

# **RADIO TEST REPORT**

S T S

# Report No:STS1908261W01

Issued for

Hopkins Manufacturing Corporation

428 Peyton, #2, 1157, Emporia, Kansas 66801, United States

| Product Name:         | WIRELESS MANAGEMENT SYSTEM<br>FOR SMARTPHONES |
|-----------------------|-----------------------------------------------|
| Brand Name:           | BLAZER INTERNATIONAL                          |
| Model Name: CWL623HCO |                                               |
| Series Model:         | N/A                                           |
| FCC ID:               | TJJCWL623HCO                                  |
| IC:                   | 6047A-CWL623HCO                               |
|                       | FCC Part 15.247                               |
| Test Standard:        | RSS-247 Issue 2, February 2017                |
|                       |                                               |

Any reproduction of this document must be done in full. No single part of this document may be reproduced w permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com



Report No.: STS1908261W01

# **TEST RESULT CERTIFICATION**

| Applicant's Name    | Hopkins Manufacturing Corporation                             |
|---------------------|---------------------------------------------------------------|
| Address             | 428 Peyton,#2,1157,Emporia,Kansas 66801,United States         |
| Manufacture's Name  | CZM lighting technology co. LTD                               |
| Address             | No.15, Fuyi Road, Xiaolan, Zhongshan, Guangdong, China 528415 |
| Product Description |                                                               |
| Product Name:       | WIRELESS MANAGEMENT SYSTEM FOR SMARTPHONES                    |
| Brand Name:         | BLAZER INTERNATIONAL                                          |
| Model Name          | CWL623HCO                                                     |
| Series Model        | N/A                                                           |
| Test Standards      | FCC Part15.247 ;RSS-247 Issue 2, February 2017                |
|                     | RSS-Gen Issue 5 March 2019 Amendment 1                        |
| Test Procedure      | ANSI C63.10-2013                                              |

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC/IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test .....

| Test Result                      | Pass                        |
|----------------------------------|-----------------------------|
| Date of Issue                    | 03 Sept. 2019               |
| Date (s) of performance of tests | 21 Aug. 2019 ~ 30 Aug. 2019 |

Testing Engineer

(Chris Chen)

Technical Manager :

tay fu

(Sunday Hu)



Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Report No.: STS1908261W01



# **Table of Contents**

Page 3 of 45

| 1. SUMMARY OF TEST RESULTS                                  | 6  |
|-------------------------------------------------------------|----|
| 1.1 TEST FACTORY                                            | 7  |
| 1.2 MEASUREMENT UNCERTAINTY                                 | 7  |
| 2. GENERAL INFORMATION                                      | 8  |
| 2.1 GENERAL DESCRIPTION OF THE EUT                          | 8  |
| 2.2 DESCRIPTION OF THE TEST MODES                           | 10 |
| 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 11 |
| 2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS  | 12 |
| 2.5 EQUIPMENTS LIST                                         | 13 |
| 3. EMC EMISSION TEST                                        | 14 |
| 3.1 CONDUCTED EMISSION MEASUREMENT                          | 14 |
| 3.2 TEST PROCEDURE                                          | 15 |
| 3.3 TEST SETUP                                              | 15 |
| 3.4 EUT OPERATING CONDITIONS                                | 15 |
| 3.5 TEST RESULTS                                            | 16 |
| 4. RADIATED EMISSION MEASUREMENT                            | 18 |
| 4.1 RADIATED EMISSION LIMITS                                | 18 |
| 4.2 TEST PROCEDURE                                          | 19 |
| 4.3 TEST SETUP                                              | 20 |
| 4.4 EUT OPERATING CONDITIONS                                | 20 |
| 4.5 FIELD STRENGTH CALCULATION                              | 21 |
| 4.6 TEST RESULTS                                            | 22 |
| 5. CONDUCTED SPURIOUS & BAND EDGE EMISSION                  | 29 |
| 5.1 LIMIT                                                   | 29 |
| 5.2 TEST PROCEDURE                                          | 29 |
| 5.3 TEST SETUP                                              | 29 |
| 5.4 EUT OPERATION CONDITIONS                                | 29 |
| 5.5 TEST RESULTS                                            | 30 |
| 6. POWER SPECTRAL DENSITY TEST                              | 33 |
| 6.1 LIMIT                                                   | 33 |
| 6.2 TEST PROCEDURE                                          | 33 |
| 6.3 TEST SETUP                                              | 33 |
| 6.4 EUT OPERATION CONDITIONS                                | 33 |

=

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 4 of 45 Report No.: STS1908261W01



#### **Table of Contents**

| 6.5 TEST RESULTS                               | 34 |
|------------------------------------------------|----|
| 7. BANDWIDTH TEST                              | 36 |
| 7.1 LIMIT                                      | 36 |
| 7.2 TEST PROCEDURE                             | 36 |
| 7.3 TEST SETUP                                 | 36 |
| 7.4 EUT OPERATION CONDITIONS                   | 36 |
| 7.5 TEST RESULTS                               | 37 |
| 8. PEAK OUTPUT POWER TEST                      | 41 |
| 8.1 LIMIT                                      | 41 |
| 8.2 TEST PROCEDURE                             | 41 |
| 8.3 TEST SETUP                                 | 41 |
| 8.4 EUT OPERATION CONDITIONS                   | 41 |
| 8.5 TEST RESULTS                               | 42 |
| 9. ANTENNA REQUIREMENT                         | 43 |
| 9.1 STANDARD REQUIREMENT                       | 43 |
| 9.2 EUT ANTENNA                                | 43 |
| 10. FREQUENCY STABILITY                        | 44 |
| 10.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT | 44 |
| 10.2 TEST PROCEDURE                            | 44 |
| 10.3 TEST RESULT                               | 44 |
| 11. EUT TEST PHOTO                             | 45 |

=



Page 5 of 45

Report No.: STS1908261W01

# **Revision History**

| Rev. | Issue Date    | Report NO.    | Effect Page | Contents      |
|------|---------------|---------------|-------------|---------------|
| 00   | 03 Sept. 2019 | STS1908261W01 | ALL         | Initial Issue |
|      |               |               |             |               |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

| FCC Part 15.247,Subpart C<br>RSS-247 Issue 2                   |                                            |          |        |  |  |
|----------------------------------------------------------------|--------------------------------------------|----------|--------|--|--|
| Standard<br>Section                                            | Test Item                                  | Judgment | Remark |  |  |
| 15.207<br>RSS-Gen 8.8                                          | Conducted Emission                         | PASS     |        |  |  |
| 15.247 (a)(2)<br>RSS-247 5.2a)                                 | 6dB Bandwidth                              | PASS     |        |  |  |
| RSS-Gen 6.7                                                    | 99% Bandwidth                              | PASS     |        |  |  |
| 15.247 (b)(3)<br>RSS-247 5.4 d)                                | Output Power                               | PASS     |        |  |  |
| 15.209 15.205<br>RSS-Gen 8.9 8.10                              | Radiated Spurious Emission                 | PASS     |        |  |  |
| 15.247 (d)<br>RSS-247 5.5                                      | Conducted Spurious & Band Edge<br>Emission | PASS     |        |  |  |
| 15.247 (e)<br>RSS-247 5.2 b)                                   | Power Spectral Density                     | PASS     |        |  |  |
| 15.209 15.205<br>RSS-Gen 8.9 8.10                              | Restricted Band Edge Emission              | PASS     |        |  |  |
| 15.247 (d)<br>RSS-247 5.5<br>15.209 15.205<br>RSS-Gen 8.9 8.10 | Band Edge Emission                         | PASS     |        |  |  |
| 15.203<br>RSS-Gen 6.8                                          | Antenna Requirement                        | PASS     |        |  |  |
| RSS-Gen 8.11                                                   | Frequency Stability                        | PASS     |        |  |  |

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Page 7 of 45 Report No.: STS1908261W01



#### 1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District,Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

#### **1.2 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | RF output power, conducted          | ±0.71dB     |
| 2   | Unwanted Emissions, conducted       | ±0.63dB     |
| 3   | All emissions, radiated 30-200MHz   | ±3.43dB     |
| 4   | All emissions, radiated 200MHz-1GHz | ±3.57dB     |
| 5   | All emissions, radiated>1G          | ±4.13dB     |
| 6   | Conducted Emission (9KHz-150KHz)    | ±3.18dB     |
| 7   | Conducted Emission (150KHz-30MHz)   | ±2.70dB     |

Shenzhen STS Test Services Co., Ltd.



# 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF THE EUT

| Product Name                                    | WIRELESS MANAG              | GEMENT SYSTEM FOR         |  |
|-------------------------------------------------|-----------------------------|---------------------------|--|
| Brand Name                                      | BLAZER INTERNATIONAL        |                           |  |
| Model Name                                      | CWL623HCO                   |                           |  |
| Series Model                                    | N/A                         |                           |  |
| Model Difference                                | N/A.                        |                           |  |
|                                                 | The EUT is a WIREL          | ESS MANAGEMENT SYSTEM FOR |  |
|                                                 | Operation<br>Frequency:     | 2402~2480 MHz             |  |
|                                                 | Modulation Type:            | GFSK                      |  |
|                                                 | Radio Technology:           | BLE                       |  |
|                                                 | Bluetooth Version:          | 4.2                       |  |
| Product Description                             | Bluetooth                   |                           |  |
|                                                 | Configuration:              | LE                        |  |
|                                                 | Number Of<br>Channel:       | 40                        |  |
|                                                 | Antenna<br>Designation:     | Please see Note 3.        |  |
|                                                 | Antenna Gain (dBi)          | 0 dBi                     |  |
| Channel List                                    | Please refer to the N       | Note 2.                   |  |
| Adapter                                         | Input: DC 12V               |                           |  |
| Hardware version number                         | CZM003                      |                           |  |
| Software version number                         | SV003                       |                           |  |
| Radio Hardware version                          | MPLY.LR9.W1444,N            | MD.LWTG.MP.V79.P4         |  |
| Radio Software version                          | SC6531_W13.04.05_Release    |                           |  |
| Test Software                                   | 3.18.19                     |                           |  |
| RF Power Setting TEST<br>Software (power class) | (1)2.4 GHz:GFSK(1Mbps):-6.5 |                           |  |
| Connecting I/O Port(s)                          | Please refer to the U       | Jser's Manual             |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.



| 2. |              |                    |         |                    |         |                    |         |                     |
|----|--------------|--------------------|---------|--------------------|---------|--------------------|---------|---------------------|
|    | Channel List |                    |         |                    |         |                    |         |                     |
|    | Channel      | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequenc<br>y (MHz) |
|    | 00           | 2402               | 10      | 2422               | 20      | 2442               | 30      | 2462                |
|    | 01           | 2404               | 11      | 2424               | 21      | 2444               | 31      | 2464                |
|    | 02           | 2406               | 12      | 2426               | 22      | 2446               | 32      | 2466                |
|    | 03           | 2408               | 13      | 2428               | 23      | 2448               | 33      | 2468                |
|    | 04           | 2410               | 14      | 2430               | 24      | 2450               | 34      | 2470                |
|    | 05           | 2412               | 15      | 2432               | 25      | 2452               | 35      | 2472                |
|    | 06           | 2414               | 16      | 2434               | 26      | 2454               | 36      | 2474                |
|    | 07           | 2416               | 17      | 2436               | 27      | 2456               | 37      | 2476                |
|    | 08           | 2418               | 18      | 2438               | 28      | 2458               | 38      | 2478                |
|    | 09           | 2420               | 19      | 2440               | 29      | 2460               | 39      | 2480                |

#### 3.

#### Table for Filed Antenna

| Ant. | Brand                   | Model Name | Antenna Type | Connector | Gain (dBi) | NOTE     |
|------|-------------------------|------------|--------------|-----------|------------|----------|
| 1    | BLAZER<br>INTERNATIONAL | CWL623HCO  | Monopole     | N/A       | 0 dBi      | BLE ANT. |







# 2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

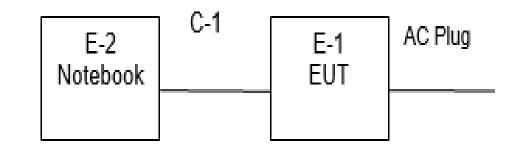
| Worst Mode | Description      | Data/Modulation |
|------------|------------------|-----------------|
| Mode 1     | TX CH00(2402MHz) | 1 MHz/GFSK      |
| Mode 2     | TX CH19(2440MHz) | 1 MHz/GFSK      |
| Mode 3     | TX CH39(2480MHz) | 1 MHz/GFSK      |

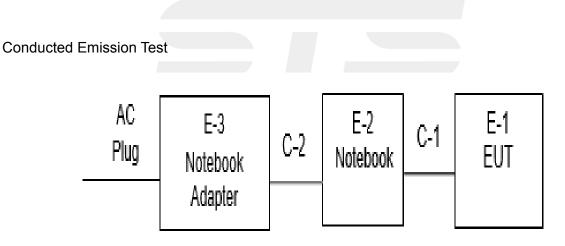
Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.


#### For AC Conducted Emission


|                          | Test Case              |
|--------------------------|------------------------|
| AC Conducted<br>Emission | Mode 4 : Keeping BT TX |



# 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test





Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### 2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

|      | Necessary accessories |                          |     |               |      |  |  |  |  |  |
|------|-----------------------|--------------------------|-----|---------------|------|--|--|--|--|--|
| Item | Equipment             | Mfr/Brand Model/Type No. |     | Serial<br>No. | Note |  |  |  |  |  |
| N/A  | N/A                   | N/A                      | N/A | N/A           | N/A  |  |  |  |  |  |
|      |                       |                          |     |               |      |  |  |  |  |  |
|      |                       |                          |     |               |      |  |  |  |  |  |
|      |                       |                          |     |               |      |  |  |  |  |  |

|      | Support units       |                          |       |               |      |  |  |  |  |
|------|---------------------|--------------------------|-------|---------------|------|--|--|--|--|
| Item | Equipment           | Mfr/Brand Model/Type No. |       | Serial<br>No. | Note |  |  |  |  |
| E-2  | Notebook            | LENOVO                   | N/A   | N/A           | N/A  |  |  |  |  |
| E-3  | Notebook<br>Adapter | LENOVO                   | N/A   | N/A           | N/A  |  |  |  |  |
| C-1  | DC Cable            | N/A                      | 100cm | N/A           | N/A  |  |  |  |  |
| C-2  | DC Cable            | N/A                      | 110cm | N/A           | N/A  |  |  |  |  |
|      |                     |                          |       |               |      |  |  |  |  |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <sup>r</sup>Length<sub>1</sub> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



# 2.5 EQUIPMENTS LIST

#### Radiation Test equipment

| Kind of Equipment                   | Manufacturer | Type No.                   | Serial No.       | Last calibration | Calibrated until |  |  |
|-------------------------------------|--------------|----------------------------|------------------|------------------|------------------|--|--|
| Test Receiver                       | R&S          | ESCI                       | 101427           | 2018.10.13       | 2019.10.12       |  |  |
| Signal Analyzer                     | Agilent      | N9020A                     | MY51110105       | 2019.03.02       | 2020.03.01       |  |  |
| Active loop Antenna                 | ZHINAN       | ZN30900C                   | 16035            | 2018.03.11       | 2021.03.10       |  |  |
| Bilog Antenna                       | TESEQ        | CBL6111D                   | 34678            | 2017.11.02       | 2020.11.1        |  |  |
| Horn Antenna                        | SCHWARZBECK  | BBHA<br>9120D(1201)        | 9120D-1343       | 2018.10.19       | 2021.10.18       |  |  |
| SHF-EHF Horn<br>Antenna (18G-40GHz) | A-INFO       | LB-180400-KF               | J211020657       | 2018.03.11       | 2021.03.10       |  |  |
| Pre-Amplifier(0.1M-3G<br>Hz)        | EM           | EM330                      | 060665           | 2018.10.13       | 2019.10.12       |  |  |
| Pre-Amplifier<br>(1G-18GHz)         | SKET         | LNPA-01018G-45             | SK201808090<br>1 | 2018.10.13       | 2019.10.12       |  |  |
| Temperature &<br>Humidity           | HH660        | Mieo                       | N/A              | 2018.10.11       | 2019.10.10       |  |  |
| turn table                          | EM           | SC100_1                    | 60531            | N/A              | N/A              |  |  |
| Antenna mast                        | EM           | SC100                      | N/A              | N/A              | N/A              |  |  |
| Test SW                             | FARAD        | EZ-EMC(Ver.STSLAB-03A1 RE) |                  |                  |                  |  |  |

# Conduction Test equipment

| Kind of Equipment         | Manufacturer | Type No.                       | Serial No. | Last calibration | Calibrated until |  |
|---------------------------|--------------|--------------------------------|------------|------------------|------------------|--|
| Test Receiver             | R&S          | ESCI                           | 101427     | 2018.10.13       | 2019.10.12       |  |
| LISN                      | R&S          | ENV216                         | 101242     | 2018.10.11       | 2019.10.10       |  |
| LISN                      | EMCO         | 3810/2NM                       | 23625      | 2018.10.11       | 2019.10.10       |  |
| Temperature &<br>Humidity | HH660        | Mieo N/A 2018.10.11 2019.10.10 |            |                  |                  |  |
| Test SW                   | FARAD        | EZ-EMC(Ver.STSLAB-03A1 CE)     |            |                  |                  |  |

### **RF** Connected Test

| Kind of Equipment         | Manufacturer | Type No.        | Serial No.    | Last calibration | Calibrated until |  |
|---------------------------|--------------|-----------------|---------------|------------------|------------------|--|
| USB RF power sensor       | DARE         | RPR3006W        | 15100041SNO03 | 2018.10.13       | 2019.10.12       |  |
| Signal Analyzer           | Agilent      | N9020A          | MY49100060    | 2018.10.13       | 2019.10.12       |  |
| Temperature &<br>Humidity | HH660        | Mieo            | N/A           | 2018.10.11       | 2019.10.10       |  |
| Test SW                   | FARAD        | LZ-RF /LzRf-3A3 |               |                  |                  |  |

Page 14 of 45



#### 3. EMC EMISSION TEST

# 3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

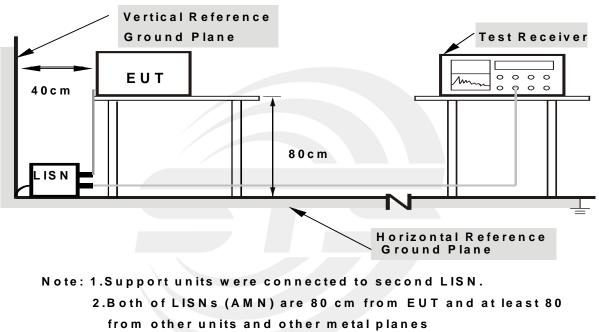
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) and RSS-Gen Issue 5 limit in the table below has to be followed.

| FREQUENCY (MHz)  | Conducted Emission limit (dBuV) |           |  |
|------------------|---------------------------------|-----------|--|
| FREQUENCT (MILZ) | Quasi-peak                      | Average   |  |
| 0.15 -0.5        | 66 - 56 *                       | 56 - 46 * |  |
| 0.50 -5.0        | 56.00                           | 46.00     |  |
| 5.0 -30.0        | 60.00                           | 50.00     |  |

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |



# 3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.



#### 3.3 TEST SETUP

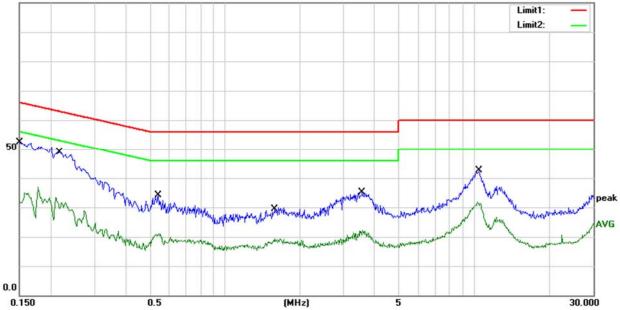
# 3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



3.5 TEST RESULTS

| Temperature:  | 26(C)        | Relative Humidity: | 60%RH |
|---------------|--------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz | Phase:             | L     |
| Test Mode:    | Mode 4       |                    |       |


| No. | Frequen<br>cy | Reading | Correct        | Result | Limit  | Margin | Remark |
|-----|---------------|---------|----------------|--------|--------|--------|--------|
|     | (MHz)         | (dBuV)  | Factor(d<br>B) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1500        | 32.50   | 19.76          | 52.26  | 66.00  | -13.74 | QP     |
| 2   | 0.1500        | 17.02   | 19.76          | 36.78  | 56.00  | -19.22 | AVG    |
| 3   | 0.2180        | 29.05   | 19.83          | 48.88  | 62.89  | -14.01 | QP     |
| 4   | 0.2180        | 16.95   | 19.83          | 36.78  | 52.89  | -16.11 | AVG    |
| 5   | 0.5420        | 14.26   | 19.95          | 34.21  | 56.00  | -21.79 | QP     |
| 6   | 0.5420        | 1.16    | 19.95          | 21.11  | 46.00  | -24.89 | AVG    |
| 7   | 1.5900        | 9.64    | 19.74          | 29.38  | 56.00  | -26.62 | QP     |
| 8   | 1.5900        | -0.30   | 19.74          | 19.44  | 46.00  | -26.56 | AVG    |
| 9   | 3.5500        | 15.27   | 19.76          | 35.03  | 56.00  | -20.97 | QP     |
| 10  | 3.5500        | 2.25    | 19.76          | 22.01  | 46.00  | -23.99 | AVG    |
| 11  | 10.4700       | 22.49   | 20.11          | 42.60  | 60.00  | -17.40 | QP     |
| 12  | 10.4700       | 6.45    | 20.11          | 26.56  | 50.00  | -23.44 | AVG    |

# Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor )-Limit

100.0 dBuV



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

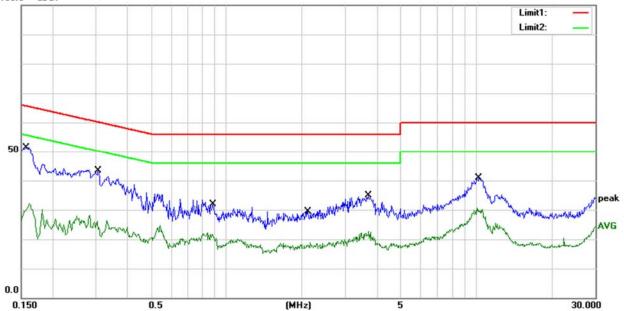
 Tel: + 86-755 3688 6288
 Fax: + 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 17 of 45 Report No.: STS1908261W01

| Temperature:  | 26(C)        | Relative Humidity: | 60%RH |
|---------------|--------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz | Phase:             | Ν     |
| Test Mode:    | Mode 4       |                    |       |


| No. | Frequen<br>cy | Reading | Correct        | Result | Limit  | Margin | Remark |
|-----|---------------|---------|----------------|--------|--------|--------|--------|
|     | (MHz)         | (dBuV)  | Factor(d<br>B) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1580        | 31.66   | 19.74          | 51.40  | 65.57  | -14.17 | QP     |
| 2   | 0.1580        | 7.23    | 19.74          | 26.97  | 55.57  | -28.60 | AVG    |
| 3   | 0.3060        | 23.10   | 20.23          | 43.33  | 60.08  | -16.75 | QP     |
| 4   | 0.3060        | 6.18    | 20.23          | 26.41  | 50.08  | -23.67 | AVG    |
| 5   | 0.8820        | 12.00   | 19.78          | 31.78  | 56.00  | -24.22 | QP     |
| 6   | 0.8820        | 1.83    | 19.78          | 21.61  | 46.00  | -24.39 | AVG    |
| 7   | 2.1180        | 9.66    | 19.82          | 29.48  | 56.00  | -26.52 | QP     |
| 8   | 2.1180        | -1.06   | 19.82          | 18.76  | 46.00  | -27.24 | AVG    |
| 9   | 3.6860        | 14.91   | 19.87          | 34.78  | 56.00  | -21.22 | QP     |
| 10  | 3.6860        | 2.71    | 19.87          | 22.58  | 46.00  | -23.42 | AVG    |
| 11  | 10.2460       | 20.94   | 19.84          | 40.78  | 60.00  | -19.22 | QP     |
| 12  | 10.2460       | 10.67   | 19.84          | 30.51  | 50.00  | -19.49 | AVG    |

# Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor )-Limit

100.0 dBuV



Page 18 of 45

# 4. RADIATED EMISSION MEASUREMENT

## 4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) and RSS-247 Issue 2 limit in the table and according to ANSI C63.10-2013 below has to be followed.

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

| Frequencies | Field Strength Measurement Dist |          |
|-------------|---------------------------------|----------|
| (MHz)       | (micorvolts/meter)              | (meters) |
| 0.009~0.490 | 2400/F(KHz)                     | 300      |
| 0.490~1.705 | 24000/F(KHz)                    | 30       |
| 1.705~30.0  | 30                              | 30       |
| 30~88       | 100                             | 3        |
| 88~216      | 150                             | 3        |
| 216~960     | 200                             | 3        |
| Above 960   | 500                             | 3        |

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | (dBuV/m) (at 3M) |         |  |
|-----------------|------------------|---------|--|
|                 | PEAK             | AVERAGE |  |
| Above 1000      | 74               | 54      |  |

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### For Radiated Emission

| Spectrum Parameter              | Setting                       |
|---------------------------------|-------------------------------|
| Attenuation                     | Auto                          |
| Detector                        | Peak/AV                       |
| Start Frequency                 | 1000 MHz(Peak/AV)             |
| Stop Frequency                  | 10th carrier hamonic(Peak/AV) |
| RB / VB (emission in restricted | 4 MUL / 2 MUL                 |
| band)                           | 1 MHz / 3 MHz                 |

#### For Band edge

| Spectrum Parameter                    | Setting                           |  |
|---------------------------------------|-----------------------------------|--|
| Detector                              | Peak/AV                           |  |
|                                       | Lower Band Edge: 2300 to 2403 MHz |  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 to 2500 MHz |  |
| RB / VB (emission in restricted band) | 1 MHz / 3 MHz                     |  |

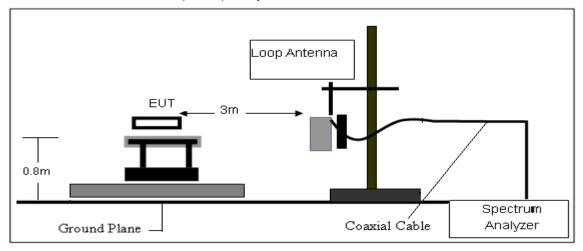
Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 19 of 45 Report No.: STS1908261W01

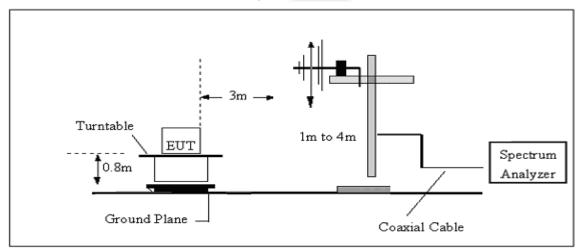


| Receiver Parameter     | Setting                                    |
|------------------------|--------------------------------------------|
| Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV          |
| Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP             |
| Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz/ 9kHz for PK & AV |
| Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP              |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP           |

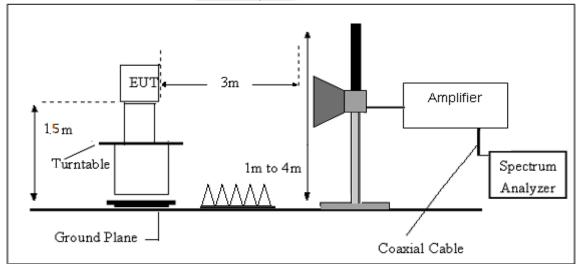
#### **4.2 TEST PROCEDURE**


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.




# 4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



(C) Radiated Emission Test-Up Frequency Above 1GHz



# 4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



## 4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain

AF = Antenna Factor

For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 4.6 TEST RESULTS

#### (Between 9KHz - 30 MHz)

| Temperature:  | 26.2(C) | Relative Humidtity: | 63%RH |
|---------------|---------|---------------------|-------|
| Test Voltage: | DC 12V  | Polarization:       |       |
| Test Mode:    | TX Mode |                     |       |

| Freq. | Reading  | Limit    | Margin | State |
|-------|----------|----------|--------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|       |          |          |        | PASS  |
|       |          |          |        | PASS  |

#### Note:

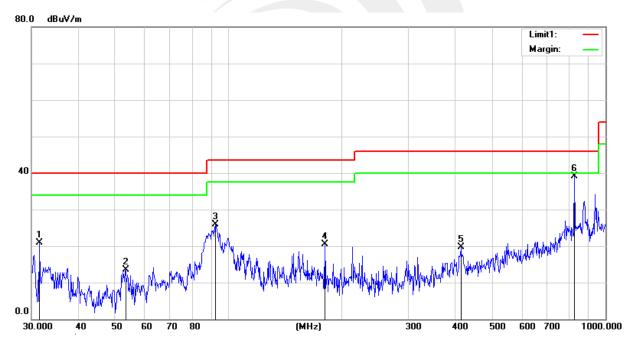
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.



Shenzhen STS Test Services Co., Ltd.




(30MHz -1000MHz)

| Temperature:  | 26.2(C)                        | Relative Humidity: | 63%RH      |  |
|---------------|--------------------------------|--------------------|------------|--|
| Test Voltage: | DC 12V                         | Phase:             | Horizontal |  |
| Test Mode:    | Mode 1/2/3 (Mode 1 worst mode) |                    |            |  |

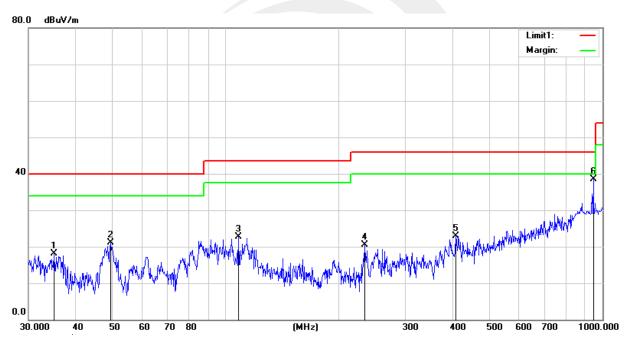
| No. | Frequenc<br>y | Reading | Correct          | Result   | Limit    | Margin | Remark |
|-----|---------------|---------|------------------|----------|----------|--------|--------|
|     | (MHz)         | (dBuV)  | Factor(dB/<br>m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 31.5094       | 34.55   | -13.63           | 20.92    | 40.00    | -19.08 | QP     |
| 2   | 53.3180       | 37.90   | -24.48           | 13.42    | 40.00    | -26.58 | QP     |
| 3   | 92.1388       | 47.03   | -21.19           | 25.84    | 43.50    | -17.66 | QP     |
| 4   | 180.0165      | 40.43   | -20.01           | 20.42    | 43.50    | -23.08 | QP     |
| 5   | 413.2706      | 30.04   | -10.41           | 19.63    | 46.00    | -26.37 | QP     |
| 6   | 827.4933      | 40.12   | -1.06            | 39.06    | 46.00    | -6.94  | QP     |

Remark:

1. Margin = Result (Result = Reading + Factor )-Limit






Page 24 of 45 Report No.: STS1908261W01

| Temperature:  | 26.2(C)                        | Relative Humidity: | 63%RH    |  |
|---------------|--------------------------------|--------------------|----------|--|
| Test Voltage: | DC 12V                         | Phase:             | Vertical |  |
| Test Mode:    | Mode 1/2/3 (Mode 1 worst mode) |                    |          |  |

| No. | Frequenc<br>y | Reading | Correct          | Result   | Limit    | Margin | Remark |
|-----|---------------|---------|------------------|----------|----------|--------|--------|
|     | (MHz)         | (dBuV)  | Factor(dB/<br>m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 35.0048       | 33.55   | -15.43           | 18.12    | 40.00    | -21.88 | QP     |
| 2   | 49.5328       | 44.21   | -23.02           | 21.19    | 40.00    | -18.81 | QP     |
| 3   | 108.2667      | 41.94   | -19.26           | 22.68    | 43.50    | -20.82 | QP     |
| 4   | 234.1683      | 39.34   | -18.77           | 20.57    | 46.00    | -25.43 | QP     |
| 5   | 407.5144      | 33.68   | -10.70           | 22.98    | 46.00    | -23.02 | QP     |
| 6   | 945.4398      | 36.97   | 1.50             | 38.47    | 46.00    | -7.53  | QP     |

#### Remark:

1. Margin = Result (Result = Reading + Factor )-Limit





Page 25 of 45

Report No.: STS1908261W01

# (1GHz-25GHz)Restricted band and Spurious emission Requirements

| , ,                    | 0 0 1 12)        |           |       |                   | GFSK               | •                 |          |        |          |            |
|------------------------|------------------|-----------|-------|-------------------|--------------------|-------------------|----------|--------|----------|------------|
| Frequency              | Meter<br>Reading | Amplifier | Loss  | Antenna<br>Factor | Orrected<br>Factor | Emission<br>Level | Limits   | Margin | Detector | Comment    |
| (MHz)                  | (dBµV)           | (dB)      | (dB)  | (dB/m)            | (dB)               | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     | Common     |
| Low Channel (2402 MHz) |                  |           |       |                   |                    |                   |          |        |          |            |
| 3264.62                | 61.62            | 44.70     | 6.70  | 28.20             | -9.80              | 51.82             | 74.00    | -22.18 | PK       | Vertical   |
| 3264.62                | 49.94            | 44.70     | 6.70  | 28.20             | -9.80              | 40.14             | 54.00    | -13.86 | AV       | Vertical   |
| 3264.69                | 61.37            | 44.70     | 6.70  | 28.20             | -9.80              | 51.57             | 74.00    | -22.43 | PK       | Horizontal |
| 3264.69                | 49.91            | 44.70     | 6.70  | 28.20             | -9.80              | 40.11             | 54.00    | -13.89 | AV       | Horizontal |
| 4804.54                | 58.38            | 44.20     | 9.04  | 31.60             | -3.56              | 54.82             | 74.00    | -19.18 | PK       | Vertical   |
| 4804.54                | 49.93            | 44.20     | 9.04  | 31.60             | -3.56              | 46.37             | 54.00    | -7.63  | AV       | Vertical   |
| 4804.36                | 59.06            | 44.20     | 9.04  | 31.60             | -3.56              | 55.50             | 74.00    | -18.50 | PK       | Horizontal |
| 4804.36                | 49.31            | 44.20     | 9.04  | 31.60             | -3.56              | 45.75             | 54.00    | -8.25  | AV       | Horizontal |
| 5359.71                | 49.17            | 44.20     | 9.86  | 32.00             | -2.34              | 46.83             | 74.00    | -27.17 | PK       | Vertical   |
| 5359.71                | 39.05            | 44.20     | 9.86  | 32.00             | -2.34              | 36.71             | 54.00    | -17.29 | AV       | Vertical   |
| 5359.75                | 47.10            | 44.20     | 9.86  | 32.00             | -2.34              | 44.76             | 74.00    | -29.24 | PK       | Horizontal |
| 5359.75                | 39.34            | 44.20     | 9.86  | 32.00             | -2.34              | 37.00             | 54.00    | -17.00 | AV       | Horizontal |
| 7205.95                | 53.98            | 43.50     | 11.40 | 35.50             | 3.40               | 57.38             | 74.00    | -16.62 | PK       | Vertical   |
| 7205.95                | 44.34            | 43.50     | 11.40 | 35.50             | 3.40               | 47.74             | 54.00    | -6.26  | AV       | Vertical   |
| 7205.80                | 54.02            | 43.50     | 11.40 | 35.50             | 3.40               | 57.42             | 74.00    | -16.58 | PK       | Horizontal |
| 7205.80                | 44.04            | 43.50     | 11.40 | 35.50             | 3.40               | 47.44             | 54.00    | -6.56  | AV       | Horizontal |
|                        |                  |           |       | Middle            | Channel (244       | 2 MHz)            |          |        |          |            |
| 3267.34                | 61.67            | 44.70     | 6.70  | 28.20             | -9.80              | 51.87             | 74.00    | -22.13 | PK       | Vertical   |
| 3267.34                | 50.52            | 44.70     | 6.70  | 28.20             | -9.80              | 40.72             | 54.00    | -13.28 | AV       | Vertical   |
| 3267.24                | 61.85            | 44.70     | 6.70  | 28.20             | -9.80              | 52.05             | 74.00    | -21.95 | PK       | Horizontal |
| 3267.24                | 50.70            | 44.70     | 6.70  | 28.20             | -9.80              | 40.90             | 54.00    | -13.10 | AV       | Horizontal |
| 4884.50                | 59.48            | 44.20     | 9.04  | 31.60             | -3.56              | 55.92             | 74.00    | -18.08 | PK       | Vertical   |
| 4884.50                | 49.49            | 44.20     | 9.04  | 31.60             | -3.56              | 45.93             | 54.00    | -8.07  | AV       | Vertical   |
| 4884.45                | 58.24            | 44.20     | 9.04  | 31.60             | -3.56              | 54.68             | 74.00    | -19.32 | PK       | Horizontal |
| 4884.45                | 49.87            | 44.20     | 9.04  | 31.60             | -3.56              | 46.31             | 54.00    | -7.69  | AV       | Horizontal |
| 5364.05                | 48.68            | 44.20     | 9.86  | 32.00             | -2.34              | 46.34             | 74.00    | -27.66 | PK       | Vertical   |
| 5364.05                | 38.99            | 44.20     | 9.86  | 32.00             | -2.34              | 36.65             | 54.00    | -17.35 | AV       | Vertical   |
| 5363.98                | 48.21            | 44.20     | 9.86  | 32.00             | -2.34              | 45.87             | 74.00    | -28.13 | PK       | Horizontal |
| 5363.98                | 39.04            | 44.20     | 9.86  | 32.00             | -2.34              | 36.70             | 54.00    | -17.30 | AV       | Horizontal |
| 7326.94                | 54.89            | 43.50     | 11.40 | 35.50             | 3.40               | 58.29             | 74.00    | -15.71 | PK       | Vertical   |
| 7326.94                | 43.83            | 43.50     | 11.40 | 35.50             | 3.40               | 47.23             | 54.00    | -6.77  | AV       | Vertical   |
| 7326.86                | 53.50            | 43.50     | 11.40 | 35.50             | 3.40               | 56.90             | 74.00    | -17.10 | PK       | Horizontal |
| 7326.86                | 44.62            | 43.50     | 11.40 | 35.50             | 3.40               | 48.02             | 54.00    | -5.98  | AV       | Horizontal |

# Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



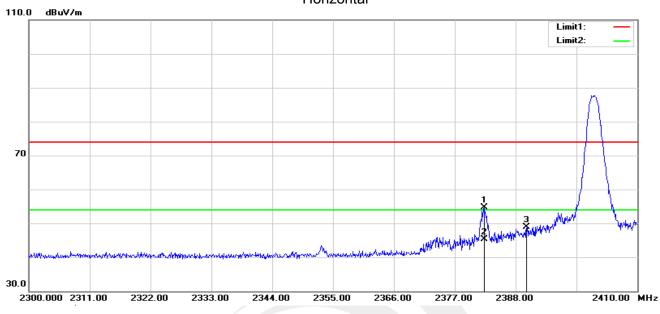
# Page 26 of 45 Report No.: STS1908261W01

|         |       |       |       | High C | hannel (248 | 0 MHz) |       |        |    |            |
|---------|-------|-------|-------|--------|-------------|--------|-------|--------|----|------------|
| 3264.88 | 61.12 | 44.70 | 6.70  | 28.20  | -9.80       | 51.32  | 74.00 | -22.68 | PK | Vertical   |
| 3264.88 | 49.86 | 44.70 | 6.70  | 28.20  | -9.80       | 40.06  | 54.00 | -13.94 | AV | Vertical   |
| 3264.67 | 61.56 | 44.70 | 6.70  | 28.20  | -9.80       | 51.76  | 74.00 | -22.24 | PK | Horizontal |
| 3264.67 | 50.52 | 44.70 | 6.70  | 28.20  | -9.80       | 40.72  | 54.00 | -13.28 | AV | Horizontal |
| 4960.58 | 59.32 | 44.20 | 9.04  | 31.60  | -3.56       | 55.76  | 74.00 | -18.24 | PK | Vertical   |
| 4960.58 | 50.19 | 44.20 | 9.04  | 31.60  | -3.56       | 46.63  | 54.00 | -7.37  | AV | Vertical   |
| 4960.46 | 58.22 | 44.20 | 9.04  | 31.60  | -3.56       | 54.66  | 74.00 | -19.34 | PK | Horizontal |
| 4960.46 | 50.48 | 44.20 | 9.04  | 31.60  | -3.56       | 46.92  | 54.00 | -7.08  | AV | Horizontal |
| 5359.78 | 49.34 | 44.20 | 9.86  | 32.00  | -2.34       | 47.00  | 74.00 | -27.00 | PK | Vertical   |
| 5359.78 | 39.77 | 44.20 | 9.86  | 32.00  | -2.34       | 37.43  | 54.00 | -16.57 | AV | Vertical   |
| 5359.79 | 47.20 | 44.20 | 9.86  | 32.00  | -2.34       | 44.86  | 74.00 | -29.14 | PK | Horizontal |
| 5359.79 | 39.24 | 44.20 | 9.86  | 32.00  | -2.34       | 36.90  | 54.00 | -17.10 | AV | Horizontal |
| 7439.77 | 54.63 | 43.50 | 11.40 | 35.50  | 3.40        | 58.03  | 74.00 | -15.97 | PK | Vertical   |
| 7439.77 | 44.18 | 43.50 | 11.40 | 35.50  | 3.40        | 47.58  | 54.00 | -6.42  | AV | Vertical   |
| 7439.87 | 53.80 | 43.50 | 11.40 | 35.50  | 3.40        | 57.20  | 74.00 | -16.80 | PK | Horizontal |
| 7439.87 | 43.83 | 43.50 | 11.40 | 35.50  | 3.40        | 47.23  | 54.00 | -6.77  | AV | Horizontal |

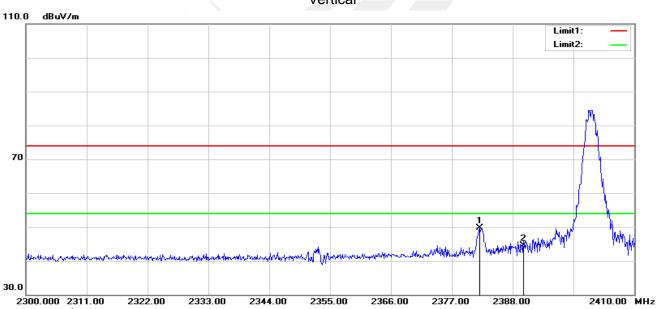
# Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor


, The frequency emission of peak points that did not show above the forms are at least 20dB

2) below the limit, the frequency emission is mainly from the environment noise.




# 4.6 TEST RESULTS (Restricted Bands Requirements)

GFSK-Low Horizontal



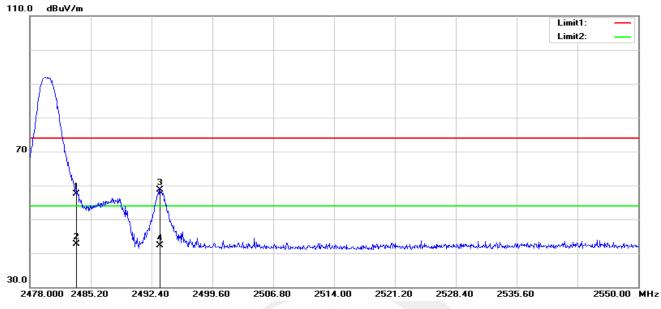
| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2382.280  | 50.41   | 4.22         | 54.63    | 74.00    | -19.37 | peak   |
| 2   | 2382.280  | 41.03   | 4.22         | 45.25    | 54.00    | -8.75  | AVG    |
| 3   | 2390.000  | 44.47   | 4.34         | 48.81    | 74.00    | -25.19 | peak   |



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2382.060  | 45.45   | 4.22         | 49.67    | 74.00    | -24.33 | peak   |
| 2   | 2390.000  | 40.25   | 4.34         | 44.59    | 74.00    | -29.41 | peak   |

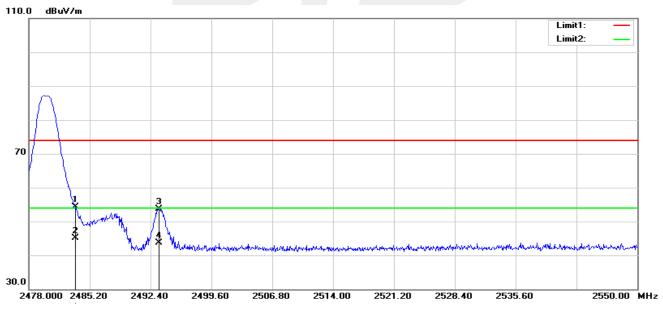
Vertical

Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 28 of 45


Report No.: STS1908261W01

### GFSK-High Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 52.90   | 4.60         | 57.50    | 74.00    | -16.50 | peak   |
| 2   | 2483.500  | 38.11   | 4.60         | 42.71    | 54.00    | -11.29 | AVG    |
| 3   | 2493.408  | 54.08   | 4.64         | 58.72    | 74.00    | -15.28 | peak   |
| 4   | 2493.408  | 37.69   | 4.64         | 42.33    | 54.00    | -11.67 | AVG    |

Vertical



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 49.75   | 4.60         | 54.35    | 74.00    | -19.65 | peak   |
| 2   | 2483.500  | 40.53   | 4.60         | 45.13    | 54.00    | -8.87  | AVG    |
| 3   | 2493.408  | 49.05   | 4.64         | 53.69    | 74.00    | -20.31 | peak   |
| 4   | 2493.408  | 39.12   | 4.64         | 43.76    | 54.00    | -10.24 | AVG    |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

#### 5.1 LIMIT

According to FCC section 15.247(d) and RSS-247 Issue 2, in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 5.2 TEST PROCEDURE

| Spectrum Parameter                    | Setting                         |
|---------------------------------------|---------------------------------|
| Detector                              | Peak                            |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |
| Trace-Mode:                           | Max hold                        |

#### For Band edge

| Spectrum Parameter                    | Setting                          |  |  |  |
|---------------------------------------|----------------------------------|--|--|--|
| Detector                              | Peak                             |  |  |  |
| Start/Stan Fraguenau                  | Lower Band Edge: 2300 – 2403 MHz |  |  |  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 – 2500 MHz |  |  |  |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |  |  |  |
| Trace-Mode:                           | Max hold                         |  |  |  |

#### 5.3 TEST SETUP



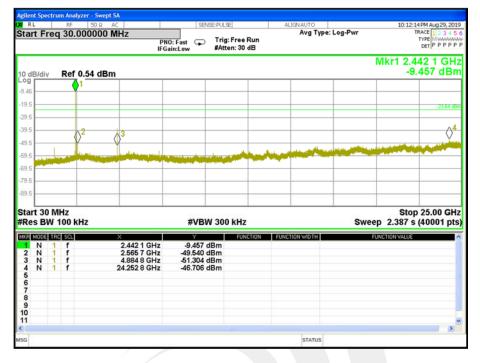
The EUT which is powered by the Adapter, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

#### 5.4 EUT OPERATION CONDITIONS

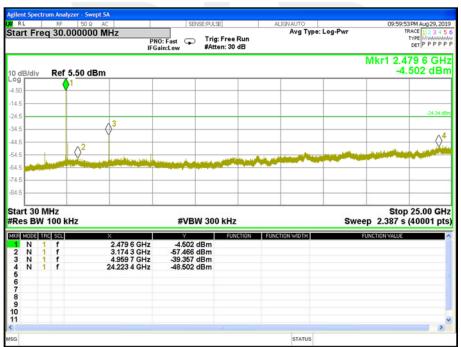
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



# 5.5 TEST RESULTS


| Temperature:  | <b>25</b> ℃ | Relative Humidity: | 50%                          |
|---------------|-------------|--------------------|------------------------------|
| Test Voltage: | DC 12V      |                    | TX Mode /CH00, CH19,<br>CH39 |

|       | 50 Ω AC          |              | SENS                           | SE:PULSE                                                                                                           | ALIGN AUTO                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5PM Aug 29, 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|------------------|--------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| q 3(  | 0.000000 MHz     |              |                                | Trig: Free Run<br>#Atten: 30 dB                                                                                    | Avg Type                                              | : Log-Pwr                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TYPE MWWWWW<br>DET P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Re    | f 6.65 dBm       |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01 5 GH<br>351 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | <b>\</b> 1       |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -23.16 dt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 3                |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Y                |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | <u>^</u> 2       |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                  |              | and the second                 | A designation of the second                                                                                        | No. of Concession, Name                               |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    | Č.                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | kHz              |              | #VBW                           | / 300 kHz                                                                                                          |                                                       | Swee                                                                                   | Stop<br>p 2.387 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.00 GH<br>(40001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RC SC |                  |              | Y                              | FUNCTION                                                                                                           | FUNCTION WIDTH                                        | FL                                                                                     | UNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| f     |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| f     | 4.8              | 03 6 GHz     | -38.919 d                      | Bm                                                                                                                 |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T     | 24.4             | /4 4 GHZ     | -47.959 d                      | Bm                                                                                                                 |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                  |              |                                |                                                                                                                    |                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Re<br>MHz<br>100 | Ref 6.65 dBm | PN0:<br>IFGain<br>Ref 6.65 dBm | PNO: Fast<br>IFGain:Low<br>Ref 6.65 dBm<br>1<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | PN0: Fast<br>IFGain:Low #Atten: 30 dB<br>Ref 6.65 dBm | PNO: Fast<br>IFGain:Low         Trig: Free Run<br>#Atten: 30 dB           Ref 6,65 dBm | PNO: Fast<br>IFGain.tow         Trig: Free Run<br>#Atten: 30 dB           Ref 6,65 dBm         1           1         1           2         3           4         3           4         4           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1 | PHO: Fast<br>If Gain:Low         Trig: Free Run<br>#Atten: 30 dB         Mkr1 2.4           Ref 6.65 dBm         -3.           1         -3.           2         -3.           3         -3.           4         -3.           2         -3.           3         -3.           4         -3.           4         -3.           5         -3.           5         -3.           4         -3.           5         -3.           4         -3.           5         -3.           5         -3.           6         -3.           5         -3.           6         -3.           7         -3.           6         -3.           7         -3.3.51 dBm           7         -3.351 dBm           7         -3.8.19 dBm |

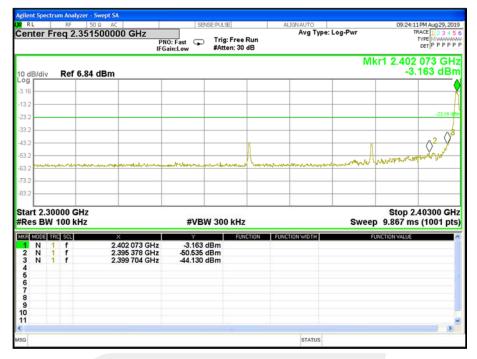

# 00 CH



#### 19 CH



39 CH








For Band edge

00 CH



39 CH





# 6. POWER SPECTRAL DENSITY TEST

#### 6.1 LIMIT

| FCC Part 15.247,Subpart C<br>RSS-247 Issue 2 |                        |                      |                          |        |  |  |  |
|----------------------------------------------|------------------------|----------------------|--------------------------|--------|--|--|--|
| Section                                      | Test Item              | Limit                | Frequency Range<br>(MHz) | Result |  |  |  |
| 15.247(e)<br>RSS-247<br>Issue 2              | Power Spectral Density | ≤8 dBm<br>(RBW≥3KHz) | 2400-2483.5              | PASS   |  |  |  |

#### 6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz  $\ge$  RBW  $\ge$  3 kHz.
- 4. Set the VBW  $\geq$  3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

# 6.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

# 6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



6.5 TEST RESULTS

| Temperature:  | <b>25</b> ℃ | Relative Humidity: | 60%                          |
|---------------|-------------|--------------------|------------------------------|
| Test Voltage: | DC 12V      | Lest Mode.         | TX Mode /CH00, CH19,<br>CH39 |

| Fraguanay | Power Density | Limit (dPm/2KHz) | Docult |  |
|-----------|---------------|------------------|--------|--|
| Frequency | (dBm/3kHz)    | Limit (dBm/3KHz) | Result |  |
| 2402 MHz  | -3.991        | ≤8               | PASS   |  |
| 2442 MHz  | -4.278        | ≤8               | PASS   |  |
| 2480 MHz  | -5.166        | ≤8               | PASS   |  |

# TX CH00



=



#### TX CH19



**TX CH39** 



=

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 7. BANDWIDTH TEST

# 7.1 LIMIT

| FCC Part 15.247,Subpart C<br>RSS-Gen Clause 6.7 |                                                    |                              |             |      |  |  |
|-------------------------------------------------|----------------------------------------------------|------------------------------|-------------|------|--|--|
| Section                                         | ection Test Item Limit Frequency Range (MHz) Resul |                              |             |      |  |  |
| 15.247(a)(2)                                    | 6dB<br>Bandwidth                                   | >= 500KHz                    | 2400-2483.5 | PASS |  |  |
| RSS-Gen<br>Clause 6.7                           | 99%<br>Bandwidth                                   | For reporting purposes only. | 2400-2483.5 | PASS |  |  |

# 7.2 TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The centre frequency of the channel under test                                      |  |  |  |
|------------------|-------------------------------------------------------------------------------------|--|--|--|
| Detector         | Peak                                                                                |  |  |  |
| RBW              | For 6 dB Bandwidth :100KHz<br>For 99% Bandwidth :1% to 5% of the occupied bandwidth |  |  |  |
| VBW              | For 6dB Bandwidth : ≥3 × RBW<br>For 99% Bandwidth : approximately 3×RBW             |  |  |  |
| Trace            | Max hold                                                                            |  |  |  |
| Sweep            | Auto                                                                                |  |  |  |

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

# 7.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

# 7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



7.5 TEST RESULTS

| Temperature:  | <b>25</b> ℃ | Relative Humidity: | 60%                          |
|---------------|-------------|--------------------|------------------------------|
| Test Voltage: | DC 12V      |                    | TX Mode /CH00, CH19,<br>CH39 |

| Frequency | 6dB<br>Bandwidth<br>(KHz) | 99%<br>Bandwidth<br>(KHz) | Channel<br>Separation<br>(KHz) | Result |
|-----------|---------------------------|---------------------------|--------------------------------|--------|
| 2402 MHz  | 653.300                   | 1086.900                  | ≥500KHz                        | PASS   |
| 2442 MHz  | 657.400                   | 1060.600                  | ≥500KHz                        | PASS   |
| 2480 MHz  | 663.100                   | 1052.000                  | ≥500KHz                        | PASS   |

# 6dB Bandwidth TX CH 00

| RL RF 50 Q AC                    | S           | ENSE:PULSE                      | ALIGNAUTO      | 09:20:27 PM Aug 29, 203 |
|----------------------------------|-------------|---------------------------------|----------------|-------------------------|
| enter Freq 2.40200000            |             | Center Freq: 2.4020000          |                | Radio Std: None         |
|                                  | #IFGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Hold>10/10 | Radio Device: BTS       |
|                                  |             |                                 |                |                         |
| dB/div Ref 20.00 dBn             | ŋ           |                                 |                |                         |
| 0                                |             |                                 |                |                         |
| 0                                |             |                                 |                |                         |
| 0                                |             |                                 |                |                         |
|                                  |             |                                 |                |                         |
| man                              |             |                                 |                |                         |
|                                  |             |                                 |                |                         |
| 0                                |             |                                 |                |                         |
| 0                                |             |                                 |                |                         |
| 0                                |             |                                 |                |                         |
|                                  |             |                                 |                |                         |
| enter 2.402 GHz<br>es BW 100 kHz |             | #VBW 300 kl                     | u              | Span 2 MH<br>Sweep 1 m  |
|                                  |             | #VBVV 300 KI                    | nz             | Sweep III               |
| Occupied Bandwidt                | h           | Total Power                     | 3.32 dBm       |                         |
| 1.                               | 2624 MHz    |                                 |                |                         |
| Transmit Freq Error              | 86.713 kHz  | OBW Power                       | 99.00 %        |                         |
| x dB Bandwidth                   | 653.3 kHz   | x dB                            | -6.00 dB       |                         |
|                                  |             |                                 |                |                         |
|                                  |             |                                 |                |                         |
|                                  |             |                                 |                |                         |
|                                  |             |                                 | STATUS         |                         |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### 6dB Bandwidth TX CH 19

| RL RF 50 Q AC                     | S             |                                                           | ALIGNAUTO                 | 10:04:02 PM Aug 29, 201 |
|-----------------------------------|---------------|-----------------------------------------------------------|---------------------------|-------------------------|
| enter Freq 2.44200000             |               | Center Freq: 2.4420000<br>Trig: Free Run<br>#Atten: 30 dB | 000 GHz<br>Avg Hold>10/10 | Radio Std: None         |
|                                   | #IFGain:Low   | #Atten: 30 dB                                             |                           | Radio Device: BTS       |
| dB/div Ref 20.00 dBn              | n _           |                                                           |                           |                         |
| 9                                 |               |                                                           |                           |                         |
| 10                                |               |                                                           |                           |                         |
| .0                                |               |                                                           |                           |                         |
| 0                                 |               |                                                           |                           |                         |
| 0                                 |               |                                                           |                           |                         |
| 0                                 |               |                                                           |                           |                         |
| 0                                 |               |                                                           |                           |                         |
| .0                                |               |                                                           |                           |                         |
| enter 2.442 GHz<br>tes BW 100 kHz |               | #VBW 300 k                                                | Hz                        | Span 2 MH<br>Sweep 1 m  |
| Occupied Bandwidt                 | h             | Total Power                                               | 2.90 dBm                  |                         |
|                                   | "<br>2334 MHz | i otar i ower                                             | 2.50 0.611                |                         |
| Transmit Freq Error               | 73.291 kHz    | OBW Power                                                 | 99.00 %                   |                         |
| x dB Bandwidth                    | 657.4 kHz     | x dB                                                      | -6.00 dB                  |                         |
|                                   |               |                                                           |                           |                         |

#### 6dB Bandwidth TX CH 39

STATUS





#### 99% Bandwidth TX CH 00



#### 99% Bandwidth TX CH 19





# Page 40 of 45

#### 99% Bandwidth TX CH 39

| gilent Spectrum Analyzer - Occupied Β\<br>RL RF 50 Ω AC |                        |                                                           | ALIGNAUTO                 | 08:34:45 AM Aug 30, 2019             |
|---------------------------------------------------------|------------------------|-----------------------------------------------------------|---------------------------|--------------------------------------|
| enter Freq 2.48000000                                   | GHz #IFGain:Low        | Center Freq: 2.4800000<br>Trig: Free Run<br>#Atten: 10 dB | 000 GHz<br>Avg Hold>10/10 | Radio Std: None<br>Radio Device: BTS |
| 0 dB/div Ref 31.00 dBm<br>9 0<br>11.0<br>0.00<br>9.0    |                        | ·····                                                     |                           |                                      |
| 9.0                                                     |                        |                                                           |                           |                                      |
| 9.0                                                     |                        |                                                           |                           |                                      |
| enter 2.48 GHz<br>Res BW 30 kHz                         |                        | #VBW 100 ki                                               | Hz                        | Span 2 MHz<br>Sweep 2.733 ms         |
| Occupied Bandwidth                                      | h<br>0 <b>520 MH</b> z | Total Power                                               | 2.79 d <b>B</b> m         |                                      |
| Transmit Freq Error                                     | 99.125 kHz             | OBW Power                                                 | 99.00 %                   |                                      |
| x dB Bandwidth                                          | 378.4 kHz              | x dB                                                      | -6.00 dB                  |                                      |
| 5G                                                      |                        |                                                           | STATUS                    |                                      |

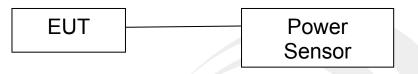
Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Report No.: STS1908261W01

# 8. PEAK OUTPUT POWER TEST


## 8.1 LIMIT

| FCC Part 15.247,Subpart C                            |              |                 |             |      |  |  |
|------------------------------------------------------|--------------|-----------------|-------------|------|--|--|
| RSS-247 Issue 2                                      |              |                 |             |      |  |  |
| Section Test Item Limit Frequency Range (MHz) Result |              |                 |             |      |  |  |
| 15.247(b)(3)<br>RSS 247 Issue 2                      | Output Power | 1 watt or 30dBm | 2400-2483.5 | PASS |  |  |

#### 8.2 TEST PROCEDURE

#### a. The EUT was directly connected to the Power Sensor&PC

#### 8.3 TEST SETUP



#### **8.4 EUT OPERATION CONDITIONS**

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



8.5 TEST RESULTS

| Temperature:  | <b>25</b> ℃ | Relative Humidity: | 60%                          |
|---------------|-------------|--------------------|------------------------------|
| Test Voltage: | DC 12V      | lest Mode.         | TX Mode /CH00, CH19,<br>CH39 |

| Test Channe | Frequency | Peak Conducted<br>Output Power | Average Conducted<br>Output Power | LIMIT |
|-------------|-----------|--------------------------------|-----------------------------------|-------|
|             | (MHz)     | (dBm)                          | (dBm)                             | dBm   |
| CH0         | 2402      | -1.08                          | -3.24                             | 30    |
| CH19        | 2440      | -1.52                          | -3.82                             | 30    |
| CH39        | 2480      | -2.14                          | -4.41                             | 30    |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



## 9. ANTENNA REQUIREMENT

#### 9.1 STANDARD REQUIREMENT

15.203 and RSS-GenIssue 5 requirement: For intentional device, according to 15.203 and RSS-GenIssue 5: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

### 9.2 EUT ANTENNA

The EUT antenna is Monopole Antenna. It comply with the standard requirement.



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 44 of 45



# 10. FREQUENCY STABILITY

10.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency tolerance of the carrier signal shall be maintained within +/-0.02% of the operating frequency over a temperature variation of -30 degrees to 50 degrees C at normal supply voltage, and for a variation in primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees.

## **10.2 TEST PROCEDURE**

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize,turn the EUT on and measure the operating frequency after 2,5,and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

# 10.3 TEST RESULT

Channel 19 (2440MHz)

# Voltage vs. Frequency Stability

| Voltage(V)         | Measurement Frequency(MHz) |  |
|--------------------|----------------------------|--|
| 13.8               | 2440.0007                  |  |
| 12                 | 2440.0005                  |  |
| 10.2               | 2440.0003                  |  |
| Max.Deviation(MHz) | 0.0007                     |  |
| Max.Deviation(ppm) | 0.29                       |  |

#### Rated working voltage: DC 12V

#### Temperature vs. Frequency Stability

| Temperature(°C)    | Measurement Frequency(MHz) |
|--------------------|----------------------------|
| -30                | 2440.0008                  |
| -20                | 2440.0001                  |
| -10                | 2440.0001                  |
| 0                  | 2440.0000                  |
| 10                 | 2440.0004                  |
| 20                 | 2440.0001                  |
| 30                 | 2440.0001                  |
| 40                 | 2440.0007                  |
| 50                 | 2440.0005                  |
| Max.Deviation(MHz) | 0.0008                     |
| Max.Deviation(ppm) | 0.33                       |

Page 45 of 45 Re



Report No.: STS1908261W01

# 11. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

\* \* \* \* \* END OF THE REPORT \* \* \* \*



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax: + 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com