

FCC/IC- TEST REPORT

Report Number :	68.950.17.052.01	Date of Issue: March 14, 2017			
Model	: LED-EMH02DE2				
Product Type	: Control integrated into I	_uminaires			
Applicant	: Minwa Electronics Co.,	Ltd			
Address	: 22 Floor, Far East Fina	nce Centre, 16 Harcourt Road, Admiralty,			
	Hong Kong				
Production Facility	: Minwa China (Huizhou)	Electronics Co., ltd			
Address	: Huizhou Industrial Park, Minwa (Dalian) Industrial Park, RuHu				
	Town, HuiCheng District, Huizhou City, 516169 P.R China.				
Test Result :	■ Positive □ Negati	ve			
Total pages including Appendices :	46				

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	
9	Technical Requirement	10
9	9.1 Conducted Emission	10
9	9.2 Conducted peak output power	13
9	9.3 6dB bandwidth and 99% Occupied Bandwidth	18
9	9.4 Power spectral density	23
9	9.5 Spurious RF conducted emissions	28
9	9.6 Band edge	38
9	9.7 Spurious radiated emissions for transmitter	
10) Test Equipment List	45
11	System Measurement Uncertainty	46

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

502708

No.:

IC Registration

10320A-1

No:

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product: Control integrated into Luminaires

Model no.: LED-EMH02DE2

FCC ID: TKQEMH02DE2

IC: 20361-EMH0DE2

Options and accessories: NIL

Rating: AC 120V 60Hz 25W

RF Transmission 2412MHz -2462MHz

Frequency:

No. of Operated Channel: 11

Modulation: CCK DSSS, OFDM

Antenna Type: Intergral Antenna

Description of the EUT: The Equipment Under Test (EUT) is a Control integrated into

Luminaires which supports 2.4G WLAN Transmitter and Receiver

functions.

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2016 Edition	Subpart C - Intentional Radiators			
RSS-Gen Issue 4	General Requirements for the Certification of Radio Apparatus			
November 2014				
RSS-247 Issue 2	RSS-247— Digital Transmission Systems (DTSs), Frequency			
February 2017	Hopping Systems (FHSs) and Licence-Exempt Local Area Network			
	(LE-LAN) Devices			

All the test methods were according to KDB558074 D01 DTS Meas Guidance v03r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Subpart C, RSS-Gen, RSS-247							
				Test		t Resi	
Test Condition	Test Condition			Site	Pass	Fail	N/
§15.207	RSS-Gen A8.8	Conducted emission AC power port	10	Site 1			A
§15.247 (b) (3)	RSS-247 5.4(d)	Conducted peak output power	13	Site 1			
§15.247(a)(1)	RSS-247 5.1(a) & RSS-Gen 6.6	20dB bandwidth					
§15.247(a)(1)	RSS-247 5.1(b)	Carrier frequency separation					
§15.247(a)(1)(iii)	RSS-247 5.1(d)	Number of hopping frequencies					
§15.247(a)(1)(iii)	RSS-247 5.1(e)	Dwell Time					
§15.247(a)(2)	RSS-247 5.2(a)	6dB bandwidth and 99% Occupied Bandwidth	18	Site 1			
§15.247(e)	RSS-247 5.2(b)	Power spectral density	23	Site 1			
§15.247(d)	RSS-247 5.5	Spurious RF conducted emissions	28	Site 1			
§15.247(d)	RSS-247 5.5	Band edge	38	Site 1			
§15.247(d) & §15.209	RSS-247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	42	Site 1			
§15.203	RSS-Gen 8.3	Antenna requirement	See note 1				

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses a patch antenna, which gain is 0dBi. In accordance to \$15.203 and RSS-Gen 8.3, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

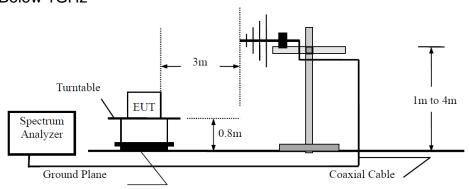
Remarks

This submittal(s) (test report) is intended for FCC ID: TKQEMH02DE2, IC:20361-EMH0DE2 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-210. **SUMMARY:** All tests according to the regulations cited on page 5 were ■ - Performed □ - Not Performed The Equipment under Test **- Fulfills** the general approval requirements. □ - **Does not** fulfill the general approval requirements. Sample Received Date: February 16, 2017 Testing Start Date: February 16, 2017 Testing End Date: March 14, 2017 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Reviewed by: Prepared by: Johnshi

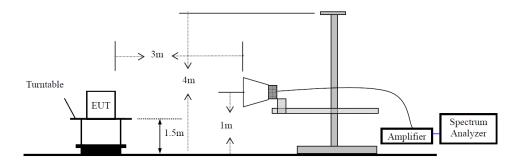
John Zhi

John Zhi

Leon Zhang

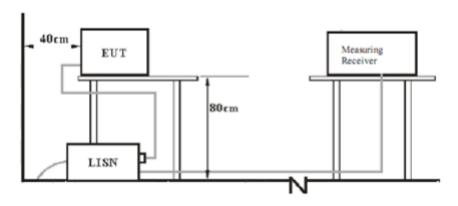

EMC Project Manager

EMC Project Engineer



7 Test Setups

7.1 Radiated test setups Below 1GHz


Above 1GHz

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)

Technical Requirement

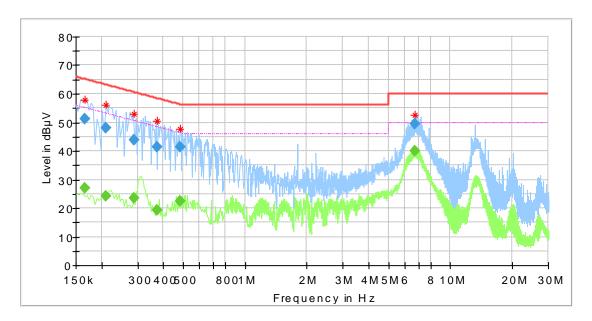
9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50
"*"Decreasing linear		


Conducted Emission

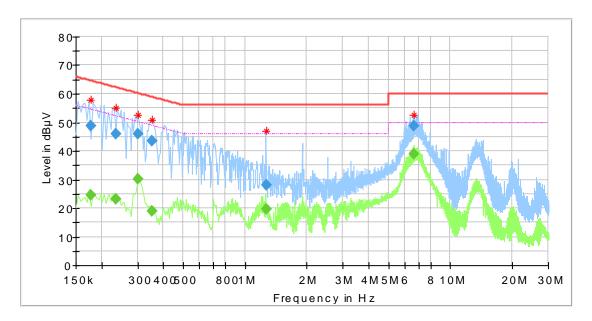
Product Type : Control integrated into Luminaires

M/N : LED-EMH02DE2
Operating Condition : Normal working& TX

Test Specification : Live

Comment : AC 120V/60Hz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.165500		26.98	55.18	28.20	L1	9.7
0.165500	51.07		65.18	14.11	L1	9.7
0.209500	1	24.23	53.23	29.00	L1	9.7
0.209500	47.98		63.23	15.25	L1	9.7
0.289500		23.68	50.54	26.86	L1	9.7
0.289500	43.91		60.54	16.63	L1	9.7
0.373500		19.27	48.42	29.15	L1	9.7
0.373500	41.45		58.42	16.97	L1	9.7
0.481500		22.42	46.31	23.89	L1	9.7
0.481500	41.27		56.31	15.04	L1	9.7
6.709500	1	40.07	50.00	9.93	L1	9.9
6.709500	49.62		60.00	10.38	L1	9.9


Conducted Emission

Product Type : Control integrated into Luminaires

M/N : LED-EMH02DE2
Operating Condition : Normal working& TX

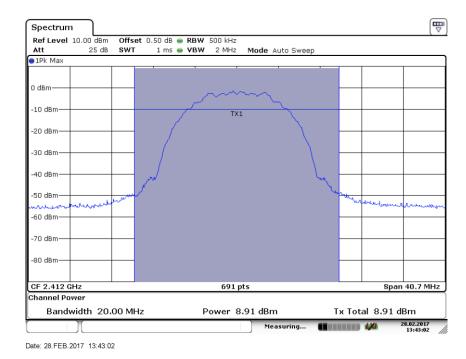
Test Specification : Neutral

Comment : AC 120V/60Hz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.177500		24.41	54.60	30.19	N	9.6
0.177500	48.68		64.60	15.92	N	9.6
0.234500		23.26	52.29	29.03	N	9.6
0.234500	45.84		62.29	16.45	N	9.6
0.301500		30.31	50.20	19.89	N	9.7
0.301500	46.04		60.20	14.16	N	9.7
0.353500		18.91	48.88	29.97	N	9.7
0.353500	43.36		58.88	15.52	N	9.7
1.265500		19.50	46.00	26.50	N	9.7
1.265500	28.22	-	56.00	27.78	N	9.7
6.674500		38.80	50.00	11.20	N	9.9
6.674500	48.86	-	60.00	11.14	N	9.9

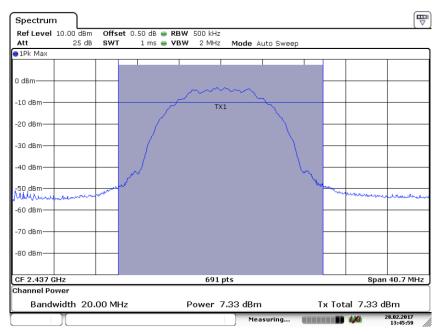
9.2 Conducted peak output power

Test Method

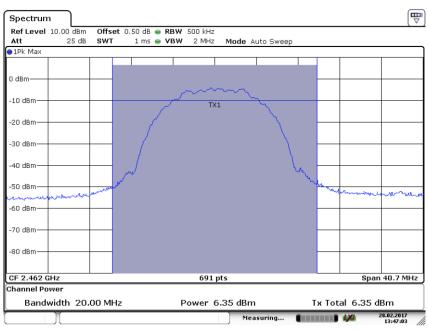

- Use the following spectrum analyzer settings:
 RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

Frequency Range	Limit	Limit
MHz	W	dBm
2412MHz-2462MHz	≤1	≤30

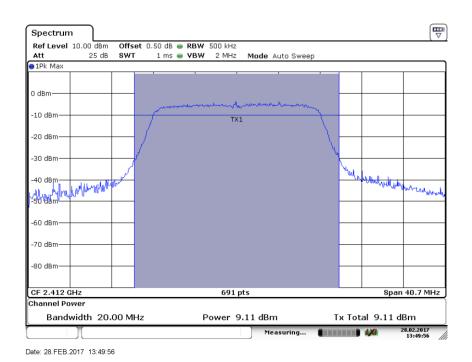

Test result as below table 802.11b

Frequency	Conducted Peak Output Power	Result
MHz	dBm	
Low channel 2412MHz	8.91	Pass
Middle channel 2437MHz	7.33	Pass
High channel 2462MHz	6.35	Pass

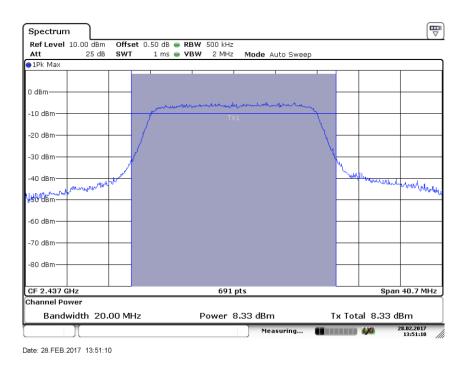

2412MHz

Date: 28.FEB.2017 13:45:59

2437MHz

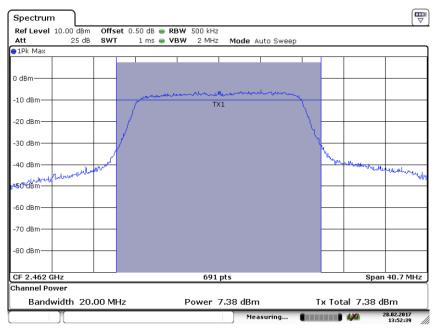

Date: 28.FEB.2017 13:47:03

2462MHz



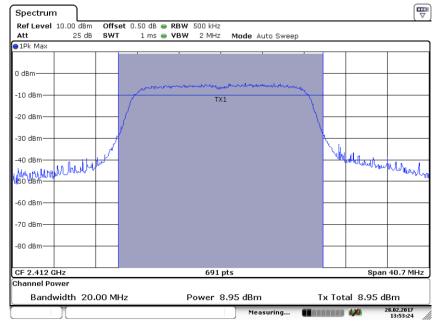
802.11g

Frequency	Conducted Peak Output Power	Result
MHz	dBm	
Low channel 2412MHz	9.11	Pass
Middle channel 2437MHz	8.33	Pass
High channel 2462MHz	7.38	Pass



2412MHz

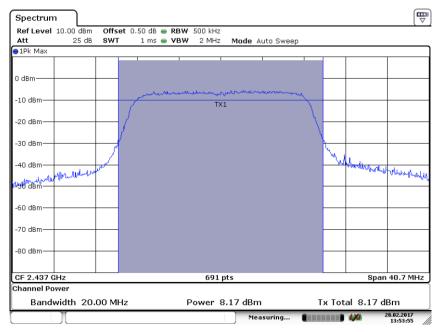
2437MHz



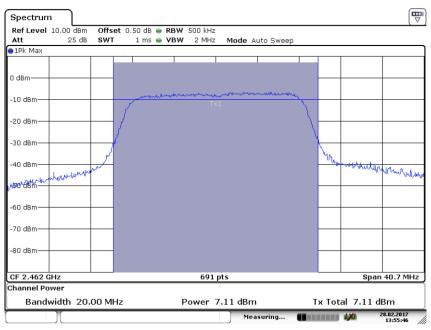
Date: 28.FEB.2017 13:52:39

2462MHz

802.11n20


Frequency	Conducted Peak Output Power	Result
MHz	dBm	
Low channel 2412MHz	8.95	Pass
Middle channel 2437MHz	8.17	Pass
High channel 2462MHz	7.11	Pass

Date: 28.FEB.2017 13:53:25


2412MHz

Date: 28.FEB.2017 13:53:55

2437MHz

Date: 28.FEB.2017 13:55:47

2462MHz

9.3 6dB bandwidth and 99% Occupied Bandwidth

Test Method

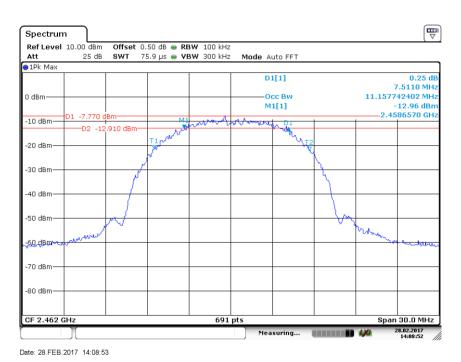
- Use the following spectrum analyzer settings:
 RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]	
≥500	_

Test result 802.11b

Frequency MHz	6dB bandwidth MHz	99% Bandwidth MHz	Result
Low channel 2412MHz	8.205	11.158	Pass
Middle channel 2437MHz	8.205	11.158	Pass
High channel 2462MHz	7.511	11.158	Pass

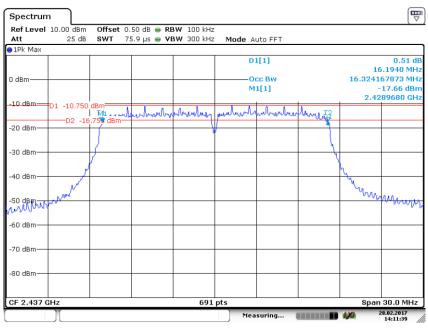

2412MHz

Date: 28.FEB.2017 14:07:06

2437MHz

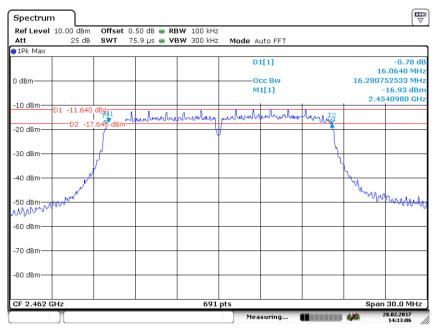


2462MHz


802.11g

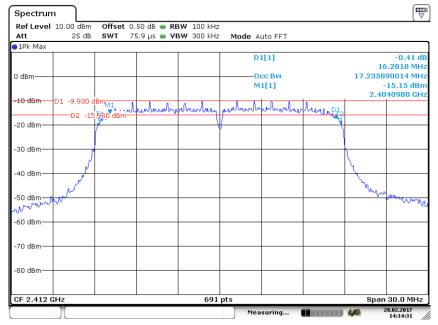
Frequency MHz	6dB bandwidth MHz	99% Bandwidth MHz	Result
Low channel 2412MHz	16.281	16.324	Pass
Middle channel 2437MHz	16.194	16.324	Pass
High channel 2462MHz	16.064	16.281	Pass

Date: 28.FEB.2017 14:10:11


2412MHz

Date: 28.FEB.2017 14:11:38

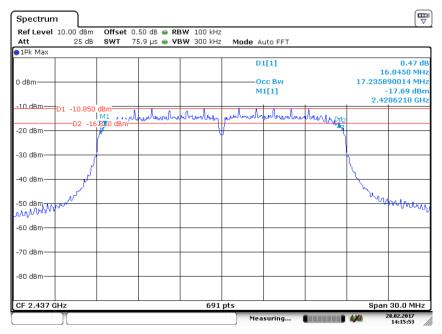
2437MHz



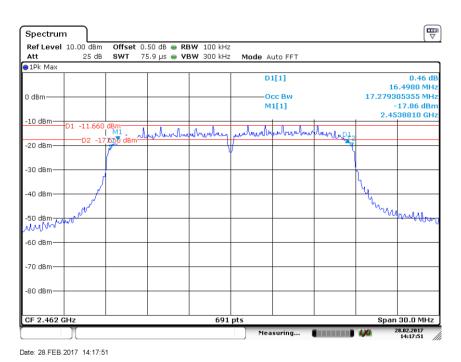
Date: 28.FEB.2017 14:13:06

2462MHz

802.11n20


Frequency MHz	6dB bandwidth MHz	99% Bandwidth MHz	Result
Low channel 2412MHz	16.281	17.236	Pass
Middle channel 2437MHz	16.845	17.236	Pass
High channel 2462MHz	16.498	17.279	Pass

Date: 28.FEB.2017 14:14:31


2412MHz

Date: 28.FEB.2017 14:15:53

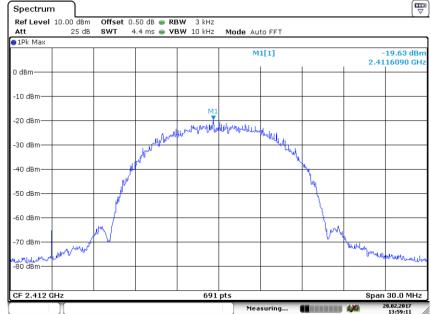
2437MHz

2462MHz

9.4 Power spectral density

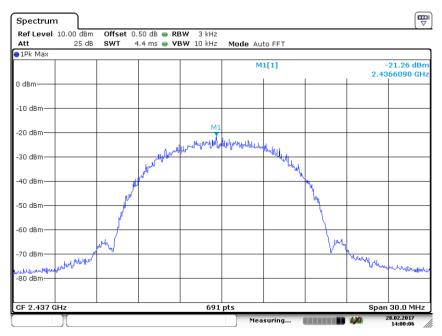
Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

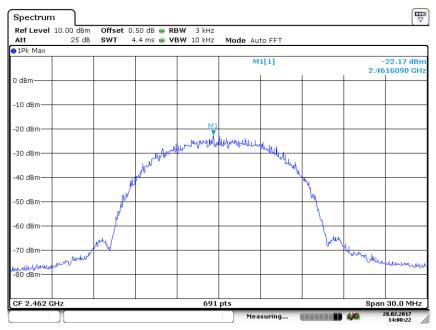

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm]	
≤8	

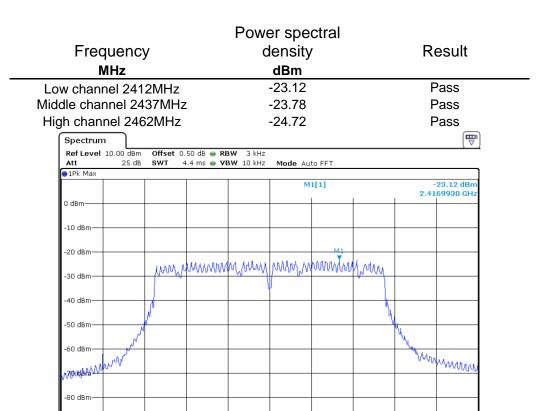

Test result 802.11b

	Power spectral	
Frequency	density	Result
MHz	dBm	
Low channel 2412MHz	-19.63	Pass
Middle channel 2437MHz	-21.26	Pass
High channel 2462MHz	-22.17	Pass



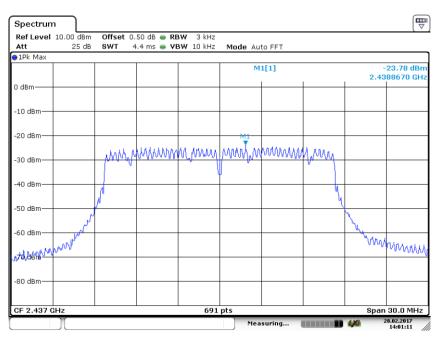
Date: 28.FEB.2017 13:59:11

Date: 28.FEB.2017 14:00:06

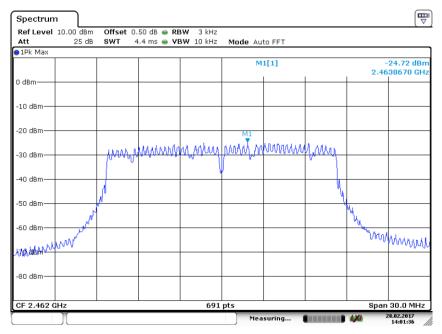


Date: 28.FEB.2017 14:00:23

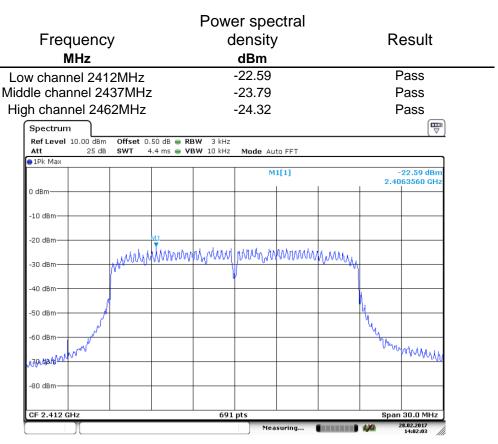
Span 30.0 MHz

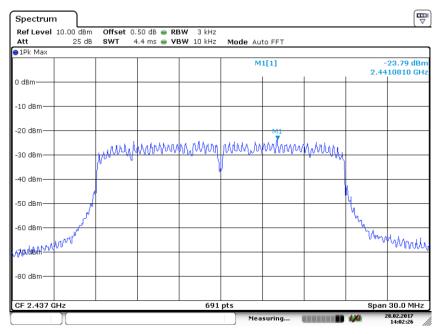

802.11g

691 pts

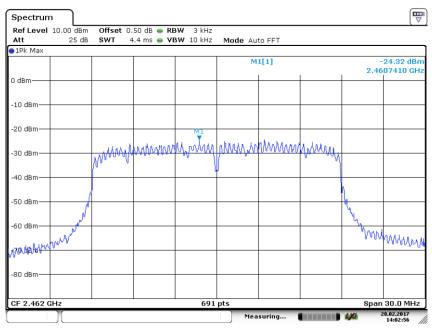

Date: 28.FEB.2017 14:00:50

CF 2.412 GHz


Date: 28.FEB.2017 14:01:11


Date: 28.FEB.2017 14:01:36

802.11n20



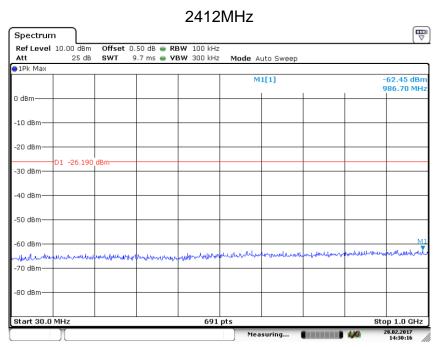
Date: 28.FEB.2017 14:02:03

Date: 28.FEB.2017 14:02:26

Date: 28.FEB.2017 14:02:56

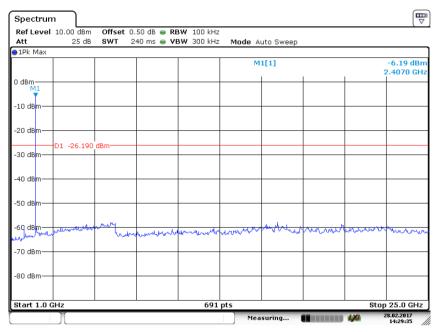
9.5 Spurious RF conducted emissions

Test Method


- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

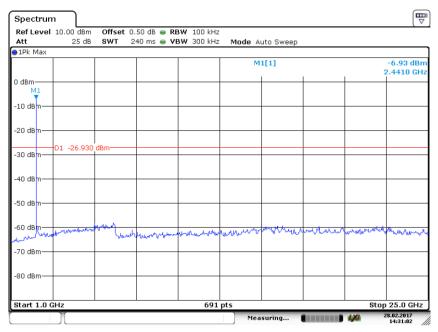
Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20


Spurious RF conducted emissions

802.11b

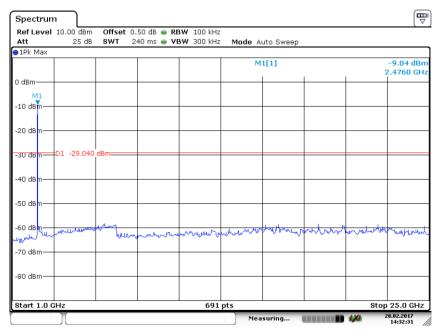
Date: 28.FEB.2017 14:30:17



Date: 28.FEB.2017 14:29:35

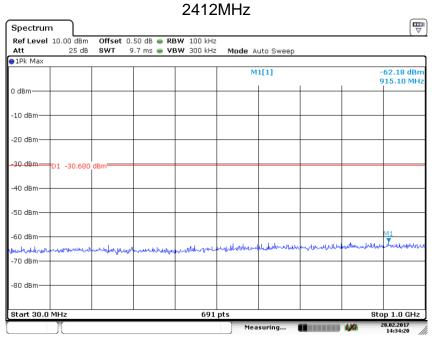
2437MHz Spectrum Ref Level 10.00 dBm Offset 0.50 dB ■ RBW 100 kHz SWT 9.7 ms ■ VBW 300 kHz 25 dB Mode Auto Sweep 1Pk Max -62.33 dBn 860.30 MH M1[1] 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm Start 30.0 MHz 691 pts Stop 1.0 GHz

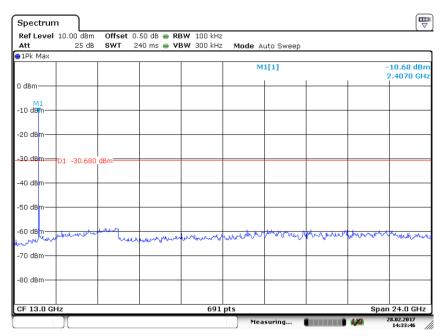
Date: 28.FEB.2017 14:31:29



Date: 28.FEB.2017 14:31:02

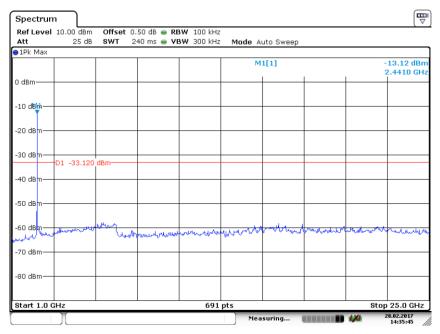
2462MHz Spectrum Ref Level 10.00 dBm 25 dB Mode Auto Sweep 1Pk Max -62.41 dBn 976.80 MH M1[1] 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm Start 30.0 MHz 691 pts Stop 1.0 GHz


Date: 28.FEB.2017 14:32:57


Date: 28.FEB.2017 14:32:31

802.11g

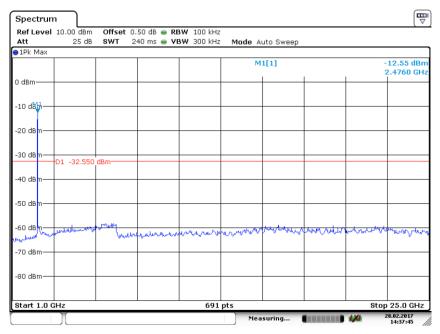
Date: 28.FEB.2017 14:34:20



Date: 28.FEB.2017 14:33:46

2437MHz Spectrum Ref Level 10.00 dBm 25 dB Mode Auto Sweep 1Pk Max -61.77 dBn 974.00 MH M1[1] 0 dBm -10 dBm -20 dBm -30 dBm D1 -33.120 40 dBm -50 dBm -60 dBm -70 dBm -80 dBm Start 30.0 MHz 691 pts Stop 1.0 GHz

Date: 28.FEB.2017 14:36:21



Date: 28.FEB.2017 14:35:45

2462MHz Spectrum Ref Level 10.00 dBm Offset 0.50 dB • RBW 100 kHz 9.7 ms 🍅 **VBW** 300 kHz Mode Auto Sweep 1Pk Max -61.94 dBn 871.60 MH M1[1] 0 dBm -10 dBm -20 dBm D1 -32.550 -40 dBm -50 dBm -60 dBm -80 dBm 691 pts Stop 1.0 GHz Start 30.0 MHz Measuring...

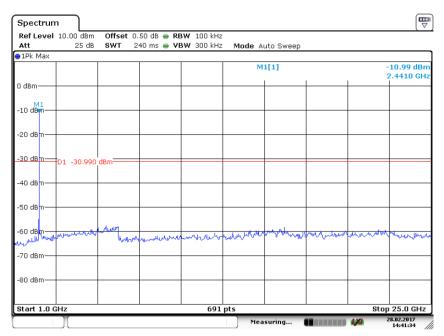
Date: 28.FEB.2017 14:38:21

Date: 28.FEB.2017 14:37:45

802.11n20

2412MHz Spectrum Ref Level 10.00 dBm Offset 0.50 dB - RBW 100 kHz Att 25 dB SWT 9.7 ms 🍅 **VBW** 300 kHz Mode Auto Sweep 1Pk Max M1[1] -62.43 dBn 0 dBm -20 dBm 40 dBm -60 dBm -70 dBm -80 dBm Start 30.0 MHz 691 pts Stop 1.0 GHz

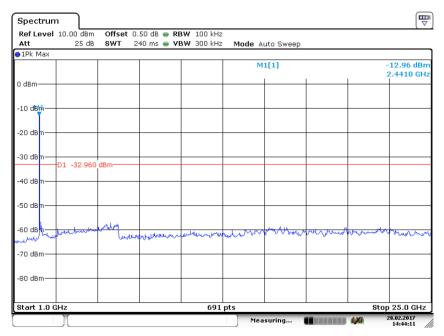
Date: 28.FEB.2017 14:40:02



Date: 28.FEB.2017 14:39:19

2437MHz Spectrum Ref Level 10.00 dBm Offset 0.50 dB ■ RBW 100 kHz SWT 9.7 ms ■ VBW 300 kHz 25 dB Mode Auto Sweep 1Pk Max -61.26 dBn 846.30 MH M1[1] 0 dBm -10 dBm -20 dBm -30 dBm--40 dBm -50 dBm -60 dBm -70 dBm -80 dBm Start 30.0 MHz 691 pts Stop 1.0 GHz

Date: 28.FEB.2017 14:42:10



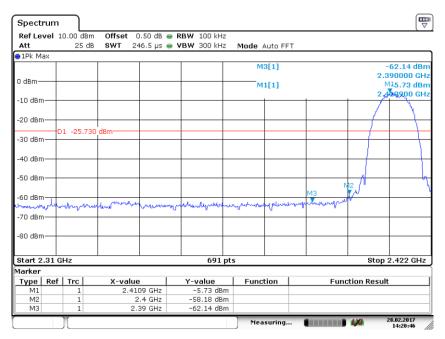
Date: 28.FEB.2017 14:41:35

2462MHz Spectrum Ref Level 10.00 dBm 25 dB Mode Auto Sweep 1Pk Max -62.17 dBn 933.30 MH M1[1] 0 dBm -10 dBm -20 dBm -30 dBm D1 -32.960 40 dBm -50 dBm -60 dBm -70 dBm -80 dBm Start 30.0 MHz 691 pts Stop 1.0 GHz

Date: 28.FEB.2017 14:44:41

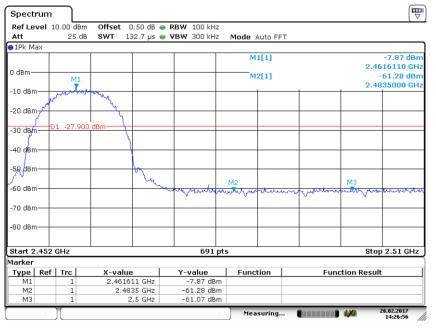
Date: 28.FEB.2017 14:44:10

9.6 Band edge

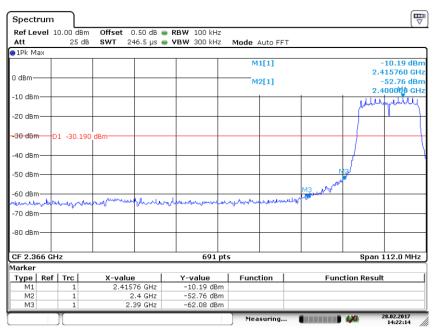

Test Method

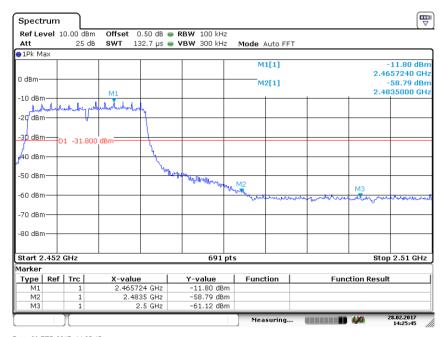
- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

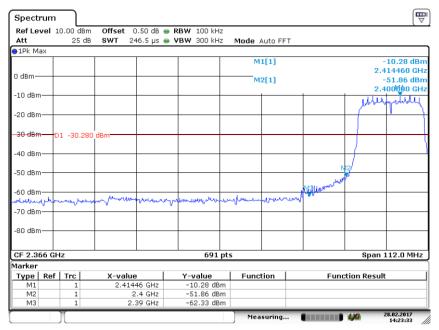

In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen8.10, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

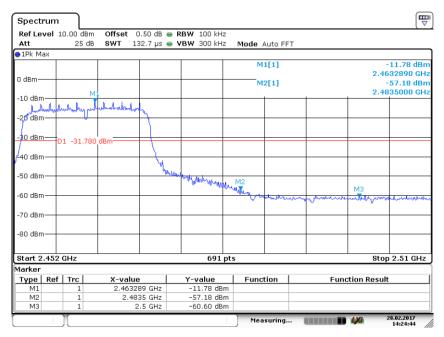
Test result 802.11b


Date: 28.FEB.2017 14:20:47


Date: 28.FEB.2017 14:26:56

802.11g


Date: 28.FEB.2017 14:22:14


Date: 28.FEB.2017 14:25:45

802.11n20

Date: 28.FEB.2017 14:23:34

Date: 28.FEB.2017 14:24:45

9.7 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below is the WORST case for all Test Modes and Channels:

802.11b:

2412MHz

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBμV/m		dBμV/m	
320.030000	37.52	Horizontal	46.00	PK	8.48	Pass
58.830556	23.72	Vertical	40	PK	16.28	Pass
4818.281250	42.59	Horizontal	74.00	PK	31.41	Pass
4818.281250	40.27	Vertical	74.00	PK	33.73	Pass

2437MHz

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dΒμV/m		dΒμV/m	
320.030000	37.52	Horizontal	46.00	PK	8.48	Pass
58.830556	23.72	Vertical	40	PK	16.28	Pass
4868.437500	43.18	Horizontal	74.00	PK	30.82	Pass
4879.218750	40.16	Vertical	74.00	PK	33.84	Pass

2462MHz

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBμV/m		dBμV/m	
320.030000	37.52	Horizontal	46.00	PK	8.48	Pass
58.830556	23.72	Vertical	40	PK	16.28	Pass
4919.062500	37.25	Horizontal	74.00	PK	36.75	Pass
4918.125000	37.85	Vertical	74.00	PK	36.15	Pass

Remark:

- (1) Data of measurement within 30-1000MHz frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
С	Signal Generator	Rohde & Schwarz	SMB100A	108272	2017-7-15
	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2017-7-15
	Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2017-7-15
	RF Switch Module	Rohde & Schwarz	OSP120/OS P-B157	101226/10085 1	2017-7-15
	EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2017-7-15
RE	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2017-8-3
KE	Horn Antenna	Rohde & Schwarz	HF907	102294	2017-7-15
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2017-7-15
	3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Radiation emission	U=4.32dB (30MHz-25GHz)
Output power test	0.94 dB
Power density test	2.10 dB
Bandwidth	1x10 ⁻⁹