

TEST REPORT

65, Sir Suwon-si, (fins KCTL Co.,Ltd. won-ro, Yeongtong-gu, Gyeonggi-do, 16677, Korea -0894 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR23-SRF0034 Page (1) of (33)	CTL		
1. Client					
∘ Name	: SUPREMA INC				
 Addres 		officetower,, 248, Jeon <u>g</u> /eonggi-do 13554 Korea			
∘ Date of	Receipt : 2022-11-03				
2. Use of Re	port : FCC Class II pe	rmissive change	ana an		
3. Name of P	roduct / Model : Fa	ceStation F2 / FSF2-AE			
4. Manufactu	irer / Country of Origin : SL	IPREM <mark>A INC /</mark> Korea			
5. FCC ID	: TKWFSF2-AB		anam a La Cara ana an Angala Angala ang ang ang ang ang ang ang ang ang an		
6. IC Certific	ate No. : 23080-FSF2AB		a an		
7. Date of Te	st : 2022-11-26 to 2	022-11-30			
9. Test meth	 8. Location of Test Permanent Testing Lab On Site Testing (Address:65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea) FCC Part 15 Subpart C, 15.247 9. Test method used : RSS-247 Issue 2 February 2017 RSS-Gen Issue 5 February 2021 10. Test Result : Refer to the test result in the test report 				
	Tested by	Technical M	lanager		
Affirmation	Name : Minki Kim (S	ignature) Name : Hee	su Ahn (Signature)		
2023-01-17					
	Eurofins	KCTL Co.,Ltd.			
ntee the who	sult of the sample which was ble product quality. This test re / Eurofins KCTL Co.,Ltd.				

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (2) of (33)

KCTL

REPORT REVISION HISTORY

Date	Revision	Page No
2023-01-17	Originally issued	-

This report shall not be reproduced except in full, without the written approval of Eurofins KCTL Co.,Ltd. This document may be altered or revised by Eurofins KCTL Co.,Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by Eurofins KCTL Co.,Ltd. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests

(may be required by the product standard or client)

Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0034 Page (3) of (33)

KCTL

CONTENTS

1.	General information	4
2.	Device information	4
2.1	. Information about derivative model	5
2.2	P. Frequency/channel operations	5
2.3	8. RF power setting in TEST SW	5
3.	Antenna requirement	6
4.	Summary of tests	7
5.	Measurement uncertainty	8
6.	Test results	9
6.1	. Spurious Emission, Band Edge and Restricted bands	9
6.2	2. AC Conducted emission	30
7.	Measurement equipment	33

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (4) of (33)

1. General information

Client	: SUPREMA INC
Address	: 17F-5, Parkview officetower,, 248, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13554 Korea (Republic Of)
Manufacturer	: SUPREMA INC
Address	: 17F-5, Parkview officetower,, 248, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13554 Korea (Republic Of)
Laboratory	: Eurofins KCTL Co.,Ltd.
Address	: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	: FCC Site Designation No: KR0040, FCC Site Registration No: 687132
	VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
	CAB Identifier: KR0040, ISED Number: 8035A
	KOLAS No.: KT231

2. Device information

Equipment under test	:	FaceStation F2
Model	:	FSF2-AB
Derivative Model	:	FSF2-DB, FSF2-ABT10, FSF2 <mark>-DBT10</mark>
Frequency range	:	13. <mark>56 № (NFC)</mark>
		125 kHz (RFID)
		2 402 Mz ~ 2 480 Mz (Bluetooth Low Energy)
Modulation technique	:	ASK (NFC,RFID), GFSK (Bluetooth Low Energy)
Number of channels	:	40 ch (Bluetooth Low Energy), 1 ch (NFC, RFID)
Power source	:	DC 12 V, DC 24 V
Antenna specification	:	PCB Loop antenna (<mark>NFC)</mark>
		Coil antenna (RFID)
		PCB Pattern antenna (Bluetooth Low Energy)
Antenna gain	:	3.03 dBi (Bluetooth Low Energy)
Software version	:	V2.1.1
Hardware version	:	V2.0.0
Operation temperature	:	-20 °C ~ 50 °C

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (5) of (33)

KCTL

2.1. Information about derivative model

The difference between basic model and derivative models is:

1)PCB are added to the basic model (FSF2-AB). All other internal components are the same as in the previous model. The added part does not affect the wireless part of the product.

2)Radio Hardware such as circuits and electrical components and Software are the same.

· ·		
Component	Basic model	Variant model
LED board	FSF2_WHITE-LED_PS1	FSF2_WHITE-LED_V02
IR LED board	FSF2_IR LED_PS1	FSF2_IR LED_V01
Main board	FSF2_MAIN_PS1	FSF2_MAIN_V04
RF board	FSF2_RFBD_DB_PS1	FSF2_RFBD_DB_V02
USB board	FSF2_AB_DB-USB_PS1	FSF2_AB_DB-USB_V01
Camera 1 module	SV-SUE1-ET020S	SV-SUE1-ET020S
Camera 2 module	SV-SUE1L-ET020S	SV-SUE1L-ET020S

2.2. Frequency/channel operations

This device contains the following capabilities: Bluetooth Low Energy

Ch.	F <mark>requen</mark> cy (∰z)
00	2 40 <mark>2</mark>
	<u> </u>
19	2 440
39	2 480
Table 2.2.4 Dluet	tooth Low Energy

Table 2.2.1. Bluetooth Low Energy

2.3. RF power setting in TEST SW					
Test condition	Test Program	Frequency (MHz)	Power Setting		
Diverse	a DEO anna at fan	2 402			
Bluetooth Low Energy 1M	nRFConnect for 1M Desktop v3.11.1	2 440	-20		
LOW Energy_IN		2 480			

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

KCTL

Requirement of FCC part section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Requirement of RSS-Gen Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

- The transmitter has permanently attached PCB Pattern antenna (internal antenna) on board.

- The E.U.T Complies with the requirement of §15.203, §15.247.

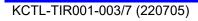
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

4. Summ	hary of tests			
FCC Part section(s)	IC Rule Reference	Parameter	Test mode	Test results
15.247(b)(3)	RSS-247 (5.4)(d)	Maximum Peak Output Power		N/T ¹⁾
15.247(e)	RSS-247 (5.2)(b)	Peak Power Spectral Density		N/T ¹⁾
15.247(a)(2)	RSS-247 (5.2)(a)	6dB Channel Bandwidth	Conducted	N/T ¹⁾
-	RSS-Gen (6.7)	Occupied Bandwidth		N/T ¹⁾
15.207(a)	RSS-Gen (8.8)	AC Conducted Emissions		Pass
15.247(d),	RSS-Gen	Spurious emission		Pass
15.205(a), 15.209(a)	(8.9), (8.10) RSS-247(5.5)	Band-edge, restricted band	Radiated	Pass

Notes: (N/T: Not Tested, N/A: Not Applicable)

- This is a FCC Class II Permissive Change report. These test items were performed. (FCC ID: TKWFSF2-AB, Test Report No. KR21-SRF0005 issued on 07, Dec, 2021 by KCTL Inc.)
- 2. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 3. According to exploratory test no any obvious emission were detected from 9 klz to 30 Mlz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 4. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that **Y** orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in **Y** orientation
- 5. The worst-case data rate were: Packet length 37 Bytes
- 6. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - KDB 558074 D01 v05r02

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR23-SRF0034 Page (8) of (33)

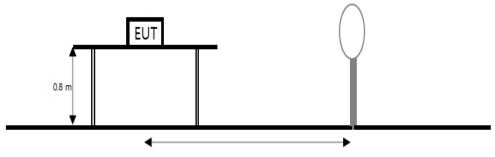


5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

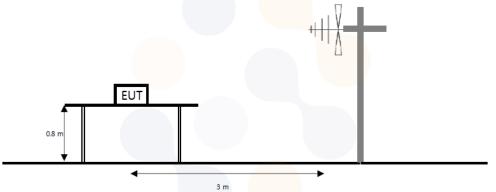
All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (±)		
	9 kHz ~ 30 MHz	2.4 dB	
Radiated spurious emissions	30 MHz ~ 1 000 MHz	2.3 dB	
	1 000 MHz ~ 18 000 MHz	5.6 dB	
	Above 18 000 Mb	5.7 dB	
Conducted Emissions	9 kHz ~ 150 kHz	1.6 dB	
	150 kHz ~ 30 MHz	1.7 dB	

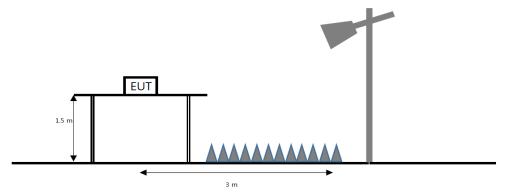

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

6. Test results

6.1. Spurious Emission, Band Edge and Restricted bands


<u>Test setup</u>

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}_{\mathbb{Z}}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}_{\mathbb{Z}}$ emissions, whichever is lower.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR23-SRF0034 Page (10) of (33)

KCTL

<u>Limit</u>

FCC

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (μ V/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16. <mark>42 - 16.</mark> 423	399. <mark>9 - 410</mark>	4.5 - 5.15
0.495 - 0.505	16.694 <mark>75 - 1</mark> 6.695 25	608 - <mark>614</mark>	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	<u> </u>	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 – 4 400	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

IC

According to RSS-247(5.5), In any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen(8.9), Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Frequency(胍)	Field strength (<i>W</i> /m at 3 m)					
30 to 88	100					
88 to 216	150					
21 <mark>6 to 960</mark>	200					
Above 960	500					

Table 5- General field strength limits at frequencies above 30 Mb

Table 6- General field strength limits at frequencies below 30 Mb

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance(m)
9-490 kHz ¹⁾	6.37/F (<mark>F in ᡌ</mark> z)	300
490 – 1 705 k⊞z	63.7/F (<mark>F in ᡌ</mark> z)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 ^{kHz} and 110-490 ^{kHz} are based on measurements employing a linear average detector.

According to RSS-Gen(8.10), Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).
- (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (12) of (33)

KCTL

Table 7- Restricted frequency bands*

MHz
0.090 - 0.110
0.495 - 0.505
2.1735 - 2.1905
3.020 - 3.026
4.125 - 4.128
4.17725 - 4.17775
4.20725 - 4.20775
5.677 - 5.683
6.215 - 6.218
6.26775 - 6.26825
6.31175 - 6.31225
8.291 - 8.294
8.362 - 8.366
8.37625 - 8.38675
8.41425 - 8.41475
12.29 - 12.293
12.51975 - 12.52025
12.57675 - 12.57725
13.36 - 13.41
16.42 - 16.423
16.69475 - 16.69525
16.80425 - 16.80475
25.5 - 25.67
37.5 - 38.25
73 - 74.6
74.8 - 75.2
108 - 138

MHz 149.9 - 150.05 156.52475 - 156.52525
156 52475 156 52525
130.32473 - 130.32323
156.7 - 156.9
162.0125 - 167.17
167.72 - 173.2
240 - 285
322 - 335.4
399.9 - 410
608 - 614
960 - 1427
1435 - 1626.5
1645.5 - 1646.5
1660 - <mark>1710</mark>
1718.8 - 1722.2
2200 - 2300
2310 - 2390
2483.5 - 2500
2655 - 2900
3260 - 3267
3332 - 3339
3345.8 <mark>- 3358</mark>
3500 - 4400
4500 - 5150
5350 - 5460
7250 - 7750
8025 - 8500

GHz
9.0 - 9.2
9.3 - 9.5
10.6 - 12.7
13.25 - 13.4
14.47 - 14.5
15.35 - 16.2
17.7 - 21.4
22.01 - 23.12
23.6 - 24.0
31.2 - 31.8
36.43 - 36.5
Above 38.6

* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (13) of (33)

Test procedure

ANSI C63.10-2013

Test settings

Peak field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in table
- 3. VBW \geq (3×RBW)
- 4. Detector = peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow sweeps to continue until the trace stabilizes

Frequency	RBW						
9 kHz to 150 kHz	200 Hz to 300 Hz						
0.15 Mt to 30 Mt	9 kHz to 10 kHz						
30 MHz to 1 000 MHz	100 kHz to 120 kHz						
> 1 000 MHz	1 MHz						

Table. RBW as a function of frequency

Average field strength measurements

Trace averaging with continuous EUT transmission at full power

If the EUT can be configured or modified to transmit continuously ($D \ge 98\%$), then the average emission levels shall be measured using the following method (with EUT transmitting continuously):

- 1. RBW = 1 $M_{\mathbb{Z}}$ (unless otherwise specified).
- 2. VBW \geq (3×RBW).
- 3. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 4. Averaging type = power (i.e., rms):
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.

Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT ($D \ge 98\%$) cannot be achieved and the duty cycle is constant (duty cycle variations are less than ±2%), then the following procedure shall be used:

- 1. The EUT shall be configured to operate at the maximum achievable duty cycle.
- 2. Measure the duty cycle D of the transmitter output signal as described in 11.6.
- 3. RBW = 1 M_{Z} (unless otherwise specified).
- 4. VBW \geq [3 \times RBW].
- 5. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 6. Averaging type = power (i.e., rms):

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

🛟 eurofins

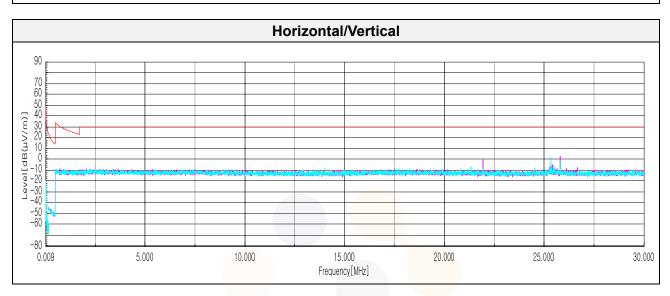
KCTL

- Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
- 7. Sweep time = auto.
- 8. Perform a trace average of at least 100 traces.
- 9. A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
 - 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
 - If a specific emission is demonstrated to be continuous (D ≥ 98%) rather than turning ON and OFF with with the transmit cycle, then no duty cycle correction is required for that emission.

Notes:

- 1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40 \log(D_m/D_s)$
 - f≥30 M[±], extrapolation factor of 20 dB/decade of distance. F_d = 20log(D_m/D_s) Where:
 - F_d = Distance factor in dB
 - D_m= Measurement distance in meters
 - D_s= Specification distance in meters
- 2. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) or $F_d(dB)$
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4.¹⁾ means restricted band.
- 5. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 6. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω. For example, the measurement frequency X kHz resulted in a level of Y dBµN/m, which is equivalent to Y-51.5 = Z dBµA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to the 15.209(a) limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (15) of (33)

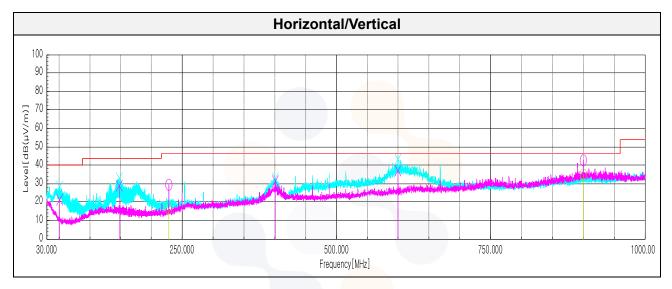


KCTL

[DC 12 V]

Test results (Below 30 ₩z) –Worst case: 1 MBits/s(37 Bytes)_2 480 ₩z

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	Distance Factor	DCF	Result	Limit	Margin		
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]		
	No spurious emissions were detected within 20 dB of the limit										

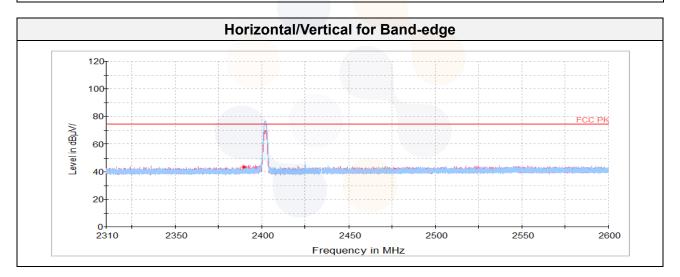

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (16) of (33)

KCTL

Test results (Below 1 000 Mb) –Worst case: 1 MBits/s(37 Bytes)_2 480 Mb

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(<i>µ</i> N/ m))	(dB(<i>µ</i> V/ m))	(dB)
50.98	V	36.80	13.41	-29.08	-	21.13	40.00	18.87
147.49	V	38.90	16.85	-27.09	-	28.66	43.50	14.84
228.00	Н	26.80	15.74	-25.96	-	16.58	46.00	29.42
400.78 ¹⁾	V	33.80	21.63	-23.82	-	31.61	46.00	14.39
600.00	V	34.50	24.50	-21.86	-	37.14	46.00	8.86
900.09	Н	27.10	26.50	-18.63	-	34.97	46.00	11.03

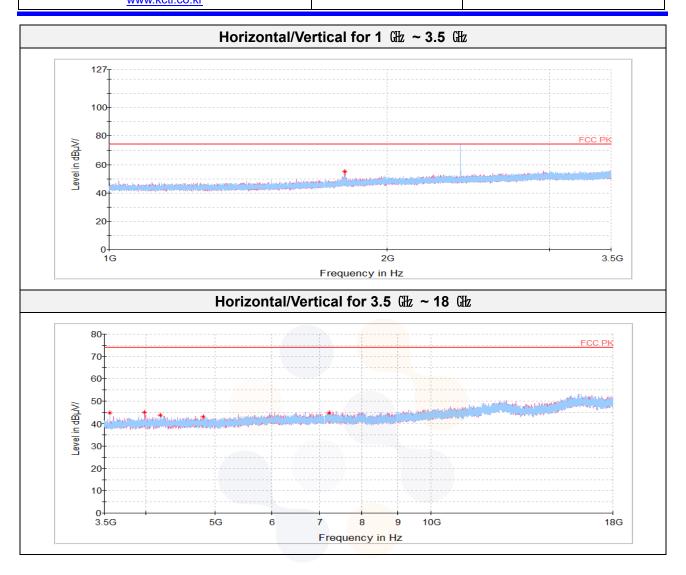
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (17) of (33)


KCTL

Test results (Above 1 000 №)_1 MBits/s(37 Bytes)

2 402 M⊞z

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin				
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]				
Peak data												
1 800.16	Н	44.21	30.10	-19.10	-	55.21	74.00	18.79				
2 389.75 ¹⁾	V	29.65	32.16	-18.17	-	43.64	74.00	30.36				
3 564.34	Н	68.11	33.08	-56.62	-	44.57	74.00	29.43				
3 985.75 ¹⁾	V	67.75	33.58	-56.36	-	44.97	74.00	29.03				
4 196.45 ¹⁾	Н	65.97	33.64	-56.02	-	43.59	74.00	30.41				
4 810.44 ¹⁾	Н	64.36	33.70	-55.15	-	42.91	74.00	31.09				
7 213.81	V	61.15	35.14	-51.55	-	44.74	74.00	29.26				
	•			Average Da	ta	-						

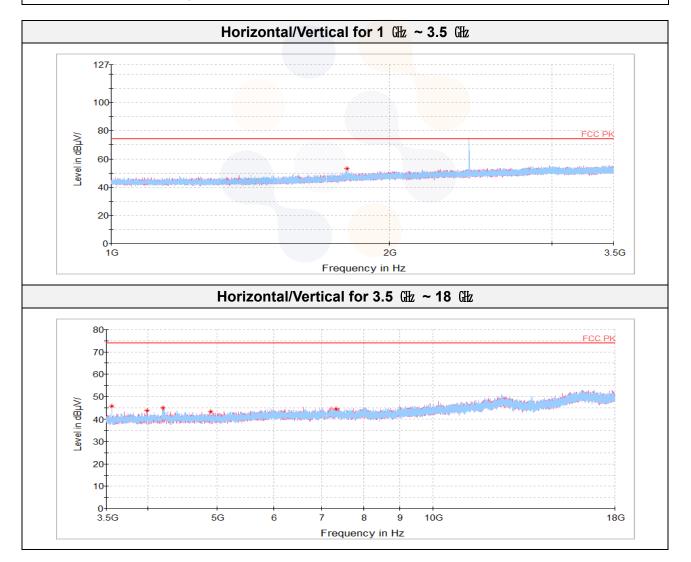

No spurious emissions were detected within 20 dB of the limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (18) of (33)

KCTL

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0034 Page (19) of (33)


KCTL

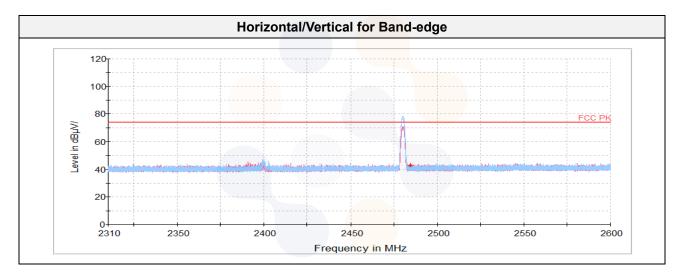
2 440 M址

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin			
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]			
Peak data											
1 800.16	Н	42.25	30.10	-19.10	-	53.25	74.00	20.75			
3 563.89	Н	69.19	33.08	-56.62	-	45.65	74.00	28.35			
3 988.02 ¹⁾	V	66.43	33.59	-56.36	-	43.66	74.00	30.34			
4 206.88 ¹⁾	Н	67.18	33.64	-56.02	-	44.80	74.00	29.20			
4 900.16 ¹⁾	Н	64.58	33.70	-55.07	-	43.21	74.00	30.79			
7 319.84 ¹⁾	Н	60.86	35.16	-51.58	-	44.44	74.00	29.56			
	Average Data										

Average Data

No spurious emissions were detected within 20 dB of the limit.

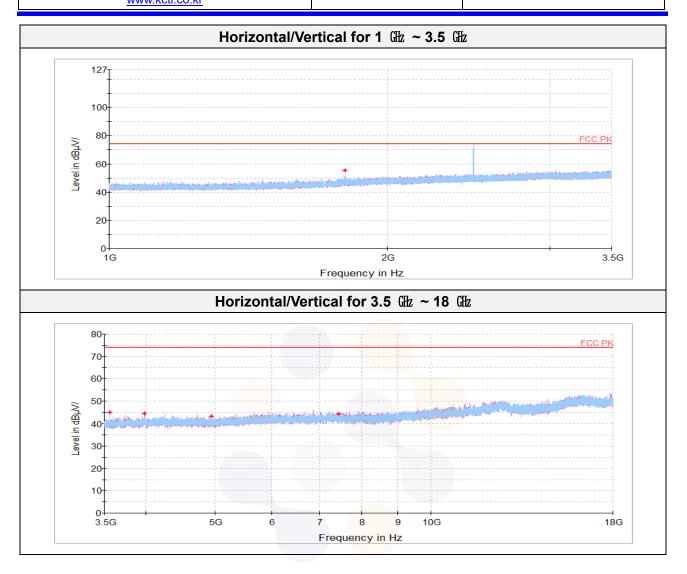
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (20) of (33)


KCTL

2 480 M地

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin			
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]			
Peak data											
1 799.84	V	44.67	30.10	-19.10	-	55.67	74.00	18.33			
2 484.30 ¹⁾	Н	28.47	32.37	-17.88	-	42.96	74.00	31.04			
3 563.89	Н	68.51	33.08	-56.62	-	44.97	74.00	29.03			
3 985.75 ¹⁾	V	67.18	33.58	-56.36	-	44.40	74.00	29.60			
4 950.91 ¹⁾	Н	64.42	33.70	-54.99	-	43.13	74.00	30.87			
7 438.11 ¹⁾	V	60.70	35.19	-51.61	-	44.28	74.00	29.72			
		•			ta			1			

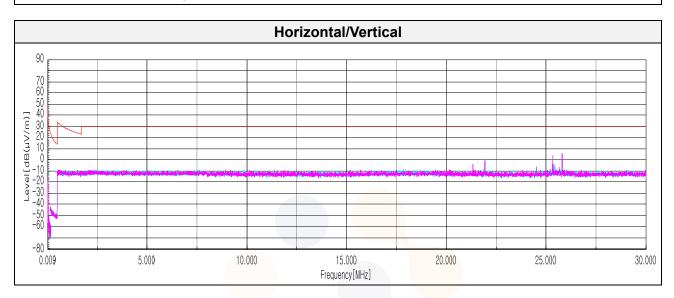
Average Data


No spurious emissions were detected within 20 dB of the limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (21) of (33)

KCTL

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (22) of (33)

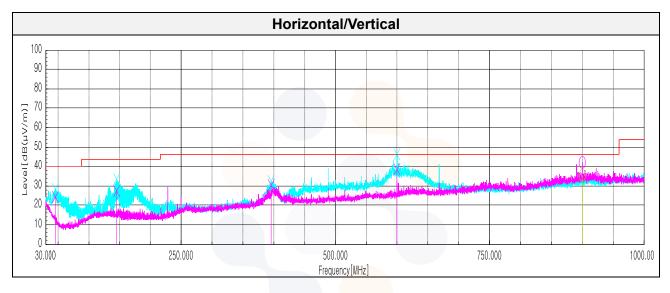


KCTL

[DC 24 V]

Test results (Below 30 ₩) –Worst case: 1 MBits/s(37 Bytes)_2 480 ₩

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	Distance Factor	DCF	Result	Limit	Margin		
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]		
	No spurious emissions were detected within 20 dB of the limit										

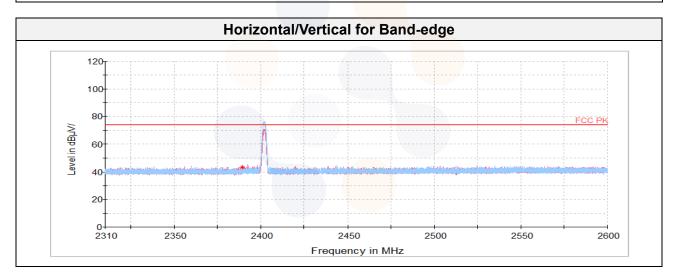


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (23) of (33)

KCTL

est results (Below 1 000 腡) –Worst case: 1 MBits/s(37 Bytes)_2 480 腡										
Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(#V))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(<i>µ</i> V/ m))	(dB)		
	Quasi peak data									
46.01	V	37.50	15.90	-29.28	-	24.12	40.00	15.88		
145.07	V	37.50	17.09	-27.17	-	27.42	43.50	16.08		
395.57	V	33.20	21.33	-23.90	-	30.63	46.00	15.37		
600.00	V	35.80	24.50	-21.86	-	38.44	46.00	7.56		
900.09	Н	27.50	26.50	-18.63	-	35.37	46.00	10.63		

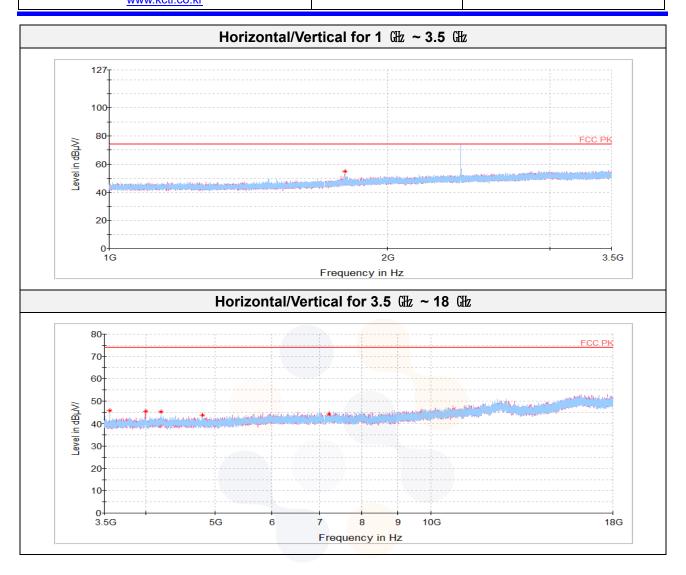
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (24) of (33)


KCTL

Test results (Above 1 000 账)_1 MBits/s(37 Bytes)

2 402 M⊞z

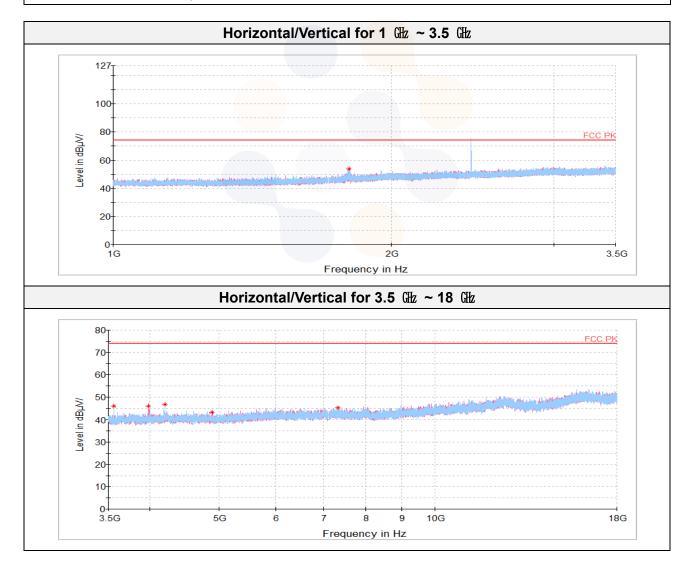
Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin			
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]			
Peak data											
1 798.20	V	43.87	30.09	-19.10	-	54.86	74.00	19.14			
2 389.25 ¹⁾	V	29.29	32.16	-18.17	-	43.28	74.00	30.72			
3 563.89	Н	69.32	33.08	-56.62	-	45.78	74.00	28.22			
3 997.08 ¹⁾	V	68.10	33.60	-56.34	-	45.36	74.00	28.64			
4 199.63 ¹⁾	Н	67.66	33.64	-56.02	-	45.28	74.00	28.72			
4 799.56 ¹⁾	Н	65.01	33.70	-55.16	-	43.55	74.00	30.45			
7 211.55	V	60.66	35.14	-51.55	-	44.25	74.00	29.75			
Average Data											


No spurious emissions were detected within 20 dB of the limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (25) of (33)

KCTL

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

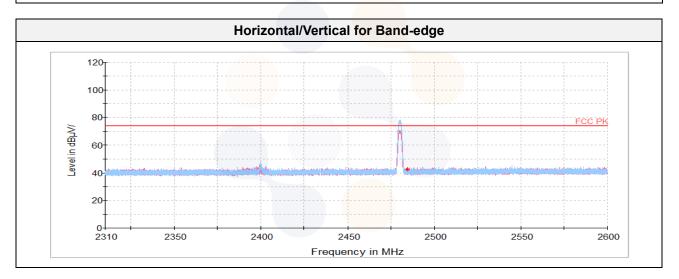

Report No.: KR23-SRF0034 Page (26) of (33)

2 440 Mtz

Frequency	Pol.	Reading	g Antenna Amp. + Cable DCF Result		Result	Limit	Margin			
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(<i>µ</i> V/m)]	[dB]		
Peak data										
1 800.55	V	42.96	30.10	-19.10	-	53.96	74.00	20.04		
3 563.89	Н	69.54	33.08	-56.62	-	46.00	74.00	28.00		
3 983.03 ¹⁾	V	68.72	33.58	-56.37	-	45.93	74.00	28.07		
4 199.63 ¹⁾	Н	68.98	33.64	-56.02	-	46.60	74.00	27.40		
4 894.72 ¹⁾	V	64.57	33.70	-55.07	-	43.20	74.00	30.80		
7 320.75 ¹⁾	Н	61.66	35.16	-51.58	-	45.24	74.00	28.76		
Average Data										

No spurious emissions were detected within 20 dB of the limit.

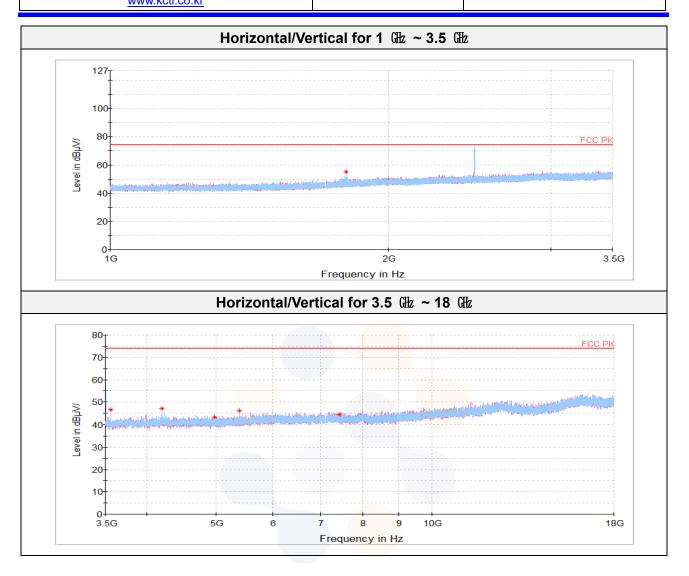
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (27) of (33)


KCTL

2 480 M址

Pol.	Reading	Antenna Factor	Amp + Cable DCF Result		Result	Limit	Margin				
[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(<i>µ</i> V/m)]	[dB]				
Peak data											
V	44.11	30.10	-19.10	-	55.11	74.00	18.89				
Н	28.10	32.37	-17.88	-	42.59	74.00	31.41				
Н	70.03	33.08	-56.62	-	46.49	74.00	27.51				
Н	69.52	33.64	-56.02	-	47.14	74.00	26.86				
Н	64.54	33.70	-54.96	-	43.28	74.00	30.72				
Н	66.71	34.18	-54.79	-	46.10	74.00	27.90				
Н	60.93	35.19	-51.61	-	44.51	74.00	29.49				
	[V/H]	[V/H] [dB(µV)] V 44.11 H 28.10 H 70.03 H 69.52 H 64.54 H 66.71	Pol. Reading Factor [V/H] [dB(µV)] [dB] V 44.11 30.10 H 28.10 32.37 H 70.03 33.08 H 69.52 33.64 H 64.54 33.70 H 66.71 34.18	Pol. Reading Factor Amp. + Cable [V/H] [dB(μV)] [dB] [dB] V 44.11 30.10 -19.10 H 28.10 32.37 -17.88 H 70.03 33.08 -56.62 H 69.52 33.64 -56.02 H 64.54 33.70 -54.96 H 66.71 34.18 -54.79	Pol. Reading Factor Amp. + Cable DCF [V/H] [dB(μV)] [dB] [dB] [dB] [dB] V 44.11 30.10 -19.10 - H 28.10 32.37 -17.88 - H 70.03 33.08 -56.62 - H 69.52 33.64 -56.02 - H 64.54 33.70 -54.96 - H 66.71 34.18 -54.79 -	Pol. Reading Factor Amp. + Cable DCF Result [V/H] [dB(μV)] [dB] [dB]	Pol. Reading Factor Amp. + Cable DCF Result Limit [V/H] [dB(μV)] [dB] [dB] [dB] [dB] [dB] [dB(μV/m)] [dB(μV/m)] Peak data V 44.11 30.10 -19.10 - 55.11 74.00 H 28.10 32.37 -17.88 - 42.59 74.00 H 70.03 33.08 -56.62 - 46.49 74.00 H 69.52 33.64 -56.02 - 47.14 74.00 H 64.54 33.70 -54.96 - 43.28 74.00 H 66.71 34.18 -54.79 - 46.10 74.00				

Average Data

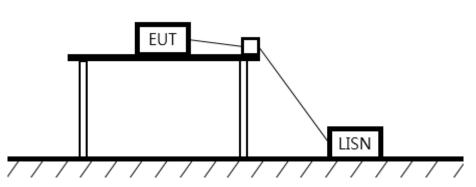

No spurious emissions were detected within 20 $\,\,\mathrm{dB}\,$ of the limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (28) of (33)

KCTL

Report No.: KR23-SRF0034 Page (29) of (33)

Test results (Above 18 ⓓ) – Worst case: 1 MBits/s(37 Bytes) 2 480 №_[DC 12 V]



<u>Note:</u> The worst case was based on the lowest margin condition considering harmonic and spurious emission.

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

6.2. AC Conducted emission Test setup

<u>Limit</u>

According to 15.207(a) and RSS-Gen(8.8), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

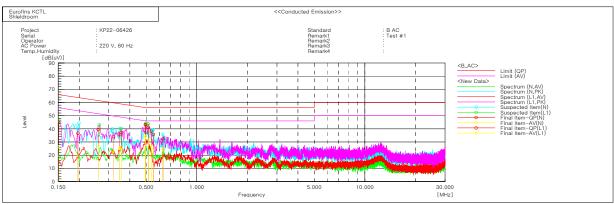
Fraguency of Emission (MR)	Conducted limit (dBµV/m)					
Frequency of Emission (Mb)	Quasi-peak	Average				
0.15 – 0.50	66 - 56*	56 - 46*				
0.50 - 5.00	56	46				
5.00 - 30.0	60	50				

Measurement procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu$ H LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mb to 30 Mb.
- 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kliz or to quasi-peak and average within a bandwidth of 9 kliz. The EUT was in transmitting mode during the measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

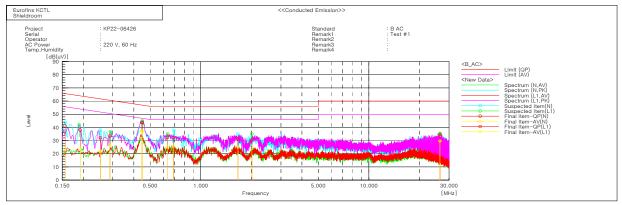
www.kctl.co.kr


Report No.: KR23-SRF0034 Page (31) of (33)

KCTL

<u>Test results</u>

[DC 12 V] -Worst case: 1 MBits/s(37 Bytes) 2 480 ₩


Fina	I Result										
	N_Phase			,							
No.	Frequency	Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV	
	[MHz] 0.19627	[dB(uV)] 26.8	[dB(uV)] 9.6	[dB]	[dB(uV)] 36.7	[dB(uV)] 19.5	[dB(uV)] 63.8	[dB(uV)] 53.8	[dB] 27.1	[dB] 34.3	
2	0.31981	24.3	13.0	9.9 9.7	34.0	22.7	59.7	49.7	25.7	27.0	
3 4	0.34777 0.55222	25.8 26.0	15.5 14.8	9.7 9.8	35.5 35.8	25.2 24.6	59.0 56.0	49.0 46.0	23.5 20.2	23.8 21.4	
5	0.62964	22.6	14.6	9.8	32.4	24.4	56.0	46.0	23.6	21.6	
6	0.53636	28.5	17.7	9.8	38.3	27.5	56.0	46.0	17.7	18.5	
	1 Phase		Deedlere	- 4	0	0	1.1-1.4	1.1.1.1.1	Manala	Manada	
No.	Frequency	Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV	
1	[MHz] 0.15058	[dB(uV)] 35.2	[dB(uV)] 16.7	[dB] 9.7	[dB(uV)] 44.9	[dB(uV)] 26.4	[dB(uV)] 66.0	[dB(uV)] 56.0	[dB] 21.1	[dB] 29.6	
2	0.25908	30.0	17.4	9.6	39.6	27.0	61.5	51.5	21.9	24.5	
3	0.3555	27.3 33.3	16.2 24.6	9.8 9.8	37.1 43.1	26.0 34.4	58.8 56.1	48.8 46.1	21.7 13.0	22.8 11.7	
4 5	0.51524	31.3	21.7	9.8	41.1	31.5	56.0	46.0	14.9	14.5	
6	0.49479	33.2	24.3	9.8	43.0	34.1	56.1	46.1	13.1	12.0	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0034 Page (32) of (33)

[DC 24 V] -Worst case: 1 MBits/s(37 Bytes) 2 480 Mb

Final Result

	N Phase										
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	
1 2 3 4 5 6	[MHz] 0.15571 0.25307 0.44836 0.68854 1.66377 26.48952	QP [dB(uV)] 31.3 22.6 33.7 22.3 21.5 24.8	CAV [dB(uV)] 14.1 12.4 27.1 15.9 15.6 19.9	[dB] 9.8 9.6 9.8 9.8 9.7 9.9	QP [dB(uV)] 41.1 32.2 43.5 32.1 31.2 34.7	CAV [dB(uV)] 23.9 22.0 36.9 25.7 25.3 29.8	QP [dB(uV)] 65.7 61.7 56.9 56.0 56.0 60.0	AV [dB(uV)] 55.7 51.7 46.9 46.0 46.0 50.0	QP [dB] 24.6 29.5 13.4 23.9 24.8 25.3	CAV [dB] 31.8 29.7 10.0 20.3 20.7 20.2	
	L1 Phase	_									
No.	Frequency	Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV	
	EMI (= 1										
	[MHz]	[dB(uV)]	[dB(uV)]	[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]	
1	0.19162	28.0	14.1	10.0	38.0	24.1	64.0	[dB(uV)] 54.0	[dB] 26.0	[dB] 29.9	
1 2 3	0.19162 0.28811	28.0 23.9	14.1 16.8	10.0 9.6	38.0 33.5	24.1 26.4	64.0 60.6	[dB(uV)] 54.0 50.6	[dB] 26.0 27.1	[dB] 29.9 24.2	
3 4	0.19162	28.0	14.1	10.0	38.0 33.5 43.8 32.4	24.1	64.0	[dB(uV)] 54.0	[dB] 26.0 27.1 13.2 23.6	[dB] 29.9	
3	0.19162 0.28811 0.44594	28.0 23.9 34.0	14.1 16.8 27.7	10.0 9.6 9.8	38.0 33.5 43.8	24.1 26.4 37.5	64.0 60.6 57.0	[dB(uV)] 54.0 50.6 47.0	[dB] 26.0 27.1 13.2	[dB] 29.9 24.2 9.5	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0034 Page (33) of (33)

KCTL

7. Measureme	ent equipment			
Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Spectrum Analyzer	R&S	FSV40	100989	23.10.14
EMI TEST RECEIVER	R&S	ESCI7	100732	23.01.19
Bi-Log Antenna	TESEQ	CBL 6112D	62438	24.08.24
Amplifier	SONOMA INSTRUMENT	310N	284608	23.08.18
ATTENUATOR	KEYSIGHT	8491B-6dB	MY39271060	24.04.27
ISOLATION TRANSFORMER	ONETECH CO., LTD	OT-IT500VA	OTR1-16026	23.03.28
Horn antenna	ETS.lindgren	3117	155787	23.09.29
Horn antenna	ETS.lindgren	3116	00086635	23.05.04
Attenuator	API Inmet	40AH2W-10	12	23.05.03
AMPLIFIER	B&Z Technologies	BZRT-00504000- 481055-382525	26299-27735	23.09.19
AMPLIFIER	B&Z Technologies	BZR-0050400- 551028-252525	27736	23.09.19
LOOP Antenna	R&S	HFH2-Z2	100355	24.08.10
Highpass Filter	WT	WT-A1698-HS	WT160411001	23.05.03
TWO-LINE V - NETWORK	R&S	ENV216	101358	23.09.29
EMI TEST RECEIVER	R&S	ESCI3	100001	23.08.18
Vector Signal Generator	R&S	SMBV100A	257566	23.07.04
Signal Generator	R&S	SMB100A	176206	23.01.19
Antenna Mast	Innco Systems	MA <mark>4640-XP</mark> -ET	-	-
Turn Table	Innco Systems	CO3000	1175/45850319/P	-
Antenna Mast	Innco Systems	MA4000-EP	303	-
Turn Table	Innco Systems	CO3000	1175/45850319/P	-

End of test report