

Partial FCC Test Report Report No.: RF191211C28A-1 FCC ID: TK4WLE600VX Test Model: WLE600VX Received Date: Dec. 11, 2019 Test Date: Jan. 12 ~ Mar. 05, 2020 Issued Date: Mar. 10, 2020 Applicant: Compex Systems Pte Ltd Address: 135, Joo Seng Road, #08-01 Singapore 368363 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan Test Location (2): B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan FCC Registration / 788550 / TW0003 Designation Number: 427177 / TW0011

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	Release Control Record				
1	Cer	tificate of Conformity	4		
2	Sur	nmary of Test Results	5		
	2.1	Measurement Uncertainty	6		
	2.2	Modification Record	6		
3	Ger	neral Information	7		
		General Description of EUT			
	3.2	Description of Test Modes			
	33	3.2.1 Test Mode Applicability and Tested Channel Detail Description of Support Units			
	0.0	3.3.1 Configuration of System under Test			
		General Description of Applied Standards and References			
4	Tes	t Types and Results	. 13		
	4.1	Radiated Emission and Bandedge Measurement	. 13		
		4.1.1 Limits of Radiated Emission and Bandedge Measurement			
		4.1.2 Limits of Unwanted Emission Out of the Restricted Bands			
		4.1.3 Test Instruments4.1.4 Test Procedures			
		4.1.5 Deviation from Test Standard			
		4.1.6 Test Setup			
		4.1.7 EUT Operating Conditions			
	12	4.1.8 Test Results Conducted Emission Measurement			
	4.2	4.2.1 Limits of Conducted Emission Measurement			
		4.2.2 Test Instruments			
		4.2.3 Test Procedures			
		4.2.4 Deviation from Test Standard			
		4.2.5 Test Setup4.2.6 EUT Operating Conditions			
		4.2.7 Test Results	24		
	4.3	Transmit Power Measurement			
		4.3.1 Limits of Transmit Power Measurement			
		4.3.2 Test Setup			
		4.3.3 Test Instruments4.3.4 Test Procedure			
		4.3.5 Deviation from Test Standard			
		4.3.6 EUT Operating Conditions			
		4.3.7 Test Results	. 29		
5	Pict	tures of Test Arrangements	. 30		
Ar	nex	A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)	. 31		
Ar	nnex	B- Band-edge measurement	. 32		
		EUT Operating Conditions	. 32		
Ap	Appendix – Information of the Testing Laboratories				

Release Control Record

Issue No.	Description	Date Issued
RF191211C28A-1	Original Release	Mar. 10, 2020

1 Certificate of Conformity

Product:	802.11ac Dual Band Module
Brand:	COMPEX
Test Model:	WLE600VX
Sample Status:	Engineering Sample
Applicant:	Compex Systems Pte Ltd
Test Date:	Jan. 12 ~ Mar. 05, 2020
Standards:	47 CFR FCC Part 15, Subpart E (Section 15.407)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Lena

Prepared by :

Lena Wang / Specialist

Date: Mar. 10, 2020

Approved by :

Date: Mar. 10, 2020

Dylan Chiou / Senior Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)					
FCC Test Item		Result	Remarks		
15.407(b)(6)	AC Power Conducted Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -13.91 dB at 0.17838 MHz.		
15.407(b) (1/2/3/4(i/ii)/6)			Meet the requirement of limit. Minimum passing margin is -0.81 dB at 5150 MHz.		
15.407(a)(1/2/ 3)	Max Average Transmit Power	Pass	Meet the requirement of limit.		
	Occupied Bandwidth Measurement		Refer to Note		
15.407(a)(1/2/ 3)	Peak Power Specifial Density		Refer to Note		
15.407(e)	6 dB Bandwidth	N/A	Refer to Note		
15.407(g)	Frequency Stability	N/A	Refer to Note		
15.203	Antenna Requirement	Pass	Antenna connector is ipex (MHF) not a standard connector.		

Note:

 For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A.

2. For 5150-5250 band compliance with rule part 15.407(b)(1) < 15.407(b)(7) of the Undesirable emission limits, the test plots were recorded in Annex B. Test Procedures refer to report 4.1.4.

3. This report is a partial report, only test item of AC Power Conducted Emission, Radiated Emissions and Max Average Transmit Power tests were performed for this report. Other testing data please refer to MRT report no.: 153RSU02902 for module (Brand: COMPEX, Model: WLE600VX).

4. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
	9 kHz ~ 30 MHz	3.04 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.0153 dB
	200 MHz ~ 1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
	18 GHz ~ 40 GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	802.11ac Dual Band Module
Brand	COMPEX
Test Model	WLE600VX
Status of EUT	Engineering Sample
Power Supply Rating	120 Vac
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK
Modulation Technology	OFDM
	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0 Mbps
Transfer Rate	802.11n: up to 300.0 Mbps
	802.11ac: up to 866.7 Mbps
Operating Frequency	5180 ~ 5240 MHz, 5745 ~ 5825 MHz
	5180 ~ 5240 MHz: 4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20)
	2 for 802.11n (HT40), 802.11ac (VHT40)
Number of Channel	1 for 802.11ac (VHT80)
Number of Channel	5745 ~ 5825 MHz: 5 for 802.11a, 802.11n (HT20), 802.11ac (VHT20)
	2 for 802.11n (HT40), 802.11ac (VHT40)
	1 for 802.11ac (VHT80)
Output Dowor	148.252 mW for 5180 ~ 5240 MHz
Output Power	271.019 mW for 5745 ~ 5825 MHz
Antenna Type	Refer to Note as below
Antenna Connector	Refer to Note as below
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

1. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

Modulation Mode	Tx Function
802.11a	1TX
802.11n (HT20)	2TX
802.11n (HT40)	2TX
802.11ac (VHT20)	2TX
802.11ac (VHT40)	2TX
802.11ac (VHT80)	2TX

* The modulation and bandwidth are similar for 802.11n mode for HT20 / HT40 and 802.11ac mode for VHT20 / VHT40, therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1)

2. The EUT is authorized for use in specific End-product. Please refer to below table for further details.

Product Name	Brand	Model
Networking device	CITRIX	SD-WAN 110-WiFi

3. The antenna information is listed as below.

• • • • • • • •				Anter	nna Gain
Antenna Type	Manufacturer	Model	Antenna Connector	WLAN 2.4 GHz	WLAN 5 GHz
				2.4 GHZ	5 612
Disala	Taoglas	FXP.830.07.0100C	i-pex(MHF)	2.6	5.0
Dipole	Ethertronics	1001932FT	i-pex(MHF)	2.5	4.4

4. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter	AOEM	ADS0248T-U120200	I/P: 100-240 Vac, 50-60 Hz, 0.6 A O/P: 12.0 Vdc, 2.0 A Cable: 1.46m cable w/o core

5. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

For 5180 ~ 5240 MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
42	5210

For 5745 ~ 5825 MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	161	5805
153	5765	165	5825
157	5785		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
155	5775

001	
3.2.1	Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To		Description		
Mode	RE≥1G	RE<1G	PLC	APCM	Description		
-	\checkmark	\checkmark	\checkmark	\checkmark	-		
			adiated Emission below 1 GHz itenna Port Conducted Measurement				

Note:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane**. 2. "-" means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations

between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	5180-5240	802.11ac (VHT80)	42	42	OFDM	BPSK	29.3
-	5745-5825	802.11a	149 to 165	157	OFDM	BPSK	6.0

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations

between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	5180-5240	802.11ac (VHT80)	42	42	OFDM	BPSK	29.3

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

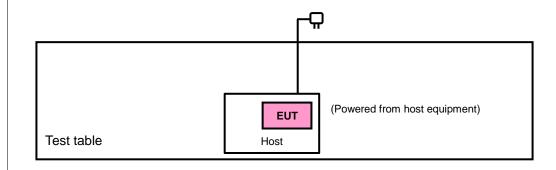
EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	5180-5240	802.11ac (VHT80)	42	42	OFDM	BPSK	29.3

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-		802.11a	36 to 48	36, 40, 48	OFDM	BPSK	6.0
-	5400 5040	802.11n (HT20)	36 to 48	36, 40, 48	OFDM	BPSK	6.5
-	5180-5240	802.11n (HT40)	38 to 46	38, 46	OFDM	BPSK	13.5
-		802.11ac (VHT80)	42	42	OFDM	BPSK	29.3
-		802.11a	149 to 165	149, 157, 165	OFDM	BPSK	6.0
-	5745 5005	802.11n (HT20)	149 to 165	149, 157, 165	OFDM	BPSK	6.5
-	5745-5825	802.11n (HT40)	151 to 159	151, 159	OFDM	BPSK	13.5
-		802.11ac (VHT80)	155	155	OFDM	BPSK	29.3


Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Jisyong Wang
APCM	25 deg. C, 65 % RH	120 Vac, 60 Hz	Gavin Wu

3.3 Description of Support Units

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Арј	olicab	le To	Limit			
789033 D02 Gene	eral UN	III Test Procedures	Field Strength at 3 m			
New Rules v02r01			PK: 74 (dBµV/m)	AV: 54 (dBµV/m)		
Frequency Band	Applicable To		EIRP Limit	Equivalent Field Strength at 3 m		
5150~5250 MHz		15.407(b)(1)				
5250~5350 MHz	15.407(b)(2)		PK: -27 (dBm/MHz)	PK: 68.2 (dBμV/m)		
5470~5725 MHz	15.407(b)(3)					
			PK:-27 (dBm/MHz) *1	PK: 68.2 (dBµV/m) *1		
	\square	4E 407(b)(4)(i)	PK:10 (dBm/MHz) *2	PK:105.2 (dBµV/m) *2		
5725~5850 MHz		15.407(b)(4)(i)	PK:15.6 (dBm/MHz) *3	PK: 110.8 (dBµV/m) *3		
			PK:27 (dBm/MHz) *4	PK:122.2 (dBµV/m) *4		
		15.407(b)(4)(ii)	Emission limits in section 15.247(d)			

^{*1} beyond 75 MHz or more above of the band edge.

 $^{\rm *2}$ below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

 $^{\rm *4}$ from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, w

V/m, where P is the eirp (Watts).

4.1.3 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Aug. 26, 2019	Aug. 25, 2020
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 15, 2019	Apr. 14, 2020
HORN Antenna ETS-Lindgren	3117	00143293	Nov. 24, 2019	Nov. 23, 2020
BILOG Antenna SCHWARZBECK	VULB 9168	9168-616	Nov. 12, 2019	Nov. 11, 2020
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Nov. 24, 2019	Nov. 23, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020
Loop Antenna	EM-6879	269	Sep. 16, 2019	Sep. 15, 2020
Preamplifier Agilent	310N	187226	Jun. 18, 2019	Jun. 17, 2020
Preamplifier Agilent	83017A	MY39501357	Jun. 18, 2019	Jun. 17, 2020
Preamplifier EMCI	EMC 184045	980116	Oct. 12, 2018	Oct. 11, 2019
Power Meter Anritsu	ML2495A	1012010	Sep. 04, 2019	Sep. 03, 2020
Power Sensor Anritsu	MA2411B	1315050	Sep. 04, 2019	Sep. 03, 2020
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1- 01(RFC-SMS-100- SMS-120+RFC- SMS-100-SMS- 400)	Jun. 18, 2019	Jun. 17, 2020
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1- 02(RFC-SMS-100- SMS-24)	Jun. 18, 2019	Jun. 17, 2020
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HsinTien Chamber 1.

4.1.4 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

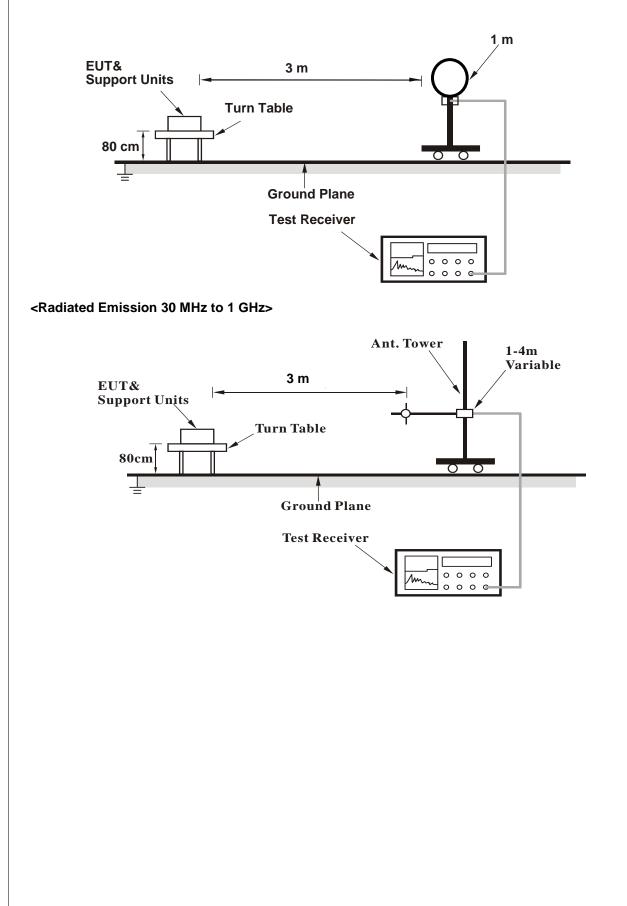
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

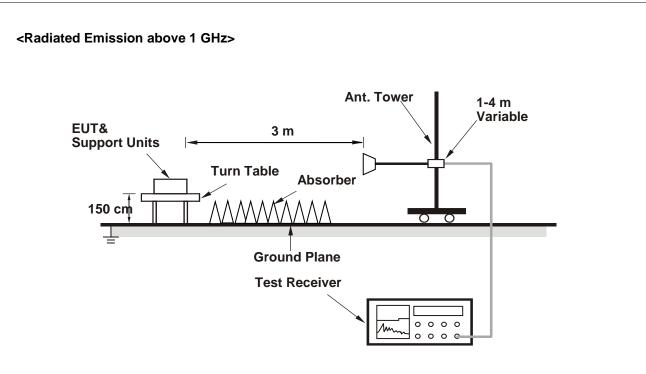
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasipeak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz. (11a: RBW = 1 MHz, VBW = 1 kHz ; 11ac (VHT80): RBW = 1 MHz, VBW = 3 kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.5 Deviation from Test Standard

No deviation.



4.1.6 Test Setup

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.7 EUT Operating Conditions
- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.1.8 Test Results

Above 1 GHz Data :

802.11a

Channel	Channel 157	Frequency Range	1 GHz ~ 40 GHz
Input Power	120 Vac, 60 Hz	Detector Flinction	Peak (PK) Average (AV)
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee

<Spurious Emission>

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
5785	107.12	96.31	10.81			243	247	Average	
5785	114.3	103.49	10.81			243	247	Peak	
11570	47.31	30.82	16.49	54	-6.69	193	134	Average	
11570	57.28	40.79	16.49	74	-16.72	193	134	Peak	
		Antenn	a Polarity 8	Test Dista	nce: Vertica	l at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
5785	101.56	90.75	10.81			243	247	Average	
5785	109.01	98.2	10.81			224	145	Peak	
11570	47.36	30.87	16.49	54	-6.64	134	128	Average	
11570	57.04	40.55	16.49	74	-16.96	134	128	Peak	

<Out of Band Emission (OOBE)>

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
*5563	56.69	46.01	10.68	68.2	-11.51	243	247	Peak	
5655.925	54.84	43.97	10.87	72.58	-17.74	243	247	Peak	
5922.1	53.65	42.54	11.11	70.35	-16.7	243	247	Peak	
*5999.8	55.29	43.96	11.33	68.2	-12.91	243	247	Peak	
		Antenn	a Polarity &	Test Dista	nce: Vertica	l at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
*5645.95	53.67	42.82	10.85	68.2	-14.53	224	145	Peak	
5654.875	51.24	40.37	10.87	71.81	-20.57	224	145	Peak	
5915.275	52.15	41.06	11.09	75.4	-23.25	224	145	Peak	
*6007.15	53.27	41.92	11.35	68.2	-14.93	224	145	Peak	

Remarks:

- 1. Emission Level = Read Level + Factor Margin value = Emission level – Limit value
- 2. 5785 MHz: Fundamental Frequency
- 3. *: Out of Restricted Band
- 4. The emission levels of other frequencies were very low against the limit

802.11ac (VHT80)

EUT Test Condition		Measurement Detail			
Channel	Channel 42	Frequency Range	1 GHz ~ 40 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee		

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
5150	53.19	43.14	10.05	54	-0.81	243	232	Average		
5150	62.84	52.79	10.05	74	-11.16	243	232	Peak		
5210	92.02	81.85	10.17			113	232	Average		
5210	98.95	88.78	10.17			113	232	Peak		
5350	44.21	33.87	10.34	54	-9.79	243	232	Average		
5350	53.8	43.46	10.34	74	-20.2	243	232	Peak		
*10420	56.2	40.04	16.16	68.2	-12	138	59	Peak		

Antenna Polarity & Test Distance: Vertical at 3 m

Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
5150	51.35	41.3	10.05	54	-2.65	104	226	Average
5150	60.25	50.2	10.05	74	-13.75	104	226	Peak
5210	90.11	79.95	10.16			104	226	Average
5210	98.71	88.55	10.16			104	226	Peak
5350	43.89	33.55	10.34	54	-10.11	104	226	Average
5350	53.01	42.67	10.34	74	-20.99	104	226	Peak
*10420	55.66	39.5	16.16	68.2	-12.54	155	273	Peak

Remarks:

 Emission Level = Read Level + Factor Margin value = Emission level – Limit value

- 2. 5210 MHz: Fundamental Frequency
- 3. *: Out of Restricted Band
- 4. The emission levels of other frequencies were very low against the limit

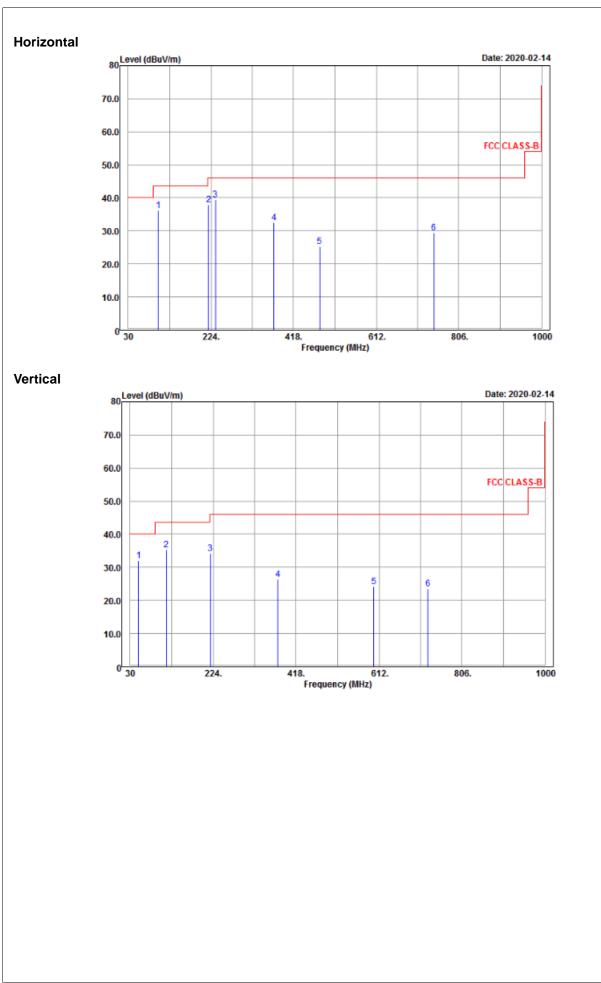
9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz Worst-Case Data:

802.11ac (VHT80)

EUT Test Condition		Measurement Detail			
Channel	Channel 42	Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee		


	Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
100.74	36.23	53.41	-17.18	43.5	-7.27	174	100	Peak	
218.46	37.82	55.72	-17.9	46	-8.18	124	252	Peak	
234.93	39.43	56.69	-17.26	46	-6.57	135	25	Peak	
372.1	32.42	46.78	-14.36	46	-13.58	177	174	Peak	
479.2	25.24	37.96	-12.72	46	-20.76	105	25	Peak	
747.3	29.33	37.87	-8.54	46	-16.67	143	250	Peak	
		Antenn	a Polarity &	Test Dista	nce: Vertica	l at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
49.98	31.96	47.12	-15.16	40	-8.04	149	282	Peak	
115.05	35.22	53.5	-18.28	43.5	-8.28	104	44	Peak	
217.65	34.28	52.2	-17.92	46	-11.72	152	22	Peak	
375.6	26.47	40.79	-14.32	46	-19.53	157	14	Peak	
599.6	24.29	34.86	-10.57	46	-21.71	199	353	Peak	
726.3	23.55	32.25	-8.7	46	-22.45	162	256	Peak	

Remarks:

1. Emission Level = Read Level + Factor

Margin value = Emission level – Limit value

2. The emission levels of other frequencies were very low against the limit

4.2 Conducted Emission Measurement

	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-Peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

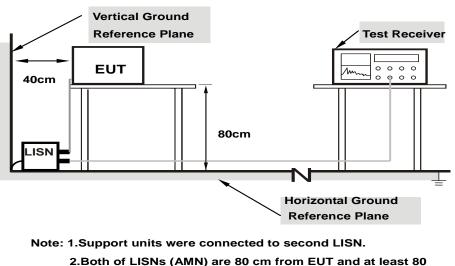
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESR3	102412	Feb. 14, 2019	Feb. 13, 2020
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 05, 2019	Sep. 04, 2020
LISN/AMN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Feb. 11, 2019	Feb. 10, 2020
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Aug. 13, 2019	Aug. 12, 2020
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-12047.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit -20 dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

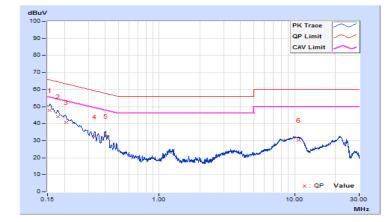
4.2.5 Test Setup

from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

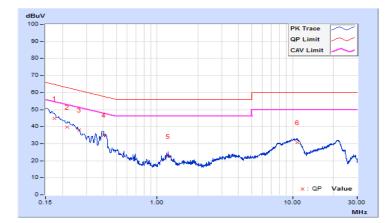

4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang	Test Date	2020/1/12

	Phase Of Power : Line (L)											
	Frequency Correction Reading Value		Emissic	Emission Level		nit	Margin					
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15674	10.11	37.81	31.20	47.92	41.31	65.63	55.63	-17.71	-14.32		
2	0.17838	10.12	34.04	30.53	44.16	40.65	64.56	54.56	-20.40	-13.91		
3	0.20625	10.12	30.57	26.26	40.69	36.38	63.35	53.35	-22.66	-16.97		
4	0.33440	10.15	22.08	20.57	32.23	30.72	59.34	49.34	-27.11	-18.62		
5	0.40200	10.16	22.65	20.16	32.81	30.32	57.81	47.81	-25.00	-17.49		
6	10.70250	10.44	19.85	13.44	30.29	23.88	60.00	50.00	-29.71	-26.12		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz		Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang	Test Date	2020/1/12

	Phase Of Power : Neutral (N)											
	Frequency Correction Reading Value		•	Emission Level			nit	Margin				
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.17374	10.17	34.72	30.06	44.89	40.23	64.78	54.78	-19.89	-14.55		
2	0.21688	10.18	29.69	22.41	39.87	32.59	62.94	52.94	-23.07	-20.35		
3	0.26475	10.19	27.82	23.77	38.01	33.96	61.28	51.28	-23.27	-17.32		
4	0.40200	10.22	24.78	20.03	35.00	30.25	57.81	47.81	-22.81	-17.56		
5	1.20525	10.29	12.27	10.29	22.56	20.58	56.00	46.00	-33.44	-25.42		
6	10.79250	10.57	19.97	15.50	30.54	26.07	60.00	50.00	-29.46	-23.93		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

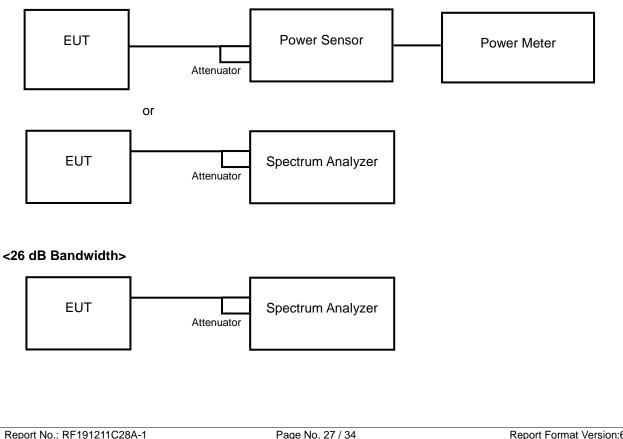
4.3 **Transmit Power Measurement**

4.3.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit		
U-NII-1		Outdoor Access Point	$\begin{array}{ll} 1 \mbox{ Watt (30 dBm)} \\ (Max. \mbox{ e.i.r.p} \leq \ 125 \mbox{ mW (21 dBm) at any elevation} \\ \mbox{ angle above 30 degrees as measured from the} \\ \mbox{ horizon)} \end{array}$		
0-111-1	Fixed point-to-point Access Point		1 Watt (30 dBm)		
	Indoor Access Point		1 Watt (30 dBm)		
	\checkmark	Mobile and Portable client device	250 mW (24 dBm)		
U-NII-2A			250 mW (24 dBm) or 11 dBm + 10 log B*		
U-NII-2C			250 mW (24 dBm) or 11 dBm + 10 log B*		
U-NII-3	\checkmark		1 Watt (30 dBm)		

*B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,


Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20 MHz channel widths with $N_{ANT} \ge 5$. For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

4.3.2 Test Setup

<Power Output Measurement>

4.3.3 Test Instruments

Refer to section 4.1.3 to get information of above instrument.

4.3.4 Test Procedure

Average Power Measurement

<802.11a, 802.11n (HT20), 802.11n (HT40)>

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

<802.11ac (VHT80)>

- a. Set span to encompass the entire 26 dB EBW (or, alternatively, the entire 99 % occupied bandwidth) of the signal.
- b. Set sweep trigger to "free run".
- c. Set RBW = 1 MHz.
- d. Set VBW ≥ 3 MHz
- e. Number of points in sweep \geq 2 Span / RBW.
- f. Sweep time ≤ (number of points in sweep) * T
- g. Using emission bandwidth to determine the frequency span for integration the channel bandwidth.
- h. Detector = RMS.
- i. Trace mode = max hold.
- j. Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.
- k. Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum

26 dB Bandwidth

- a. Set RBW = approximately 1 % of the emission bandwidth.
- b. Set the VBW > RBW.
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

Power Output:

802.11a

Channel	Frequency (MHz)			Power Limit (dBm)	Pass / Fail
36	5180	92.683	19.67	24	Pass
40	5200	95.060	19.78	24	Pass
48	5240	100.000	20.00	24	Pass
149	5745	103.276	20.14	30	Pass
157	5785	117.490	20.70	30	Pass
165	5825	109.144	20.38	30	Pass

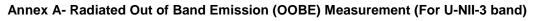
802.11n (HT20)

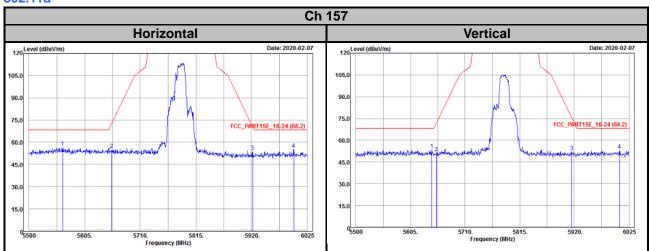
Channel	Frequency	Maximum Conducted Power (dBm)		Total Power	Total Power	Power Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	
36	5180	15.93	18.60	111.686	20.48	24	Pass
40	5200	15.43	18.31	102.565	20.11	24	Pass
48	5240	16.28	18.95	121.060	20.83	24	Pass
149	5745	19.01	21.07	207.491	23.17	30	Pass
157	5785	19.94	22.36	271.019	24.33	30	Pass
165	5825	18.25	20.69	184.077	22.65	30	Pass

802.11n (HT40)

Channel	Frequency	Frequency (MHz) Maximum Conducted Power (dBm)		Total Power	Total Power	Power Limit	Pass / Fail	
	(11172)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)		
38	5190	11.16	12.42	30.549	14.85	24	Pass	
46	5230	17.49	19.64	148.252	21.71	24	Pass	
151	5755	16.54	18.66	118.577	20.74	30	Pass	
159	5795	18.22	20.99	191.867	22.83	30	Pass	

802.11ac (VHT80)


Channel	Frequency (MHz)	Maximum Conducted Power (dBm)		Total Power	Total Power	Power Limit	Pass / Fail	
	(11172)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)		
42	5210	9.52	10.57	20.370	13.09	24	Pass	
155	5775	11.79	14.32	42.170	16.25	30	Pass	


5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

802.11a

Annex B- Band-edge measurement <Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

EUT Operating Conditions

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

802.11ac (VHT80) Ch 42 Horizontal Vertical 120 Level (dBuV/m) Date: 2020-03-05 Date: 2020-03-05 120 Level (dBuV/m) 105.0 05.0 haddred 90.0 90.0 75.0 75.0 PART 15E PART 15E 60.0 60.0 WHOW WHEN ANN 4. 2 abyhasi approved by 45.0 45.0 30. 30.0 15.0 15.0 0<mark>4500</mark> ⁰4500 4884. 5076. Frequency (MHz) 4884. 5076. Frequency (MHz) 4692. 5268. 5460 4692. 5268. 5460 120 Level (dBuV/m) Date: 2020-03-05 Date: 2020-03-05 120 Level (dBuV/m) 105.0 105.0 90.0 90.0 75.0 75.0 60.0 60.0 PART 15E_AVG PART 15E_AVG 45.0 45.0 30.0 30.0 15.0 15.0 04500 04500 4884. 5076. Frequency (MHz) 4884. 5076. Frequency (MHz) 4692. 5268. 5460 4692. 5268. 5460

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----