

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1605RSU00202 Report Version: Issue Date: 05-31-2016

RF Exposure Evaluation Declaration

FCC ID: TK4-10-WLE200NX

APPLICANT: Compex Systems Pte Ltd

Application Type: Certification

Product: Wireless-A/B/G/N Network Mini PCIe Adapter

WLE200NX, WLE200NX-I Model No.:

Brand Name: COMPEX

FCC Classification: Unlicensed National Information Infrastructure (UNII)

Reviewed By : Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: TK4-10-WLE200NX Page Number: 1 of 5

Revision History

Report No.	Version	Description	Issue Date
1605RSU02002	Rev. 01	Initial report	05-31-2016

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Wireless-A/B/G/N Network Mini PCIe Adapter	
Model No.	WLE200NX, WLE200NX-I	
Frequency Range	For 5.0GHz Band:	
	802.11a/n:	
	5150 ~ 5350MHz	
	5470 ~ 5725MHz	
	5725 ~ 5850MHz	
Type of Modulation	802.11b: DSSS	
	802.11g/a/n: OFDM	

1.2. Antenna Description

Antenna Type	Frequency Band	Max	Directional Gain	
	(MHz)	Peak Gain (dBi)	(dBi)	
			For Power	For PSD
			Measurement	Measurement
Dipole Antenna	5150 ~ 5850	2	2	5.01

Note: The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

For CDD transmissions, directional gain is calculated as follows, $N_{ANT} = 2$, $N_{SS} = 1$.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

• For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log (N_{ANT}/N_{SS}) dB = 3.01;

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB for $N_{ANT} \le 4$;

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			f/1500	6
1500-100,000			1	30

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Result of RF Exposure Evaluation

Product	Wireless-A/B/G/N Network Mini PCIe Adapter	
Test Item	RF Exposure Evaluation	

Antenna Gain: Refer to Clause 1.2 of antenna description.

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
802.11a/n	5180 ~ 5240 5260 ~ 5320 5500 ~ 5720 5745 ~ 5825	22.27	0.0532	1

CONCULISON:

The Max Power Density at R (20 cm) = 0.0532mW/cm² < 1mW/cm². So the EUT complies with the requirement.