

Test Report for FCC

FCC ID :TKWXP2-MDPB

Report Number		ESTRFC1905-003				
	Company name	Suprem	Suprema Inc			
Applicant	Address		16F, Parkview Office Tower, 248, Jeongjail-ro, Bundang-gu, Seongnam Gyeonggi, South Korea			
	Telephone	+82-31	-710-4908			
	Product name	Xpass 2	2			
Product	Model No.	XF	2-MDPB	Manufacturer	Suprema Inc	
	Serial No.		NONE	Country of origin	KOREA	
Test date	09-May-1	9~13-N	1ay-19	Date of issue	28-May-19	
Testing location	347-	-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea				
Standard	FC	CC PART	15 Subpart C(15	.225), ANSI C 63.	10(2013)	
	Result	Complied				
Measurement	facility registration	number	659627			
Tested by	Engin	eer H.G. L	.ee	(Signature)		
Reviewed by	Engineering	Manager	I.k. Hong	(Signature)		
Abbreviation OK, Pass = Complied, Fail = Failed, N/A = not applicable						
 Note This test report is not permitted to copy partly without our permission This test result is dependent on only equipment to be used 						
- This test result based on a single evaluation of one sample of the above mentioned						
 There are two power sources, one of which is selected and tested(12 V) 						

Contents

1. Laboratory Information	З
2. Description of EUT	4
3. Test Standards	6
4. Measurement condition	7
5. 20dBm Bandwidth ······	9
5.1 Procedure ······	9
5.2 20dBm Bandwidth Set up ······	9
5.3 Measurement Data ······	9
6. Frequency Tolerance	10
6.1 Procedure ·····	10
6.2 Equipments lists ······	10
6.3 Frequency stability Data	11
7. Measurement of radiated emission	12
7.1 Radiated emission limits, general requirements	12
7.2 Measurement equipment ······	12
7.3 Environmental conditions	12
7.4 Test data(9 kHz ~30 MHz) ·····	13
7.5 Test data(30 MHz \sim 1 GHz) \cdots	14
7.6 Test data(Above 1 GHz) ······	15
8. Measurement of conducted emission	16
8.1 Measurement equipment ······	16
8.2 Environmental conditions	16
8.3 Test data ·····	17
Appendix 1. Measurement Data Plot	
Appendix 2. Special diagram(Adapter Mode)	
Appendix 3. Antenna Requirement	

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name : ESTECH Co., Ltd.

Head Office : Suite 1015 World Meridian II, 123 Gasan Digital 2-ro, Geumcheon-gu, Seoul 153-759, R. O. Korea

EMC/Telecom/Safety Test Lab : 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

1.3 Official Qualification(s)

- MSIP : Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication
- KOLAS : Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements
- FCC : Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC
- VCCI : Granted Accreditation from Voluntary Control Council for Interference from ITE

2. Description of EUT

2.1 Summary of Equipment Under Test

Product	: Xpass 2
Model Number	: XP2-MDPB
Serial Number	: NONE
Manufacturer	: Suprema Inc
Country of origin	: KOREA
Operating Frequency	: 13.56 MHz
Antenna Type	: PCB Patten Antenna
Modulation Type	: ASK
Channel	:1 ch
Power Rating	INPUT: AC(100 - 240) V, (50-60)Hz, 1.0 A OUTPUT: DC 12 V, 2.5 A
Receipt Date	: 25-Mar-19
X-tal list(s) or Frequencies generated	: The highest operating frequency is RFID 13.56 MHz

2.2 General descriptions of EUT

Category	Feature	Specification
	LF card option	EM
	HF card option	MIFARE, MIFARE Plus, DESFire/EV1, FeliCa
Credential	NFC card	Supported
	BLE card	Supported
	RF read range*	MIFARE/DESFire/ISOFire: 50 mm, EM/FeliCa: 30 mm
	CPU	1.0 GHz
	Memory	4GB Flash + 64MB RAM
	LED	Multi-color
	Sound	Multi-tone Buzzer
General	Operating temperature	−35 °C ~ 65 °C
	Storage temperature	−40 °C ~ 70 °C
	Operating humidity	0 % - 95 %, non-condensed
	Dimension (W x H x D)	48 mm x 145 mm x 27 mm (Bottom)
	Weight	Device: 144 g Bracket: 30 g (including washers and bolts)
	Ethernet	Supported (10/100 Mbps, auto MDI/MDI-X)
	RS-485	1 ch Master / Slave (Selectable)
had a star a s	Wiegand	1 ch Input / Output (Selectable)
Interface	TTL input	2 ch Input
	Relay	1 Relay
	Tamper	Supported
	Power	Voltage: DC 12 V ~ DC 24 V, Current: Max. 500 mA * Use 12 VDC, 1 A or 24 VDC, 0.5 A power supply
	Switch input VIH	Min. 3V, Max. 5V
Electrical	Switch input VIL	Max. 1V
	Wiegand output Pull-up resistance	Internally pulled-up with 1 k Ω
	Switch Pull-up resistance	4.7kΩ (The input ports are pulled up with 4.7kΩ.)
	Relay	Voltage: Max. 30 VDC, Current: Max. 2A

* RF read range will vary depending on the installation environment.

3. Test Standards

Test Standard : FCC PART 15 Subpart C(15.225)

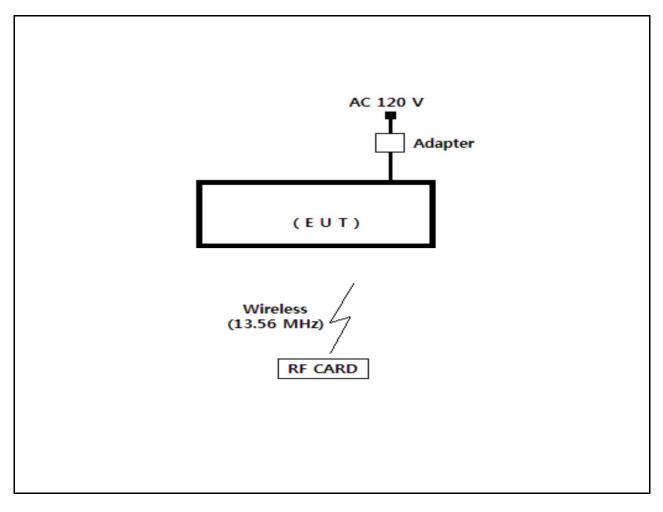
This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method : ANSI C 63.10 (2013)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Applied Satandard : 47 CFR Part 15, Subpart C					
Standard	Test Type	Result	Result Remark		
15.203	Antenna Requirement	Pass	Meet the requirement		
15.207	AC Power Conducted Emission	Pass	Meet the requirement		
15.225(a)	Radiated Emission (13.553 ~13.567) MHz	Pass	Meet the requirement	15,848 uV/m at 30 m	
15.225(b)	Radiated Emission (13.410 ~13.553 , 13.567 ~ 13.710) MHz	N/A	_	334 uV/m at 30 m	
15.225(c)	Radiated Emission (13.110 ~13.410 , 13.710 ~ 14.010) MHz	N/A	_	106 uV/m at 30 m	
15.225(d)	Apply section 15.209 (out side band of the 13.110 ~14.010) MHz	Pass	Meet the requirement		
15.225(e)	Frequency stability	Pass	Meet the requirement		
15.215(c)	20dB Bandwidth	Pass	Meet the requirement		

Summary of Test Results


4. Measurement Condition

4.1 EUT Operation.

-The EUT was tested, under transmission / receiving

- 1. Normal communication with RF OUT Frequeny(13.56 MHz).
- 2. Monitoring the operation status of frequency by using RF CARD.

4.2 Configuration and Peripherals

4.3 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
XP2-MDPB	NONE	NONE	KOREA	EUT
Adapter	JPW128KA1200N05	NONE	BridgePower Corp.	
RF CARD	NONE	NONE	NONE	

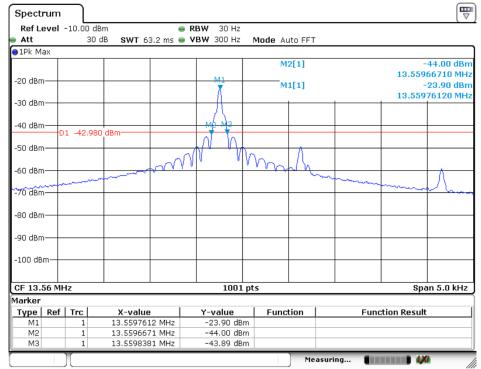
4.4 Cable Connecting

Start Equipment		End Equipment		Cable Standard		Domork
Name	I/O port	Name	I/O port	Length	Shielded	Remark
XP2-MDPB	Power	Adapter	_	2.0	Unshielded	
XP2-MDPB	Wireless (13.56 MHz)	RF CARD	Wireless (13.56 MHz)	_	-	

5. 20 dB Bandwidth

5.1 Procedure

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer. The 20 dB bandwidth is defined as the bandwidth at 20 dB below from peak power point.


5.2 20dB Bandwidth setup

The spectrum analyzer is set to as following RBW: 30 Hz VBW: 300 Hz Span: 5 kHz Sweep:suitable duration based on the EUT specification

20dB Bandwidth Test Instruments

Decription	Model	Serial Number	Cal. Due Data
Signal Analyzer	FSV40	100939	21-Dec-19

5.3 Measurement Data

6. Frequency Tolerance

6.1 Procedure

- The frequency stability of the transmitter is measured by:
- a) Temperature: The temperature is varied from -20 $\,^\circ\!\!C$ to +50 $\,^\circ\!\!C$ using an environmental chamber.
- b) Primary Supply Voltage: The primary supply voltage is varied from 85 % to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.
 - The frequency tolerance of the carrier shall be maintained within ± 0.01 % of the operating frequency.

6.2 Equipment lists

The following test equipments are used during test

Decription	Model	Serial Number	Cal. Due Data
Signal Analyzer	FSV40	100939	21-Dec-19
Temp./Humidity Chamber	SM-150-2	04-TH24	20-Dec-19

6.3 Frequency stability Data (Adapter)

Operting Frequency :	13,559,667	Hz
Reference Voltage :	12.00	Vd.c.
Deviatin Limit :	± 0.01	%

Voltage	Power	Temperature	Frequency	Deviation
(%)	(Vdc)	(°C)	(Hz)	(%)
100		+20 °C(Ref)	13,559,621	-0.000339
100		-20	13,559,637	-0.000221
100		-10	13,559,645	-0.000162
100		0	13,559,680	0.000096
100	12.00	10	13,559,677	0.000074
100		20	13,559,681	0.000103
100		30	13,559,693	0.000192
100		40	13,559,592	-0.000553
100		50	13,559,992	0.002397
85	10.20	20	13,559,852	0.001364
115	13.80	20	13,559,742	0.000553

7. Measurement of radiated disturbance

The EUT was placed on the top of a rotating table 0.8 m above the ground at a 10 m semi-anechoic chamber . The table was rotated 360° to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at 1 m above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0° to 360° to find the maximum reading. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

7.1 Radiated emission limits, general requirements

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator

shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Distance(Meters)	Field strength @3m (dBuV/m)
0.009 to 0.490	3	128.5 to 93.8
0.490 to 1.705	3	73.8 to 63
1.705 to 30	3	69.5
30 to 88	3	40
88 to 216	3	43.5
216 to 960	3	46
> 960	3	54

* dBuV/m=20*log(uV/m) * Distance factor=40dB / decade(15.31(f))

7.2 Measurement equipments

Equipment Name	ment Name Type		Serial No.	Next Calibration date
TEST Receiver	ESCI7	ROHDE & SCHWARZ	100916	22-Oct-19
Logbicon Antenna	VULB 9168	SCHWARZBECK	9168-193	15-Oct-19
Turn Table	DT3000-2t	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
Antenna Master & Turn table controller	CO2000-P	Innco System GmbH	CO2000/641 /28051111/L	-
Loop Antenna	HFH2-Z2	ROHDE & SCHWARZ	100188	30-Apr-19

7.3 Environmental Condition

Test Place	: 10 m Semi-anechoic chamber
Below 1 GHz	
Temperature (°C)	:23.5 ℃
Humidity (% R.H.)	: 47.8 % R.H.
Test Place Above 1 GHz-N/A	: 3 m Semi-anechoic chamber(3 m)
Temperature (°C)	:
Humidity (% R.H.)	:

7.4 Test data(9 kHz ~ 30 MHz)

Test Date :	9-May-19					Measurer	nent Distan	ce:	3 m
Frequency	Reading	Vertical	EUT	Height	Correctio	n Factor	Result Value(Quasi-Pe		-Peak)
	Position [Angle]	Bition Position		Ant Factor (dB)	Cable (dB)	Limit (dB⊮∕m)	Result (dB⊮/m)	Margin (dB)	
Below 13.110 MHz									
Noise Floor	_	_	-	-	19.41	0.4	69.5	_	_
	13.110 MHz to 13.410 MHz								
Noise Floor	_	-	-	-	19.30	0.5	80.5	-	_
			13.4	410 MHz	to 13.552 N	1Hz			
Noise Floor	-	-	-	-	19.30	0.5	90.5	-	-
			13.	553 MHz	to 13.567 N	1Hz			
13.5600	48.80	180 °	Х	0.8	19.30	0.4	124.0	68.54	55.46
			13.	567 MHz	to 13.710 N	1Hz			
Noise Floor	-	-	-	-	19.30	0.5	90.5	-	-
		•	13.	710 MHz	to 14.010 N	1Hz			
Noise Floor	_	-	-	-	19.30	0.5	80.5	-	-
		•	1	4.010 M	Hz to 30 MH	Z			
Noise Floor	-	-	-	-	19.12	0.8	69.5	-	-
Remark	measurem *3 m Limi *3 m Limi * The EUT	nents as fo t(dBuV/m) t(dBuV/m) - was meas	llows; = 20log(X = 20log(X sured for t)+40log()+40log(he worst	30/3)= 20log 30/3)= 20log	g(15848)+4 g(30)+40lo ating of an	or(x) as it wa 10log(30/3) = g(30/3) = 69 tenna angle. the report.	= 124 dBuV .5 dBuV	

7.5 Test data(30 MHz ~ 1 000 MHz)

Test Date :	10-May-19	Measurement Distance: 3 m							
Frequency	Reading	Position	Height	Correctic	on Factor	Result V	alue(Quasi-pe	eak)	
(MHz)	(dB⊭V)	-	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB⊮/m)	Result (dB⊮/m)	Margin (dB)	
30.10	18.18	V	1.6	11.40	0.81	40.00	30.39	9.61	
168.50	12.06	V	1.3	11.69	1.97	43.50	25.72	17.78	
189.80	12.84	V	1.2	10.50	2.10	43.50	25.44	18.06	
350.00	12.32	Н	1.2	14.72	2.93	46.00	29.96	16.04	
375.00	10.92	Н	1.2	15.36	3.05	46.00	29.32	16.68	
400.00	25.84	Н	1.0	16.00	3.16	46.00	45.00	1.00	
Remark	H : Horizontal, V : Vertical *Result Value = Reading + Antenna + Cable loss *Correction Factor = Ant Factor + Cable *The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection								

7.6 Test data (Above 1 GHz) - N / A

Test Date :	: Measurement Distance : 3 m								
Fraguanay	Reading	Position	Height	Correctio	on Factor	R	esult Value		
Frequency (MHz)			(m)	Ant Factor (dB)	Cable (dB)	Limit (dB⊮/m)	Result (dB⊮/m)	Margin (dB)	
			Peak(RBW:1 MHz	VBW:1 MH	łz)			
			-						
			-						
			Averad	e(RBW:1 MF	Hz VBW:10	<u> </u> Нz)			
							-		
		_	-						
Remark	frequency above *This test does *Application me *Highest freque *Highest freque *Highest freque	eiver reading ss-Amplifier (bandwidth an e 1 GHz. not require b ethod of the h ency of the EL ency of the EL ency of the EL	Gain nd video ba nighest free JT is less t JT is betwo JT is betwo JT is betwo	andwidth of spec e highest operat quency is in the than 108 MHz, th een 108 MHz an een 500 MHz an	ing frequency o following ne measurement d 500 MHz, the d 1 GHz, the m	s 1 MHz and 10 Hz fo of the EUT is less th t shall only be made measurement shall on heasurement shall or I be made up to 10 t	an 108 MHz. e up to 1 GHz. only be made up nly be made up t	o to 2 GHz. to 5 GHz.	

8. Measurement of conducted disturbance

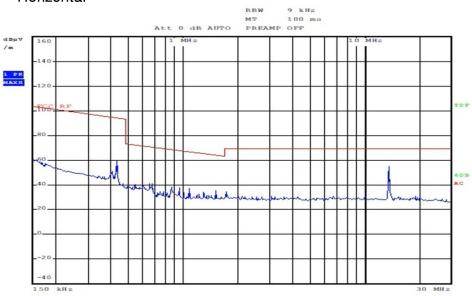
The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC Part 15 & ANSI C 63.10 (2013) The test setup was made according to FCC Part 15 & ANSI C 63.10 (2013) in a shielded Room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

8.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date
TEST RECEIVER	ESPI	Rohde & Schwarz	100005	24-Oct-19
LISN	ESH3-Z5	Rohde & Schwarz	836679/025	24-Oct-19
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	23-Oct-19

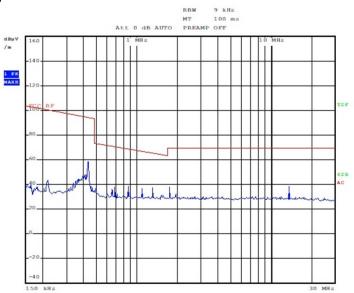
8.2 Environmental Condition

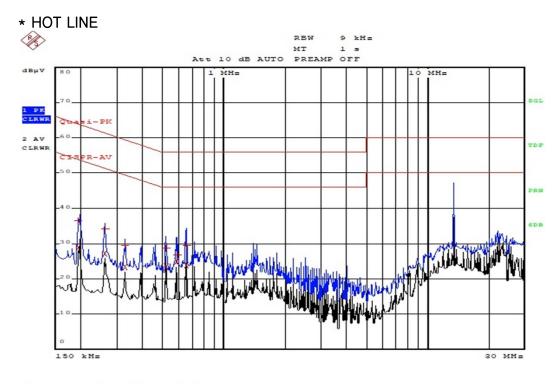
Test Place	: Shielded Room
Temperature (°C)	:22.6 ℃
Humidity (% R.H.)	: 43.3 % R.H.


8.3 Test data

Test Date : 10-May-19

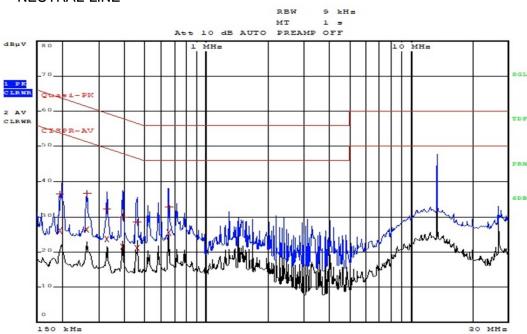
Frequency	Correctio	on Factor	Line	Qı	uasi-peak Val	ue	ŀ	Average Value	Э
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB⊮V)	Reading (dB⊮)	Result (dB⊮)	Limit (dB⊮)	Reading (dB⊮)	Result (dB)
0.20	0.43	0.27	Ν	63.82	36.39	37.09	53.82	26.23	26.93
0.26	0.44	0.27	Ν	61.40	36.62	37.33	51.40	26.35	27.06
0.32	0.45	0.27	Ν	59.60	32.21	32.94	49.60	23.63	24.36
0.39	0.47	0.28	Ν	58.06	29.84	30.58	48.06	21.42	22.16
0.52	0.68	0.28	Н	56.00	28.59	29.55	46.00	23.50	24.46
0.66	0.50	0.28	Ν	56.00	32.94	33.72	46.00	25.42	26.20
Remark	H : Hot Line, N : Neutral Line *Correction Factor = Lisn + Cable *Result = Correction Factor + Reading								


Appendix 1. Measurement Data Plot



XP2-MDPB

* Vertical


XP2-MDPB

Appendix 1. Special diagram

Comment: XP2-MDPB_13.56M_HOT

Comment: XP2-MDPB_13.56M_NEUTRAL

Appendix 1. Antenna Requirement

Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Result

-Complied

The transmitter has an PCB Patten Antenna.