FCC TEST REPORT

FCC ID : TJ7BTK-12

Applicant : Kiss Communications Technology Co., Ltd

Room 1808, New Century Business Center, No.2-6Hongde Road, Haizhu

District, Guangzhou, Guangdong Province, China

Equipment Under Test (EUT):

Product description : Blutetooth Headset

Model No. : BTK-12

Standards : FCC 15 Paragraph 15.205, Paragraph 15.207, Paragraph 15.209, Paragraph

15.31, Paragraph 15.33, Paragraph 15.35, Paragraph 15.247

Date of Test: September 16, 2005

Test Engineer : Tiger Su

Reviewed By : Thelo 2hous

PERPARED BY:

Shenzhen Huatongwei International Inspection Co., Ltd

Keji S,12th,Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China

FCC Registration Number: 662850

2 Contents

			Page
1	C	OVER PAGE	1
2	C	ONTENTS	2
3	T	EST SUMMARY	5
4	G	ENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	5
	4.3	DETAILS OF E.U.T.	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING	
	4.6	Test Facility	
	4.7	TEST LOCATION	
5	E	QUIPMENT USED DURING TEST	7
6	C	ONDUCTED EMISSION TEST	8
	6.1	TEST EQUIPMENT	8
	6.2	TEST PROCEDURE	8
	6.3	CONDUCTED TEST SETUP	
	6.4	EUT OPERATING CONDITION	
	6.5	CONDUCTED EMISSION LIMITS	
	6.6	CONDUCTED EMISSION TEST RESULT	
_	6.7	CONDUCTIED EMISSIONS TEST DATA	
7	K	ADIATION EMISSION TEST	
	7.1	TEST EQUIPMENT	
	7.2	MEASUREMENT UNCERTAINTY	
	7.3	TEST PROCEDURE	
	7.4 7.5	RADIATED TEST SETUP	
	7.5 7.6	SPECTRUM ANALYZER SETUP CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.7	SUMMARY OF TEST RESULTS	
	7.8	EUT OPERATING CONDITION	
	7.9	RADIATED EMISSIONS LIMIT	
	7.10		
	7.11	RADIATED EMISSION DATA	17
8	M	IAXIMUM PEAK OUTPUT POWER	19
9	Н	OPPING CHANNEL NUMBER	20
1() C	ARRIER FREQUENCIES SEPARATED	21
	10.1	LOWER CHANNELS: CARRIER FREQUENCIES SEPARATED	
	10.1	MIDDLE CHANNELS: CARRIER FREQUENCIES SEPARATED	
	10.3		23

11 DV	WELL TIME	24
11.1	TEST PROCEDURE	24
11.2	TEST RESULTS: PASS	
12 TE	EST RESULT OF BAND EDGE	28
12.1	TEST PROCEDURE	28
12.2	BAND EDGE	
12.3	TEST RESULT	
13 PO	OWER SPECTRAL DENSITY	31
14 PH	HOTOGRAPHS OF TESTING	32
14.1	CONDUCTION EMISSION TEST SETUP VIEW	32
14.2	RADIATION EMISSION TEST VIEW FOR 30MHz-1000MHz	
14.3	RADIATION EMISSION TEST VIEW FOR 1GHZ-25GHZ	33
15 PH	IOTOGRAPHS - CONSTRUCTIONAL DETAILS	34
15.1	EUT - Front View	34
15.2	EUT - BACK VIEW	34
15.3	PCB - COMPONENT VIEW(1)	
15.4	PCB - COMPONENT VIEW(2)	35
16 FC	CC ID LABEL	36

3 Test Summary

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission (30MHz to 25GHz)	FCC PART 15: 2003	ANSI C63.4: 2003	Class B	PASS
Conducted Emission (150KHz to 30MHz)	FCC PART 15: 2003	ANSI C63.4: 2003	Class B	PASS

4 General Information

4.1 Client Information

Applicant: Kiss Communications Technology Co., Ltd

Address of Applicant: Room 1808, New Century Business Center, No.2-6Hongde

Road, Haizhu District, Guangzhou, Guangdong Province, China

4.2 General Description of E.U.T.

Product description: Blutetooth Headset

Model No.: BTK-12

4.3 Details of E.U.T.

Power Supply: Adaptor input:100-240V AC,50/60Hz

Output: 4.3 V DC

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Blutetooth Headset. The standards used were FCC 15 Paragraph 15.205, Paragraph 15.207, Paragraph 15.209, Paragraph 15.31, Paragraph 15.33, Paragraph 15.35, Paragraph 15.247.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC – Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 662850, November 17, 2003.

4.7 Test Location

All Emissions testswere performed at:-Shenzhen Huatongwei International Inspection Co., Ltd. at Keji S,12th,Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China.

5 Equipment Used during Test

	Conducted Emission Test							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due date		
1			8 x 4 x 4 m ³	N0.2	N/A	N/A		
2	LISN	Schaffner Chase	MNZ050D11	1421	06-11-2004	05-11-2005		
3	EMI Test Receiver	Rohde & Schwarz	ESCS30	100039	18-11-2004	17-11-2005		
	Radiated Emission	Гest						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due date		
1	3m Semi- Anechoic Chamber	ETS	N/A	N/A	05-11-2004	04-11-2005		
2	EMI Test Receiver	ROHDE & SCHWARZ	ESI 26	100009	05-11.2004	04-11-2005		
3	EMI Test Receiver	ROHDE & SCHWARZ	ESCS30	100038	05-11.2004	04-11-2005		
4	Spectrum Analyzer	Agilent	E7402A	100047	05-11.2004	04-11-2005		
5	EMI Test Software	ROHDE & SCHWARZ	ES-K1	N/A	N/A	N/A		
6	Bilog Type Antenna	ETS	2075	2346	02-12-2004	01-12-2005		
7	Horn Antenna	ROHDE & SCHWARZ	HF906	1000029	05-11.2004	04-11-2005		
8	Ultra-Broadband Antenna	ROHDE & SCHWARZ	HL562	100015	02-12-2004	01-12-2005		
	Common Used Equi	pment	1			l		
Item	Test Equipment	Manufacturer	Model No.	Series No.	Cal. Date	Due date		
1	Temperature, Humidity & Barometer	OREGON SCIENTIFIC	BA-888	EMC0001 to EMC0004	05-11.2004	04-11-2005		
2	DMM	FLUKE	73	70681569 or 70671122	02-12-2004	01-12-2005		
3	Adaptor	MAX	D4350	N/A	N/A	N/A		

6 Conducted Emission Test

Test Requirement: FCC Part15 Paragraph 15.207

Test Method: Based on FCC Part15 Paragraph 15.207

Test Date: September 16, 2005 Frequency Range: 150kHz to 30MHz

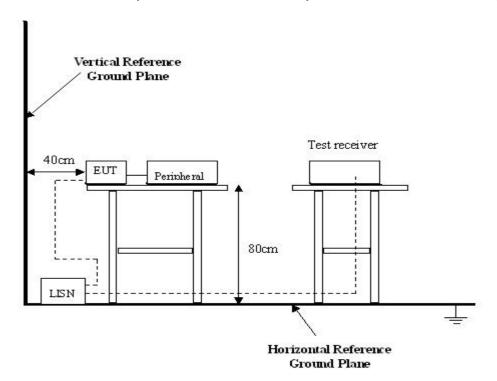
Class B

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

Average Limit

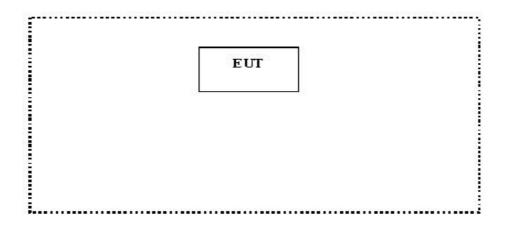
6.1 Test Equipment


Please refer to Section 5 this report.

6.2 Test Procedure

- 1. The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.
- 2. The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

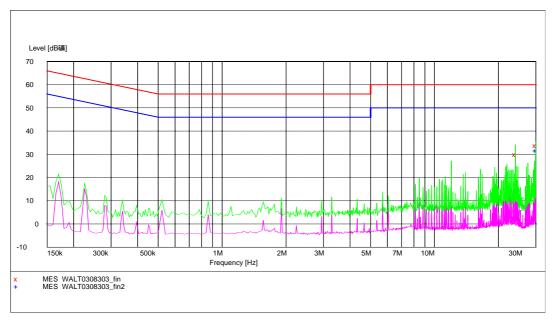
6.3 Conducted Test Setup


The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.207 limits.

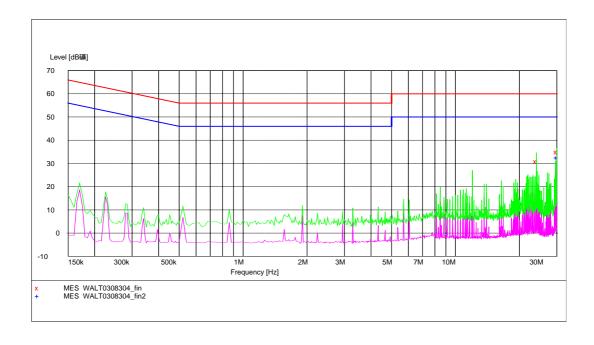
6.4 EUT Operating Condition

Operating condition is according to ANSI C63.4:2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.


6.5 Conducted Emission Limits

 $66\text{-}56~dB\mu V/m$ between 0.15MHz~&~0.5MHz $56~dB\mu V/m$ between 0.5MHz~&~5MHz $60~dB\mu V/m$ between 5MHz~&~30MHz


Note: In the above limits, the tighter limit applies at the band edges.

6.6 Conducted Emission Test Result

Live Line:

Neutral Line:

6.7 Conductied Emissions Test Data

Freq. MHz	Line	QP Reading dBuV	Limit dBuV	Margin dB	AV Reading dBuV	Limit dBuV	Margin dB
24.00500	Live	30.00	60	30.0	11.2	50	38.8
30.00000	Live	33.70	60	26.3	28.60	50	21.4
24.00500	Neutral	30.80	60	29.2	11.8	50	38.2
30.00000	Neutral	34.80	60	25.2	27.60	50	22.4

Radiation Emission Test 7

Test Requirement: FCC Part15 Paragraph 15.209

Test Method: Based on ANSI 63.4:2003

September 16, 2005 Frequency Range: 30MHz to 25GHz

Measurement Distance: 3m

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

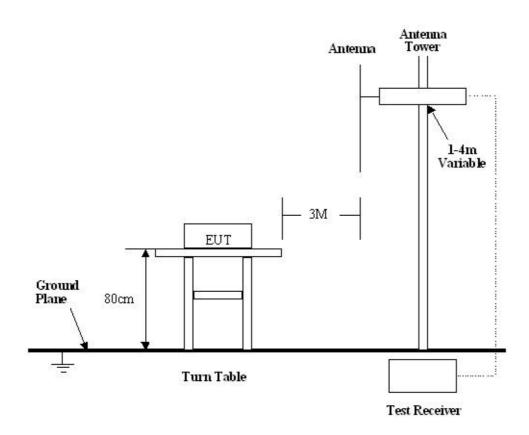
7.1 **Test Equipment**

Test Date:

Please refer to Section 5 this report.

7.2 **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on ANSI C63.4:2003, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at SZHTW is +4.0 dB.

7.3 **Test Procedure**

- 1. For the radiated emissions test, since the EUT does not have a power source, there was no connection to AC outlets.
- 2. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
- 3. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dBµV of specification limits), and are distinguished with a "Qp" in the data table.
- 4. The EUT was under normal mode during the final qualification test and the configuration was used to represent the worst case results.

7.4 Radiated Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.209 limits.

7.5 Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.209 Rules, the system was tested to 25000 MHz.

Start Frequency	30 MHz
Stop Frequency	25000 MHz
Sweep Speed Auto	
IF Bandwidth	100 kHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Class B Limit

7.7 Summary of Test Results

According to the data in section 7.11, the EUT complied with the FCC Part15 Paragraph 15.209 standards.

7.8 EUT Operating Condition

Same as section 6.4 of this report.

Let the EUT work in test mode(Tx Low/Tx Middle/Tx High) and test it.

7.9 Radiated Emissions Limit

Frequency(MHZ)	Distance(m)	Field strength(dBuV/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- (1) RF Voltage(dBuV)=20 log RF Voltage(uV)
- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna.
- (4)The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- (5)Above 1GHz,do a Peak and average measurements for all emissions,Limit for peak is 74dBuvV/m,According to Part15.35(b) and average is 54BuvV/m.

7.10 Radiated Emissions Test Result

Formula of conversion factors:the field strength at 3m was egtablished by adding The meter reading of the spectrum analyer (which is set to read in units of dBuV) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

Example:

Freq(MHz) Meter Reading +ACF=FS

33 20dBuV+10.36dB=30.36dBuV/m @3m

7.11 Radiated Emission Data

Test Item: Radiated Emission Data

Test Voltage: Adaptor input:100-240V AC,50/60Hz

Test Mode: On(Tx Low/Tx Middle/Tx High)

Temperature: 24 °C Humidity: 52%RH Test Result: PASS

Frequency (MHz)	Antenna Polarization	Emission Level (dBuV/m)	FCC 15 Subpart C Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)
		Low f	frequency			
31.789321	Vertical	34.60	40.0	5.40	1.5	90
363.083451	Vertical	34.50	46.0	11.50	1.8	45
665.651203	Vertical	37.31	46.0	8.69	2.0	80
4805.189109	Vertical	37.60	54.0	16.40	1.5	180
7208.938981	Vertical	36.90	54.0	17.10	1.5	145
12016.209194	Vertical	35.40	54.0	18.60	1.5	60
31.749021	Horizontal	32.20	40.0	7.80	1.5	230
364.158541	Horizontal	34.60	46.0	11.40	1.6	60
675.716428	Horizontal	36.50	46.0	9.50	2.0	180
4805.189109	Horizontal	38.80	54.0	15.20	1.5	60
7208.384566	Horizontal	37.40	54.0	16.60	1.5	90
12016.209194	Horizontal	34.80	54.0	19.20	1.5	220

Middle frequency							
35.895454	Vertical	32.81	40.0	7.19	1.5	45	
488.123288	Vertical	34.50	46.0	11.50	1.5	240	
4883.171837	Vertical	35.70	54.0	10.30	1.5	60	
7323.921273	Vertical	33.80	54.0	20.20	1.5	230	
35. 089545	Horizontal	33.83	40.0	6.17	1.5	45	
4882.371894	Horizontal	35.50	54.0	18.50	1.5	250	
7324.108815	Horizontal	36.60	54.0	17.40	1.5	60	
12206.452048	Horizontal	35.84	54.0	18.16	1.5	80	
		High	frequency				
33.5473221	Vertical	34.40	40.0	5.60	1.5	70	
166.589754	Vertical	35.70	43.5	7.80	1.5	90	
4962.532873	Vertical	35.90	54.0	18.10	1.5	60	
7443.541855	Vertical	36.30	54.0	17.70	1.5	270	
12406.993822	Vertical	33.80	54.0	20.20	1.5	45	
14888.908115	Vertical	35.50	54.0	18.50	1.5	45	
35.843103	Horizontal	32.80	40.0	7.20	1.5	120	
165. 728125	Horizontal	36.70	43.5	6.80	1.5	45	
4962.843871	Horizontal	36.50	54.0	17.50	1.5	210	
7443.548738	Horizontal	36.70	54.0	17.30	1.6	220	
12406.993822	Horizontal	35.90	54.0	18.10	1.5	45	
14888.908115	Horizontal	36.60	54.0	17.40	1.5	110	

8 Maximum Peak Output Power

Test Requirement: FCC Part15 Paragraph 15.247

Test Method: Based on ANSI 63.4:2003

Test Date: September 16, 2005

Test mode: Compliance test in the worse case: Tx Low/Tx Middle/Tx High

Requirements: Regulation 15.247(b) The limit of Maximum Peak Output

Power Measurement is 1W(30dBm)

Test procedure:

The technique used to find the output power of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP emission levels of the EUT.

The following test procedure as below:

- 1. The EUT was powered ON and placed on a table in the chamer. The antenna of the transmitter was extended to its maximum length.
- 2. The fundamental frequency of th transmitter was maximized on the test receiver display by raising and lowering the receive antenna and by rotating the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3. Steps 1 and 2 were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 4. Calculate the transmitter's peak power using the following equation:

Power= $(E \times d)$ squared/ $(30 \times G)$

Where:E= the measured maximum field strength in V/m.

Set the RBW>6dB bandwidth of the emission or use a peak power meter.

.G= the numeric gain of the transmitting antenna over an isotropic radiator.

.d= the distance in meters from which the field strength was measured.

.P= the power in watts is the final Maximum Peak Output Power.

Test Result:

Test Channel	Fundamental Frequency(GHz)	Reading (dBm)	Cable Loss dB	Output Power (dBm)	Limit (dBm)	PASS/FAIL
low	2.402	-9.42	0.2	-9.22	30	PASS
middle	2.441	-9.14	0.2	-8.94	30	PASS
high	2.481	-9.09	0.2	-8.89	30	PASS

Test Results: The unit does meet the FCC requirements.

9 Hopping Channel Number

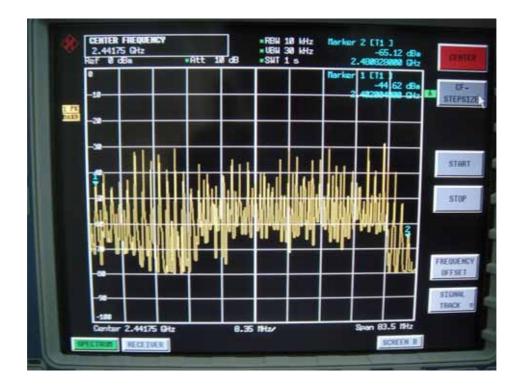
Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: September 16, 2005

Test mode: The EUT work in test mode(Tx) and test it

Requirements: Regulation 15.247(a) For frequency hopping systems operating


In the 2400-2483.5MHz band employing at least 50hopping

channels.

Test result: The total number of channels would be 79 channels.

The unit does meet the FCC requirements.

Please fefer the graph as below:

10 Carrier Frequencies Separated

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: September 16, 2005

Test mode: The EUT work in test mode(Tx) and test it

Requirements: The bandwidth of the fundamental frequency was measur by

spectrum analyser with 3KHz RBW and 10KHz VBW.The 20dB bandwidth is defined as the total spectrum the power of

which is higher than peak power minus 20dB.

Test result: PASS

Channel Carrier Frequency Separated

Test Channel	Carrier Frequencies Separated	PASS/FAIL	
Lower Channels (channel 1 and channel 2)	1MHz	Pass	
Lower Channels (channel 39 and channel 40)	1MHz	Pass	
Lower Channels (channel 78 and channel 79)	0.98MHz	Pass	

The unit does meet the FCC requirements.

10.1 Lower Channels: Carrier Frequencies Separated

10.2 Middle Channels: Carrier Frequencies Separated

10.3 Upper Channels: Carrier Frequencies Separated

11 Dwell Time

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: September 16, 2005

Test mode: The EUT work in test mode(Tx) and test it

Requirements: 15.247 a(1)(iii)Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

11.1 Test procedure

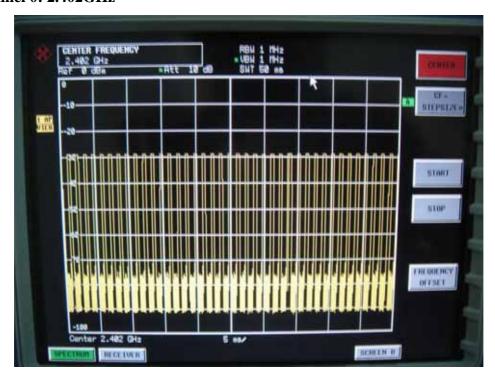
EUT and its simulators are placed on a turn table, the EUT and let it work normally, let EUT working in test mode, then test it.

The bandwidth of the fundamental frequency was measured with the spectrum analyser using 1MHz RBW and 1MHz VBW,set sweep time:2.0 ms.Span:0Hz.

11.2 Test Results: PASS

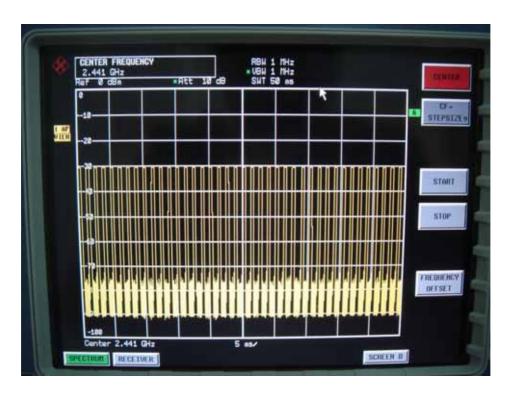
Sample calculation: In normal operation, there are 5 transmissions per 50mS. Therefore, the dwell time for each channel is:

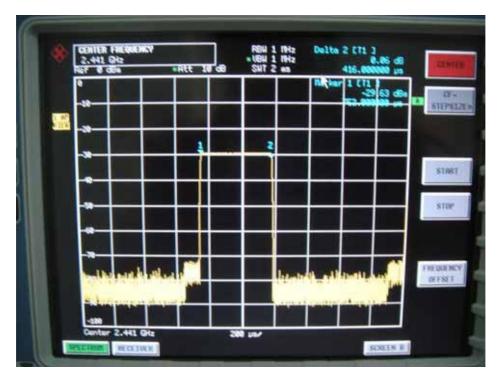
1.Low Channel: 0.416 ms x (42/50 ms x 32 s)/80 = 0.139776 s < 0.4 s

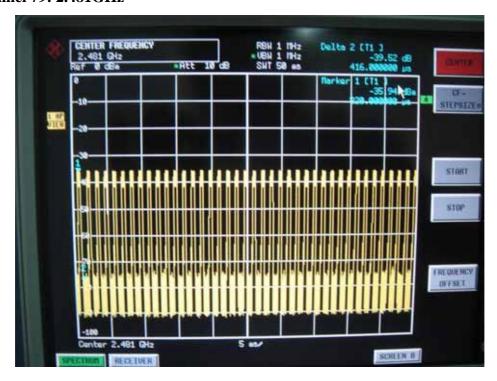

2.Middle Channel: 0.416ms x (42/50ms x 32s)/80 = 0.139776 s < 0.4 s

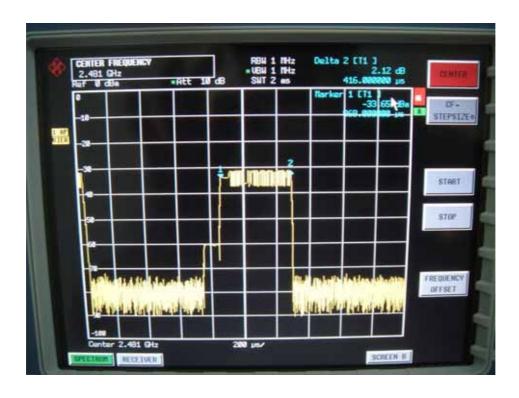

3.High Channel: 0.416ms x (42/50ms x 32s)/80 = 0.139776 s< 0.4 s

The Results are not be greater than 0.4 seconds.


Please fefer the graph as below:


Channel 0: 2.402GHz




Channel 39: 2.441GHz

Channel 79: 2.481GHz

12 Test Result of Band Edge

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: September 16, 2005

Test mode: The EUT work in test mode(Tx) and test it

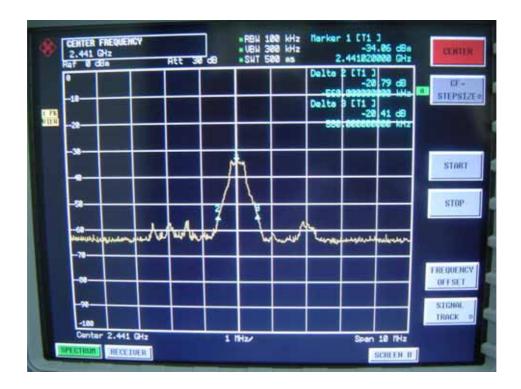
12.1 Test Procedure

1. The EUT, peripherals were put on the turntable which table size is 1mX1.5m, table high 0.8m. All set up is according to ANSI C63.4:2003.

- 2. With the EUT's antenna attached, The EUT's radiated emission power was received by the test antenna which was connected to the spectrum analyser with the START and STOP frequencies set to the EUT's operation band. Measurements were made at 3 meters.
- 3. The antenna high were varied from 1m to 4m high to find the maximum emission for each frequency.
- 4. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 300KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

12.2 Band Edge

Requirements:FCC 15.247(c), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (see section 15.205(c)).


12.3 Test Result

Please fefer the graph as below:

Low

Middle

High

13 Power Spectral Density

Test Requirement: FCC Part15 Paragraph 15.247

Test Method: Based on ANSI 63.4
Test Date: September 16, 2005

Requirements: Regulation 15.247(d) For direct sequence systems, The peak

power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 KHz band during any time interval of continuous transmission.

Test procedure:

The tests below are running with the EUT transmitter set at high power mode.APCMCIA port from a notebook computer to the EUT.The EUT is needed to force selection of output power lever and channel number.While testing, EUT was set of transmit continuously.A horn antenna was connected with the spectrum analyser.

The EUT is tested in Chamber.Put EUT on the middle of a wooden table.Set spectrum analyzer RBW=3KHz,VBW>RBW(e.g.VBW=10KHz),Span=2 MHz.Turn around the table to find maximum emission.

- 1. Then set the Span=300KHz and sweep time= 100sec.Peak the maximum emission again.Record the test field strength.
- 2. Calculate the transmitter's peak power using the following equation:

Power= $(E \times d)$ squared/ $(30 \times G)$

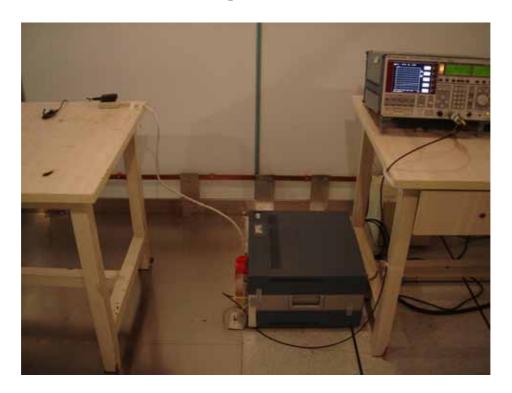
Where:E=the measured maximum field strength in V/m.

Set the RBW>6dB bandwidth of the emission or use a peak power meter.

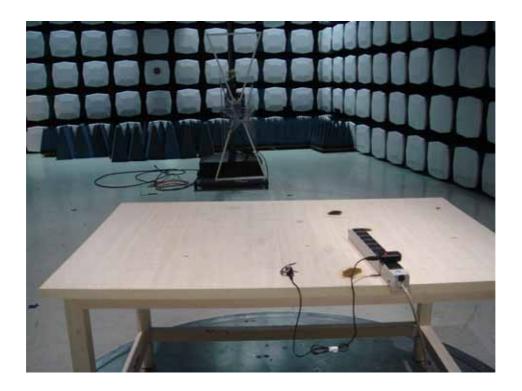
.G= the numeric gain of the transmitting antenna over an isotropic radiator.

.d= the distance in meters from which the field strength was measured.

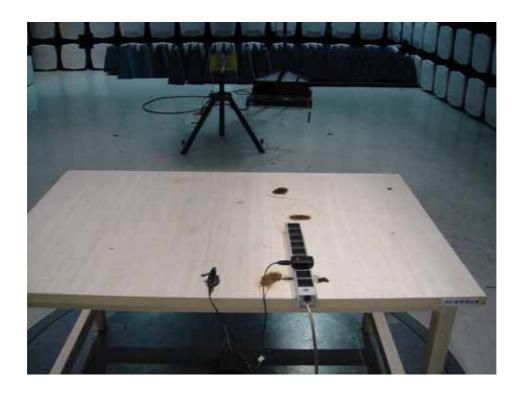
.P= the power in watts is the final Maximum Peak Output Power.


The EUT was set transmitting continuously and force selection of output power level and channel number. We'd observed that the peak levels aren't greater than +8dBm limit.

Test Result:


Test Channel	Fundamental Frequency(G Hz)	RF Power level in 3KHz BW Filed Strength(dBuV/m)	Gain(dBi)	RF Power level in 3KHz BW (dBm)	Maximum Limit (dBm)	PASS/FAIL
low	2.402	82.6	+2	-13.63	8.0	PASS
middle	2.441	80.8	+2	-15.43	8.0	PASS
high	2.481	79.5	+2	-16.33	8.0	PASS

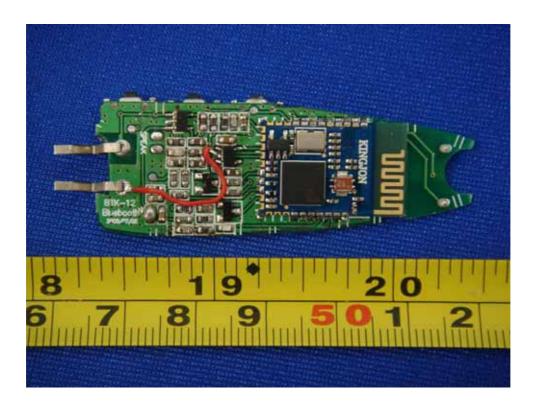
14 Photographs of Testing

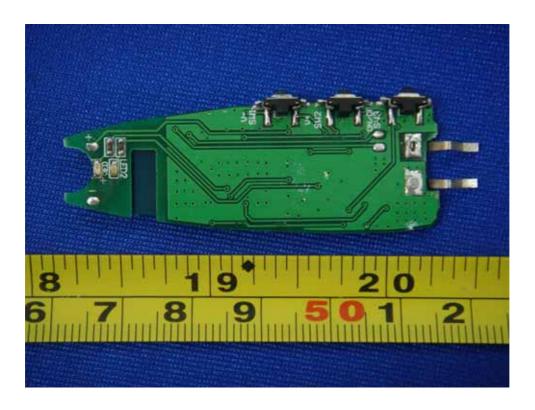

14.1 Conduction Emission Test Setup View

14.2 Radiation Emission Test View For 30MHz-1000MHz

14.3 Radiation Emission Test View For 1GHz-25GHz

15 Photographs - Constructional Details


15.1 EUT - Front View


15.2 EUT - Back View

15.3 PCB - Component View(1)

15.4 PCB - Component View(2)

16 FCC ID Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation.

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT
EUT Bottom View/proposed FCC Mark Location

