

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com Report No.: 1602RSU00902 Report Version: V02 Issue Date: 09-22-2016

RF Exposure Evaluation Declaration

- FCC ID: TKZAWV03S
- APPLICANT: AsiaRF Ltd.
- Application Type:CertificationProduct:Wireless VOIP RouterModel No.:AWV03STrademark:AsiaRFFCC Classification:Digital Transmission System (DTS)

Reviewed By : Robin Wu (Robin Wu) Approved By : Marlinchen (Marlin Chen) TESTING LABORATORY CERTIFICATE #3628.01

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1602RSU00902	Rev. 01	Initial report	09-12-2016	Invalid
1602RSU00902	Rev. 02	Change Applicant Name	09-22-2016	Valid

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Wireless VOIP Router
Model No.	AWV03S
Frequency Range 2.4GHz:	
	For 802.11b/g/n-HT20:
	2412 ~ 2462 MHz
	For 802.11n-HT40:
	2422 ~ 2452 MHz
Maximum Peak Conducted	802.11b: 21.27dBm
Output Power	802.11g: 23.37dBm
	802.11n-HT20: 25.75dBm
	802.11n-HT40: 24.56dBm
Type of Modulation	For 802.11b: CCK
	For 802.11g/n: OFDM
Antenna Gain	2.0 dBi

1.2. Antenna Description

Antenna Type	Frequency Band (MHz)	Tx Paths	Per Chain Max Antenna Gain (dBi) Ant 0 Ant 1		CDD Directional Gain (dBi)
Dipole Antenna	2412 ~2462	2	2.00	2.00	2.00

The EUT supports Spatial Multiplexing MIMO (SM-MIMO) at 802.11n mode, and that CDD technology is completely uncorrelated.

Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows:

• all transmit signals are completely uncorrelated with each other:

Directional gain = G_{ANT}

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time		
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)		
(A) Limits for Occupational/ Control Exposures						
300-1500			f/300			
1500-100,000			5	6		
(B) Limits for General Population/ Uncontrolled Exposures						
300-1500			f/1500	6		
1500-100,000			1	30		

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f= Frequency in MHz

Calculation Formula: Pd = $(Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

 $Pd = power density in mW/cm^{2}$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Result of RF Exposure Evaluation

Product	Wireless VOIP Router	
Test Item	RF Exposure Evaluation	

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.0dBi for 2.4GHz.

For 2.4GHz ISM Band:

Test Mode	Frequency	Maximum Peak	Safety	Power	Power Density
	Band (MHz)	Output Power	Distance R	Density	Limit
		(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/	0440 0400		20	0.4400	1
n-HT40	2412 ~ 2462	25.75	20	0.1186	1

CONCULISON:

The Power Density $(mW/cm^2) = 0.1186 \text{ mW/cm}^2 < 1 \text{ mW/cm}^2$, so the EUT complies with the requirement.