min.	13.559951	-0.000049	-0.00036	-3.6	0.01
		+ 10 min.	13.560010	0.000010	0.00007	0.7	0.01
20	120	Power on	13.559974	-0.000026	-0.00019	-1.9	0.01
		+ 2 min.	13.559909	-0.000091	-0.00067	-6.7	0.01
		+ 5 min.	13.560023	0.000023	0.00017	1.7	0.01
		+ 10 min.	13.560028	0.000028	0.00021	2.1	0.01
20	102 (120V -15%)	Power on	13.559981	-0.000019	-0.00014	-1.4	0.01
		+ 2 min.	13.559975	-0.000025	-0.00018	-1.8	0.01
		+ 5 min.	13.560002	0.000002	0.00001	0.1	0.01
		+ 10 min.	13.560011	0.000011	0.00008	0.8	0.01
20	138 (120V +15%)	Power on	13.560014	0.000014	0.00010	1.0	0.01
		+ 2 min.	13.559995	-0.000005	-0.00003	-0.3	0.01
		+ 5 min.	13.560001	0.000001	0.00001	0.1	0.01
		+ 10 min.	13.560021	0.000021	0.00016	1.6	0.01
10	120	Power on	13.559988	-0.000012	-0.00009	-0.9	0.01
		+ 2 min.	13.559991	-0.000009	-0.00006	-0.6	0.01
		+ 5 min.	13.560048	0.000048	0.00036	3.6	0.01
		+ 10 min.	13.560004	0.000004	0.00003	0.3	0.01
0	120	Power on	13.560037	0.000037	0.00027	2.7	0.01
		+ 2 min.	13.560029	0.000029	0.00021	2.1	0.01
		+ 5 min.	13.560049	0.000049	0.00036	3.6	0.01
		+ 10 min.	13.560039	0.000039	0.00028	2.8	0.01
-10	120	Power on	13.559983	-0.000017	-0.00013	-1.3	0.01
		+ 2 min.	13.559993	-0.000007	-0.00005	-0.5	0.01
		+ 5 min.	13.559864	-0.000136	-0.00100	-10.0	0.01
		+ 10 min.	13.560042	0.000042	0.00031	3.1	0.01
-20	120	Power on	13.560052	0.000052	0.00039	3.9	0.01
		+ 2 min.	13.559996	-0.000004	-0.00003	-0.3	0.01
		+ 5 min.	13.559979	-0.000021	-0.00015	-1.5	0.01
		+ 10 min.	13.559973	-0.000027	-0.00020	-2.0	0.01
-30	120	Power on	13.559966	-0.000034	-0.00025	-2.5	0.01
		+ 2 min.	13.560439	0.000439	0.00323	32.3	0.01
		+ 5 min.	13.559846	-0.000154	-0.00114	-11.4	0.01
		+ 10 min.	13.559931	-0.000069	-0.00051	-5.1	0.01

Calculation formula: Frequency error = Measured frequency - Tested frequency
Result [%] = Frequency error / Tested frequency * 100

Tested frequency: 13.56 MHz
Limit (+/-): 0.01 % (+/- 100ppm)

*The test was begun from 50 deg. C and the temperature was lowered each 10 deg. C.

APPENDIX 2: Test instruments

Test Equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	COTS-MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
CE	MAT-64	141290	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	12/22/2022	12
CE	MCC-13	141222	Coaxial Cable	Fujikura,HP,Mini-Circits, Fujikura	3D-2W(12m)/5D-2W(5m)/5D-2W(0.8m)/5D-2W(1m)	-	02/01/2023	12
CE	MJM-27	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
CE	MLS-25	141537	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-731	07/21/2023	12
CE	MLS-26	141538	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-732	07/21/2023	12
CE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
CE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/17/2022	12
CE	MTA-56	141938	Terminator	TME	CT-01BP	-	12/14/2022	12
FT	MCH-05	141440	Temperature and Humidity Chamber	Espec	PL-1KP	14019569	04/23/2023	12
FT	MLPA-08	202511	Loop Antenna	UL Japan	-	-	-	-
FT	MMM-17	141557	DIGIITAL HiTESTER	HIOKI E.E. CORPORATION	3805	70900530	01/18/2023	12
FT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/13/2023	12
FT	MSA-13	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
RE	COTS-MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
RE	MAT-112	220646	Attenuator	Huber+Suhner	6806_N-50-1	-	03/17/2023	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103B+BBA9106	08031	07/11/2023	12
RE	MCC-12	141317	Coaxial Cable	UL Japan	-	-	09/27/2022	12
RE	MCC-13	141222	Coaxial Cable	Fujikura,HP,Mini-Circits, Fujikura	3D-2W(12m)/5D-2W(5m)/5D-2W(0.8m)/5D-2W(1m)	-	02/01/2023	12
RE	MCC-219	159670	Coaxial Cable	UL Japan	-	-	11/18/2022	12
RE	MJM-27	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MLA-21	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-190	07/11/2023	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	10/11/2022	12
RE	MLPA-08	202511	Loop Antenna	UL Japan	-	-	-	-
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/17/2022	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/16/2023	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

CE: Conducted Emission

FT: Frequency Tolerance

RE: Radiated Emission