	TEST RE	PORT	-				
FCC ID	TJ7-H40						
Test Report No:	TCT230619E025						
Date of issue:	Jun. 28, 2023						
Testing laboratory:	SHENZHEN TONGCE TESTING LAB						
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuha Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China						
Applicant's name: :	Shenzhen SHI KISB	Shenzhen SHI KISB Electronic Co., Ltd.					
Address:	3-5F, A Building, Shanghe Industrial Zone, Nanchang Road, Bao'an District, Shenzhen 518126 China						
Manufacturer's name :	Shenzhen SHI KISB Electronic Co., Ltd.						
Address:	3-5F, A Building, Shanghe Industrial Zone, Nanchang Road, Bao'an District, Shenzhen 518126 China						
Standard(s):	FCC CFR Title 47 Pa FCC KDB 558074 D ANSI C63.10:2013	art 15 Subpart	C Section 15.247				
Product Name::	TRUE WIRELESS E	ARBUDS					
Trade Mark:	N/A	(\mathbf{G})	(c ¹))			
Model/Type reference :	H40						
Rating(s):	Rechargeable Li-ion	Battery DC 3.	.7V				
Date of receipt of test item	Jun. 19, 2023						
Date (s) of performance of test:	f Jun. 19, 2023 - Jun. 28, 2023						
Tested by (+signature) :	Yannie ZHONG Yannie Zhanger						
Check by (+signature) :	Beryl ZHAO)	Boyl 24 TC	TING			
Approved by (+signature):	Tomsin Tomsin						
General disclaimer: This report shall not be repro TONGCE TESTING LAB. Th TESTING LAB personnel on	his document may be	altered or rev	ised by SHENZH	EN TONGCE			

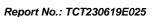
TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information		
1.1. EUT description	<u> </u>	3
1.2. Model(s) list		
1.3. Operation Frequency		4
2. Test Result Summary		5
3. General Information		
3.1. Test environment and mode		6
3.2. Description of Support Units		7
4. Facilities and Accreditations		
4.1. Facilities	<u>(c)</u>	8
4.2. Location		8
4.3. Measurement Uncertainty		
5. Test Results and Measurement Data	<u> </u>	
5.1. Antenna requirement		9
5.2. Conducted Emission		
5.3. Conducted Output Power	\sim	14
5.4. 20dB Occupy Bandwidth		
5.5. Carrier Frequencies Separation		
5.6. Hopping Channel Number	<u></u>	
5.7. Dwell Time		
5.8. Pseudorandom Frequency Hopping Se	quence	19
5.9. Conducted Band Edge Measurement		20
5.10.Conducted Spurious Emission Measur		
5.11.Radiated Spurious Emission Measurer	nent	
Appendix A: Test Result of Conducted 1	Гest	
Appendix B: Photographs of Test Setup		
Appendix C: Photographs of EUT		

1. General Product Information


1.1. EUT description

Product Name:	TRUE WIRELESS EARBUDS		(\mathbf{c}^{*})
Model/Type reference:	H40		
Sample Number	TCT230619E025-0101		
Bluetooth Version:	V5.3		
Operation Frequency:	2402MHz~2480MHz		
Transfer Rate:	1/2 Mbits/s	$\langle \mathcal{O} \rangle$	$\langle \mathcal{O} \rangle$
Number of Channel:	79		
Modulation Type:	GFSK, π/4-DQPSK		
Modulation Technology:	FHSS		
Antenna Type:	Chip Antenna		
Antenna Gain:	1.24dBi		
Rating(s):	Rechargeable Li-ion Battery DC	3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
<u> </u>				<u> </u>			0
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	S						S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	- 39	2441MHz	- 59	2461MHz	-	-
Remark: mode.	Channel 0, 3	89 & 78 ha	ave been te	sted for G	GFSK, π/4-D	QPSK mo	odulation

mode.

Page 4 of 82

2. Test Result Summary

Requirement	uirement CFR 47 Section			
Antenna Requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(1)	PASS		
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS		
Carrier Frequencies Separation	§15.247 (a)(1)	PASS		
Hopping Channel Number	§15.247 (a)(1)	PASS		
Dwell Time	§15.247 (a)(1)	PASS		
Radiated Emission	§15.205/§15.209	PASS		
Band Edge	§15.247(d)	PASS		

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 82

3. General Information

3.1. Test environment and mode

Operating Environment:	-	
Condition	Conducted Emission	Radiated Emission
Temperature:	23.5 °C	24.1 °C
Humidity:	52 % RH	54 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	FCC Assist 1.0.2.2	
Power Level:	9	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel and modulations with the second secon	
above the ground plane of 3 colarities were performed. I the EUT continuously work axis (X, Y & Z) and cor manipulating interconnectir	8m & 1.5m for the measure 3m chamber. Measurements in During the test, each emission ing, investigated all operation insidered typical configuration ing cables, rotating the turnta horizontal and vertical po- shown in Test Results	n both horizontal and vertica n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna height plarizations. The emissions

3.2. Description of Support Units


TCT通测检测 TCT通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

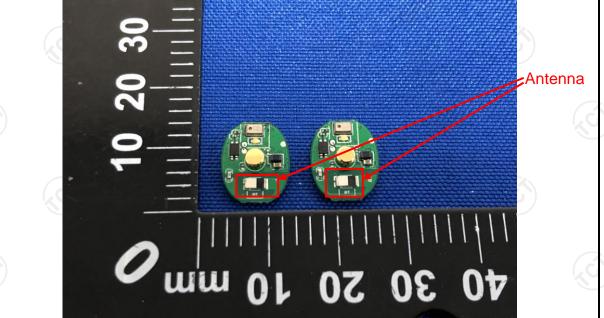
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

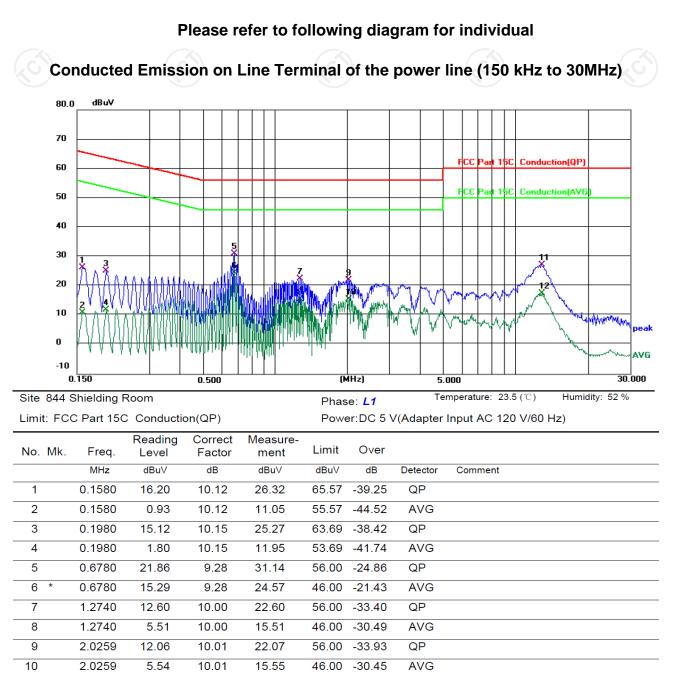
The Bluetooth antenna is Chip antenna which permanently attached, and the best case gain of the antenna is 1.24dBi.

5.2. Conducted Emission

5.2.1. Test Specification

 Test Procedure: The peripheral devices are also connected to the map ower through a LISN that provides a 500hm/500 coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup ar photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 								
Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Ference Ference Plane Ference Ference Plane Ference Ference <td cols<="" td=""><td>Test Requirement:</td><td colspan="6">FCC Part15 C Section 15.207</td></td>	<td>Test Requirement:</td> <td colspan="6">FCC Part15 C Section 15.207</td>	Test Requirement:	FCC Part15 C Section 15.207					
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46 0.5-5 56 46 5-30 60 50 Reference Plane Quasi-peak Average 0.15-0.5 66 to 56* 5.5 6 46 5-30 60 50 Reference Plane Quasi-peak Average 40cm Filter - AC power Test Betup: Test table/Insulation plane Filter - AC power Remark EVER EWE EWE Charging 1. The E.U.T is connected to an adapter through a linipedance stabilization network (L.I.S.N.). The provides a 500hm/50u H coupling impedance for the measuring equipment. Test Mode: 2. The peripheral devices are also connected to the maximu equipment. 2. The peripheral devices are also connected to the maximu equipment. 3. The peripheral devices are also connected to the maximu equipmedance with 500hm termination. (Pleas refer to the block diagram of the test setup are photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emissio	Test Method:	ANSI C63.10:2013						
Limits: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">ENT Test Mode: Charging 1. The E.U.T is connected to an adapter through a linit impedance stabilization network (L.I.S.N.). The provides a 500hm/500H coupling impedance for the measuring equipment. Test Mode: The peripheral devices are also connected to the maximu coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup at photographs). Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu conducted interfer	Frequency Range:	150 kHz to 30 MHz		$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$				
Imits: Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane 40cm Filter Ac power Fest Setup: Image: Stabilization plane Nomaric Stabilization plane Nomaric Stabilization plane Nomaric Stabilization network Test Mode: Charging 1. The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the ma power through a LISN that provides a 500hm/50uc coupling impedance with 500hm termination. (Pleas refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.	Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto				
Limits: 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Setup: Test Setup: Reference Plane Image: Setup: Set		Frequency range	Limit (dBuV)				
0.5-5 56 46 5-30 60 50 Reference Plane 40cm Image: Solution plane Ferrark Ferrark Ferrark Ferrark Ferrark Ferrark ELU.T is connected to an adapter through a linimpedance stabilization network (L.I.S.N.). The provides a 500hm/50UH coupling impedance for the measuring equipment. Test Mode: Charging 1. The E.U.T is connected to an adapter through a linimpedance stabilization network (L.I.S.N.). The provides a 500hm/50UH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the mapower through a LISN that provides a 500hm/50U coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.		(MHz)	Quasi-peak	Average				
0.5-5 56 46 5-30 60 50 Reference Plane 40cm Filter Fest Setup: 80cm Filter Reference Plane Fest Mode: Filter Ac power Remark Fest Mode: Charging 1. The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the marpower through a LISN that provides a 500hm/50u coupling impedance of the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.	Limits:	0.15-0.5	66 to 56*					
Test Setup: 5-30 60 50 Reference Plane Image: EUT Featrack								
Test Setup: Image: Test table/Insulation plane B0cm LISN Filter AC power Remark: E.U.T. Fact power EMI Filter AC power Remark: E.U.T. Est table/Insulation plane EMI Filter AC power Test Mode: Charging Test Mode: Charging 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). The provides a 500hm/500H coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the map ower through a LISN that provides a 500hm/500 coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.								
Test Setup: Image: Constraint of the set o		Reference	e Plane					
 Test Procedure: 1. The E.U.T is connected to an adapter through a linimpedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the mapower through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup are photographs). 3. Both sides of A.C. line are checked for maximu emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 	-	E.U.T AC powe Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization IN Test table height=0.8m	ENI Receiver	-] — AC power				
 impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the material power through a LISN that provides a 50ohm/50u coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup are photographs). Both sides of A.C. line are checked for maximute conducted interference. In order to find the maximute emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 	Test Mode:							
	Test Procedure:	 impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 						
	Test Result:	PASS						

Page 10 of 82


5.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2024
Line-5	тст	CE-05	/	Jul. 03, 2023
EMI Test Software	Shurple Technology	EZ-EMC	1	1

Page 11 of 82

5.2.3. Test data

Note:

12.8940

12.8940

16.99

7.32

10.16

10.16

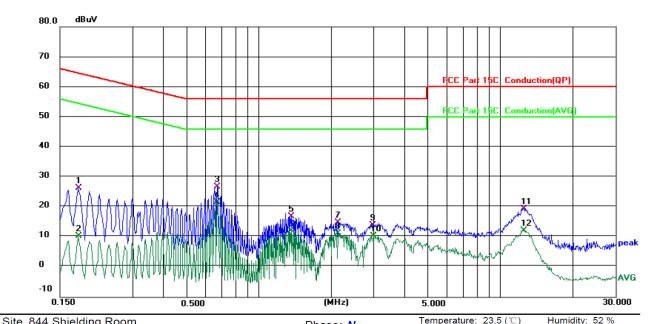
27.15

17.48

11

12

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz


60.00 -32.85

50.00 -32.52

QP

AVG

Page 12 of 82

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site	844	Shielding	Room			Pha	se: N		emperature. 23.5 (C)	Humany. 52 %
Lim	it: FC	C Part 15	C Conducti	ion(QP)		Pow	er:DC 5	V(Adapter	r Input AC 120 V/60 I	Hz)
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1780	16.17	10.13	26.30	64.58	-38.28	QP		
2		0.1780	0.14	10.13	10.27	54.58	-44.31	AVG		
3		0.6740	17.51	9.30	26.81	56.00	-29.19	QP		
4	*	0.6740	12.40	9.30	21.70	46.00	-24.30	AVG		
5		1.3700	6.77	10.01	16.78	56.00	-39.22	QP		
6		1.3700	2.11	10.01	12.12	46.00	-33.88	AVG		
7		2.1300	4.77	10.02	14.79	56.00	-41.21	QP		
8		2.1300	1.29	10.02	11.31	46.00	-34.69	AVG		
9		2.9620	3.97	10.05	14.02	56.00	-41.98	QP		
10		2.9820	0.39	10.05	10.44	46.00	-35.56	AVG		
11		12.5380	9.16	10.23	19.39	60.00	-40.61	QP		
12		12.5380	2.00	10.23	12.23	50.00	-37.77	AVG		
-										

Note1:

Freq. = Emission frequency in MHz

TCT通测检测 TCT通测检测

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

1. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the
	peak of the emission.

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	\bigcirc 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A C
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1

Page 16 of 82

5.6. Hopping Channel Number

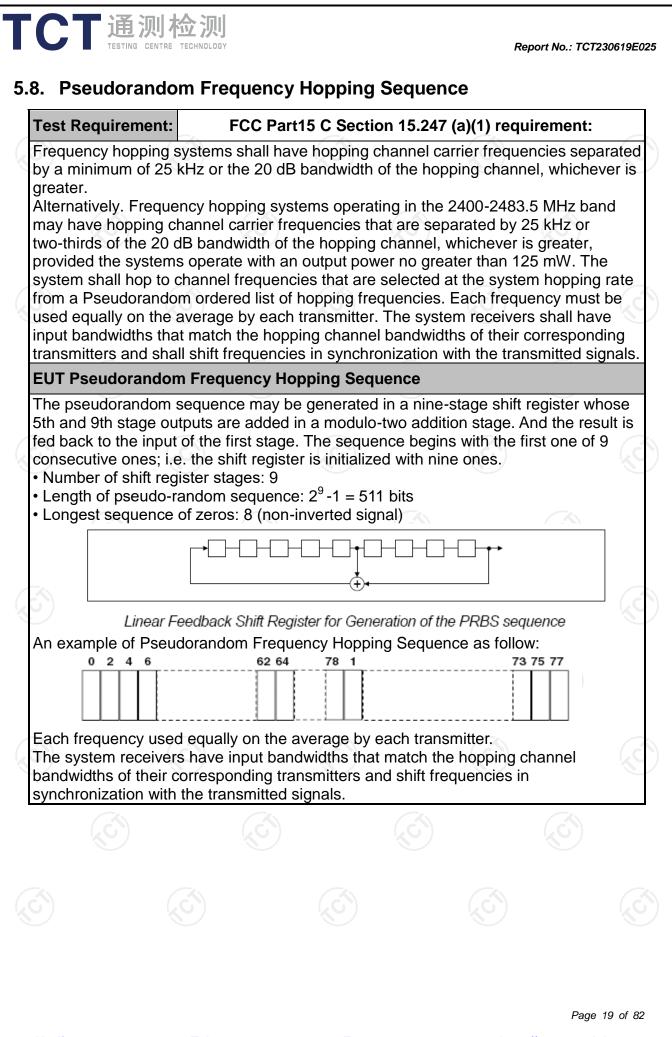
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	
Test Mode:	Spectrum Analyzer EUT
Test Mode.	
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS
5.6.2 Tost Instruments	

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	/
	(.G)			(\mathbf{G})

5.7. Dwell Time


5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

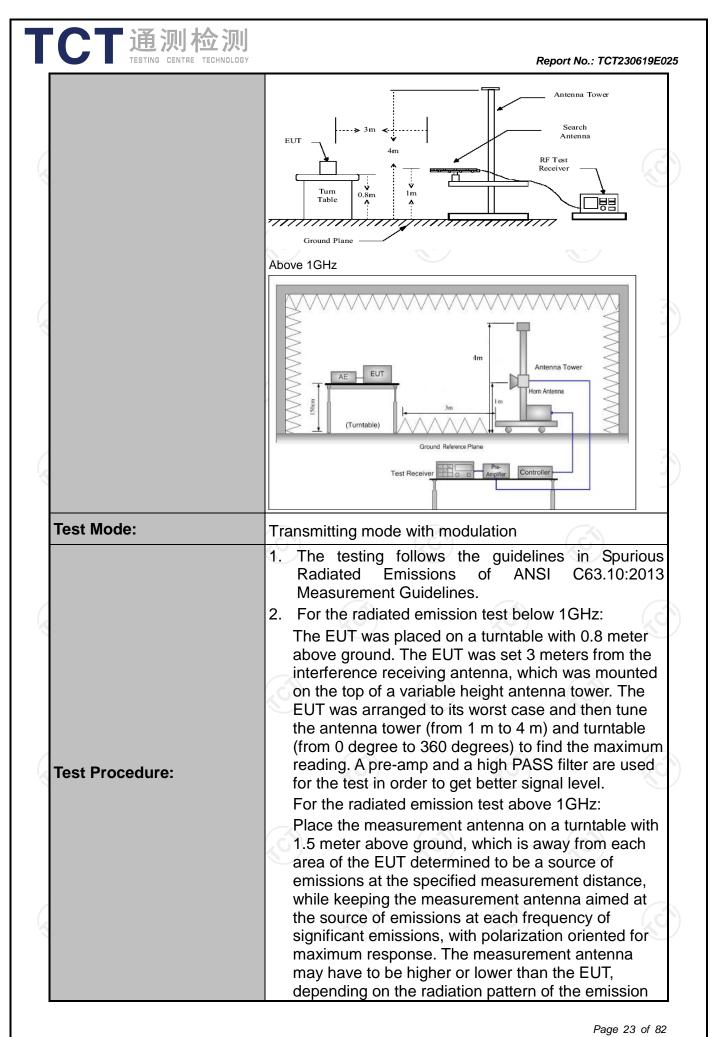
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1
(\mathcal{A}^{*})	() ()		\mathcal{S}	$(\mathcal{A}\mathcal{G})$

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

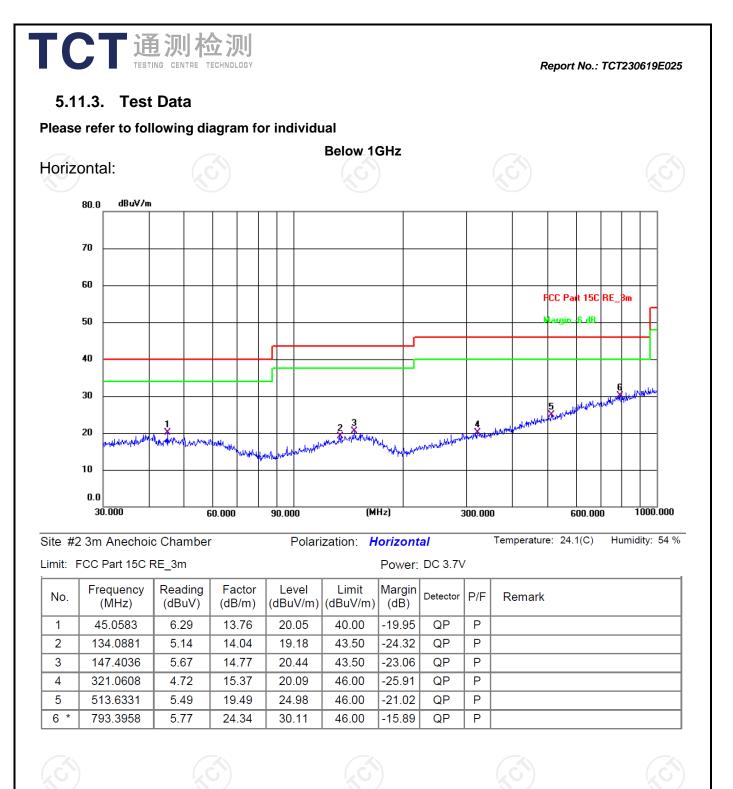

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	۲ (S	

5.11.1. Test Specification

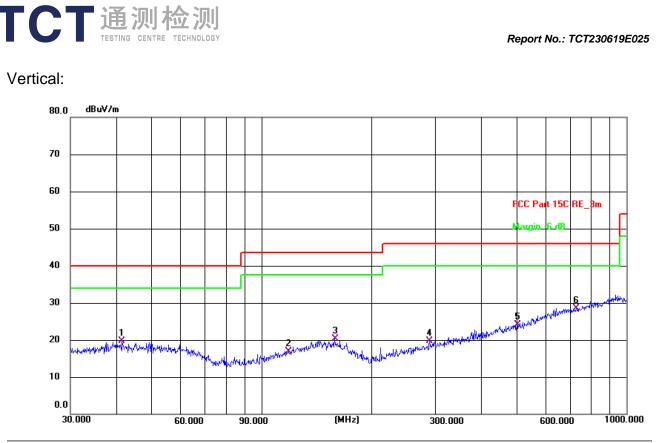
TCT通测检测 TESTING CENTRE TECHNOLOGY

ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Frequency 9kHz- 150kHz	GHz	3)			
3 m Horizontal &		3			
Horizontal &	Martical	9			
Frequency				N.)
	vertical				
	Detector	RBW	VBW	F	Remark
	Quasi-peak		1kHz		-peak Value
150kHz- 30MHz	Quasi-peak		30kHz		-peak Value
30MHz-1GHz					-peak Value
Above 1GHz					ak Value rage Value
	T Cak				
Frequen	ю		-		asurement nce (meters)
0.009-0.4	490			Distall	300
					30
		30			30
	1				3
				3	
				3	
	(micro	-	(meter		Detector Average
Above 1GHz	z				Average Peak
Dis EUT 0.8m	stance = 3m				
	5	(C)		
	30MHz-1GHz Above 1GHz 0.009-0.4 0.490-1.1 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GH2 For radiated emi	30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 216-960 Above 960 Frequency Field (micro: Above 1GHz) For radiated emissions below Distance = 3m 0.3m Image: Comparison of the second	30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz 0.009-0.490 2400/F(t 0.490-1.705 24000/F(t 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Above 1GHz 500 For radiated emissions below 30MHz Pistance = 3m Im Ground Plane	30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 0.490-1.705 24000/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 960 500 30 30 88-216 150 216-960 200 Above 960 500 S000 3 Frequency Field Strength (microvolts/meter) Above 1GHz 500 5000 3 For radiated emissions below 30MHz Distance = 3m Image: Strength of the str	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-Peak Above 1GHz Peak 1MHz 3MHz Peek Frequency Field Strength (microvolts/meter) Mea 0.009-0.490 2400/F(KHz) Distant 0.490-1.705 24000/F(KHz) Distant 1.705-30 30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Measurement Distance (meters) Above 1GHz 500 3 3 For radiated emissions below 30MHz Distance = 3m Compute for each of the second secon

	receiving the maxim measurement anter maximizes the emis antenna elevation for restricted to a range above the ground of 3. Set to the maximu EUT transmit contin 4. Use the following s (1) Span shall wide emission being (2) Set RBW=120 for f>1GHz ; VI Sweep = auto = max hold for (3) For average m correction fact	EUT transmit continuously.							
	On time =N1*L Where N1 is r length of type Average Emis Level + 20*log Corrected Rea	1+N2*L2++Nn-1*LNn-1 number of type 1 pulses, 1 pulses, etc. ssion Level = Peak Emiss g(Duty cycle) iding: Antenna Factor + C	L1 is sion able						
Test results:	On time =N1*L Where N1 is r length of type Average Emis Level + 20*log Corrected Rea	1+N2*L2++Nn-1*LNn-1 number of type 1 pulses, a 1 pulses, etc. ssion Level = Peak Emiss g(Duty cycle)	L1 is sion able						
Test results:	On time =N1*L Where N1 is r length of type Average Emis Level + 20*log Corrected Rea Loss + Read Lo	1+N2*L2++Nn-1*LNn-1 number of type 1 pulses, 1 pulses, etc. ssion Level = Peak Emiss g(Duty cycle) iding: Antenna Factor + C	L1 is sion able						
Test results:	On time =N1*L Where N1 is r length of type Average Emis Level + 20*log Corrected Rea Loss + Read Lo	1+N2*L2++Nn-1*LNn-1 number of type 1 pulses, 1 pulses, etc. ssion Level = Peak Emiss g(Duty cycle) iding: Antenna Factor + C	L1 is sion able						
Test results:	On time =N1*L Where N1 is r length of type Average Emis Level + 20*log Corrected Rea Loss + Read Lo	1+N2*L2++Nn-1*LNn-1 number of type 1 pulses, 1 pulses, etc. ssion Level = Peak Emiss g(Duty cycle) iding: Antenna Factor + C	L1 is sion able						



5.11.2. Test Instruments


	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2023
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2023
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2023
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Antenna Mast	Keleto	RE-AM	1	
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC	Res Contraction	, «

Page 25 of 82

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 26 of 82

Site #2	2 3m Anechoi	c Chambei	r	Polari	zation: V	ertical			Temperature: 24.1(C)	Humidity: 54 %
Limit: I	nit: FCC Part 15C RE_3m Power: DC 3.7 V									
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	41.5670	5.51	14.10	19.61	40.00	-20.39	QP	Ρ		
2	118.6013	4.11	12.83	16.94	43.50	-26.56	QP	Ρ		
3	158.6677	5.35	14.91	20.26	43.50	-23.24	QP	Ρ		
4	289.0020	5.31	14.33	19.64	46.00	-26.36	QP	Ρ		
5	501.1790	4.86	19.31	24.17	46.00	-21.83	QP	Ρ		
6 *	729.3582	5.27	23.24	28.51	46.00	-17.49	QP	Ρ		

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK) and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.

3. Freq. = Emission frequency in MHz

- Measurement $(dB\mu V/m) = Reading \, level (dB\mu V) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss Pre-amplifier$
- Limit ($dB\mu V/m$) = Limit stated in standard

 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Page 27 of 82

			立 测 ECHNOLOGY						Re	eport No.: 1	TCT230619E0	025
			Test Res	sult of Rad	diated S	purious	at Ban	d ed	ges			
Lowes	st channel	2402:										
Horizo	ontal:											
	100.0 dBu¥/m	0										
	90											
	80					٨						
								FCC	part 15.247 b	andedge(pea	ək]	
	70											
	60					\square		FCC	part 15.247 l	andedge(AV)		
	50											
	40	hmmh	mm	mant	un t	J Im	min		muhan	www		eak
	30											
	20											
	10					_						
	0.0 2300.000 23	20.00 23	40.00 23	360.00 23	80.00 (MHz)	2420.00	244	0.00 246	0.00 248	30.00 2500.	.00
Site: t	#3.3m Anech											
		oic Chamb	er	Polarizati	ion: Hor	izontal	Te	mpera	ature: 24(℃)	Hun	nidity: 52 %	
Limit:	FCC part 15.	oic Chamb 247 bande		Polarizati		i zontal Power:D		empera	ature: 24(℃)	Hun	nidity: 52 %	
Limit: No.	FCC part 15. Frequency	247 bande Reading	edge(peak Factor	() Level	Limit	Power:D Margin	C 3.7 V		nture: 24(℃) Remark	Hun	nidity: 52 %	_
	FCC part 15.	.247 bande	edge(peak	()	Limit	Power:D Margin	C 3.7 V Detector			Hun	nidity: 52 %	
No.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin (dB)	C 3.7 V Detector	P/F		Hun	nidity: 52 %	
No.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin (dB)	C 3.7 V Detector	P/F		Hun	nidity: 52 %	
No.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin (dB)	C 3.7 V Detector	P/F		Hun	nidity: 52 %	
No.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin (dB)	C 3.7 V Detector	P/F		Hun	nidity: 52 %	
No.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin (dB)	C 3.7 V Detector	P/F		Hun	nidity: 52 %	
No.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin (dB)	C 3.7 V Detector	P/F		Hun	nidity: 52 %	
No.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin (dB)	C 3.7 V Detector	P/F		Hun	nidity: 52 %	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

						1).0 dBuV/m	10
										90
47 bandedge(peak)	part 15.247 b	FCC	_	A						80
										70
47 bandedge(AV)	part 15.247 b	FCC								60
										50 40
manum	mm	~~~	- dun	home	monitand		wann	manna	mm	30
										20
									•	10 0.
2460.00 2480.00	0.00 246	244	420.00	lz) 2	0.00 (MI	60.00 238	10.00 23	20.00 234		
(°C) Humidity:	ture: 24(℃)	nperat				Polarizati		oic Chamb		
ork	Remark		3.7 V Detector	ower:DC Margin	Limit) Level	dge(peak Factor	247 bande Reading	CC part 15.	F
атк	Remark	P/F	peak	(dB) -38.15	(dBuV/m) 74.00	(dBuV/m) 35.85	(dB/m) -15.76	(dBuV) 51.61	(MHz) 2390.000).

	CT 通		ECHNOLOGY						ŀ	Report No.	.: TCT2:	30619E025
	est channe	12480:										
orizo	ontal:											
	100.0 dBuV/m											
	90											
	80											
	70							FCC	part 15.247	bandedge(j	pelaik]	
	60											
	50							FCC	part 15.247	bandedge(/		
	40										*	
	30	m	mm	mont	maria	m	mm	~~~~	manth	mm	× h	mal peak
	20											
	10											
	0.0											
	2300.000 23	320.00 23	40.00 23	360.00 23	80.00 (1	MHz)	2420.00	244).00 24	60.00 2	2480.00	2500.00
· ,									• • • • •			
ite:	#3 3m Anech	ioic Chamb	ber	Polarizat	ion: Hori	zontal	Те	mperat	ure: 24(℃) H	lumidity:	52 %
	FCC part 15	.247 bande	edge(peak	()	-	Power:D	0C 3.7 V	mperat	ure: 24(°C	·) H	lumidity:	52 %
mit: Io.					Limit	Power:D Margin	0C 3.7 V		Remark		lumidity:	52 %
mit:	FCC part 15 Frequency	.247 bande Reading	edge(peak Factor	() Level	Limit	Power:D Margin	Detector				lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F				52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F				52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F				52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F				52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F				52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %
mit: Io.	FCC part 15 Frequency (MHz)	.247 bande Reading (dBuV)	edge(peak Factor (dB/m)	() Level (dBuV/m)	Limit (dBuV/m	Power:D Margin) (dB)	Detector	P/F			lumidity:	52 %

	10.0 dBuV/m											
90												
80												
70								FCC	part 15.247	bandedge(p	eakj	
60	,										Ш	
50	, <u> </u>							FCC	part 15.247	bandedge(/		
40	ı											_
30	I man	mmun	man	him	mm	~~~~		~~~~	ma	have		hur
20	ı										_	
10	ı											
C).0 2300.000 23	320.00 23	40.00 23	860.00 238	B0.00	(MHz)	2420.00	244	0.00 24	60.00 2	480.00	250
	2483.500	60.16	-15.41	44.75	74.00) -29.25	peak	P				
	easurement	's were con	ducted in						1			
(F) was subm			odulatior	n (GFSK, I	Pi/4 DQF	, PSK), i	and the wo	orst case	Mode	
(F) was subm			odulation	n (GFSK, I	Pi/4 DQF	PSK), i	and the wo	orst case	Mode	
		i) was subm			odulation	n (GFSK, I	Pi/4 DQF	PSK), (orst case	Mode	
		i) was subr			odulation	n (GFSK, I	Pi/4 DQF	2SK), ι		orst case	Mode	
		') was subr			odulation	n (GFSK, I	Pi/4 DQF	2SK), ι		orst case	Mode	
		') was subr			odulation	n (GFSK, I	Pi/4 DQF	èSK), i		orst case	Mode	
		i) was subr			odulation		Pi/4 DQF	, PSK), ,		orst case	Mode	
		') was subr			odulation	n (GFSK, I	Pi/4 DQF	PSK), .		orst case	Mode	
) was subr			odulation	n (GFSK, I	Pi/4 DQF	PSK), (orst case	Mode	
		') was subr				n (GFSK, I	Pi/4 DQF	PSK), .		orst case	Mode	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Above 1GHz

Modulation	Type: Pi/4	4 DQPSK							
Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	43.31		0.66	43.97		74	54	-10.03
7206	Н	34.50		9.50	44.00		74	54	-10.00
	H								
((\mathbf{G})		(.C)			.G`)		(.c.)	
4804	V	46.32		0.66	46.98		74	54	-7.02
7206	V	37.04		9.50	46.54		74	54	-7.46
	V								

Middle cha	nnel: 2441	MHz		N N) (
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	Н	45.03		0.99	46.02	(.	74	54	-7.98
7323	KCĤ)	34.62	-1,0	9.87	44.49	<u>(</u> 01)-	74	54	-9.51
	Ĥ					<u> </u>			
4882	V	46.45		0.99	47.44		74	54	-6.56
7323	V	36.40		9.87	46.27		74	54	-7.73
	V			🔨	/				

High chann	nel: 2480 N	ЛНz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	A \ /	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	44.33)	1.33	45.66		74	54	-8.34
7440	Н	35.92		10.22	46.14		74	54	-7.86
	Н	-							
G)		(.G)		(.0			(.G)		(.C
4960	V	44.55		1.33 🔪	45.88		74	54	-8.12
7440	V	33.41		10.22	43.63		74	54	-10.37
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

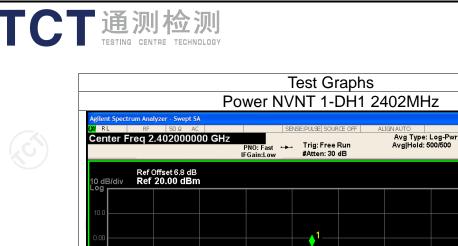
below the limits or the field strength is too small to be measured.

CT 通测检测 TESTING CENTRE TECHNOLOGY

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Pi/4 DQPSK,) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

8. Left earbud and right earbud have been tested, but the test data only show the worst case in this report, and we found the worst case is left earbuds.

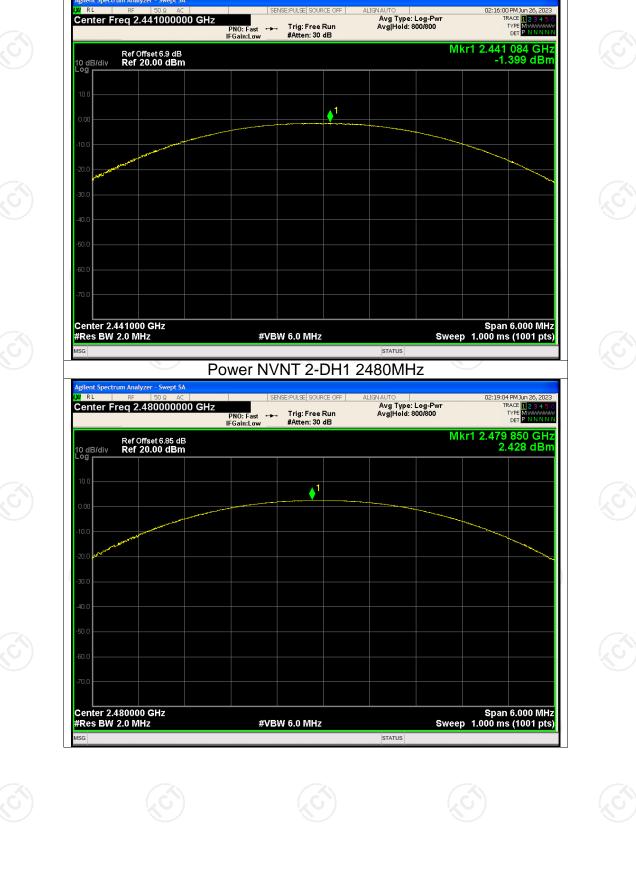

Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-3.87	30	Pass
NVNT	1-DH1	2441	-2.30	30	Pass
NVNT	1-DH1	2480	1.59	30	Pass
NVNT	2-DH1	2402	-3.02	21	Pass
NVNT	2-DH1	2441	-1.40	21	Pass
NVNT	2-DH1	2480	2.43	21	Pass

#VBW 3.0 MHz

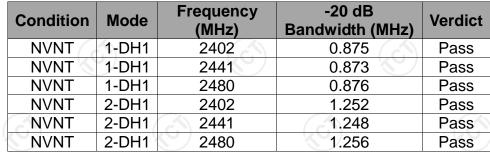
Center 2.402000 GHz #Res BW 1.0 MHz :30:28 PM Jun 26, 2023


Mkr1 2.401 829 GHz -3.869 dBm

Span 3.000 MHz Sweep 1.000 ms (1001 pts)

TRACE 123456 TYPE MWWWWW DET PNNNNN

Page 34 of 82


Power NVNT 2-DH1 2441MHz

RL

gilent Spectrum Analyzer - Swept SA

Report No.: TCT230619E025

Page 36 of 82

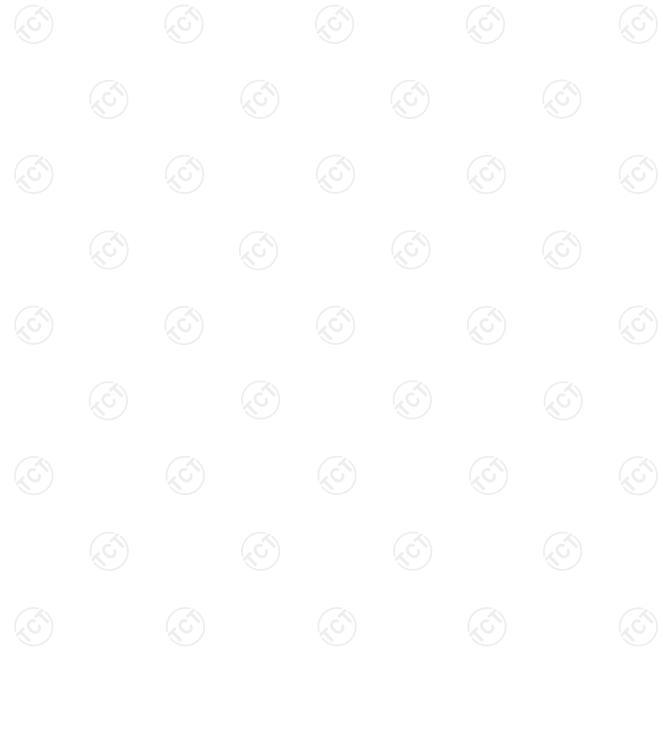
-20dB Bandwidth


Page 37 of 82

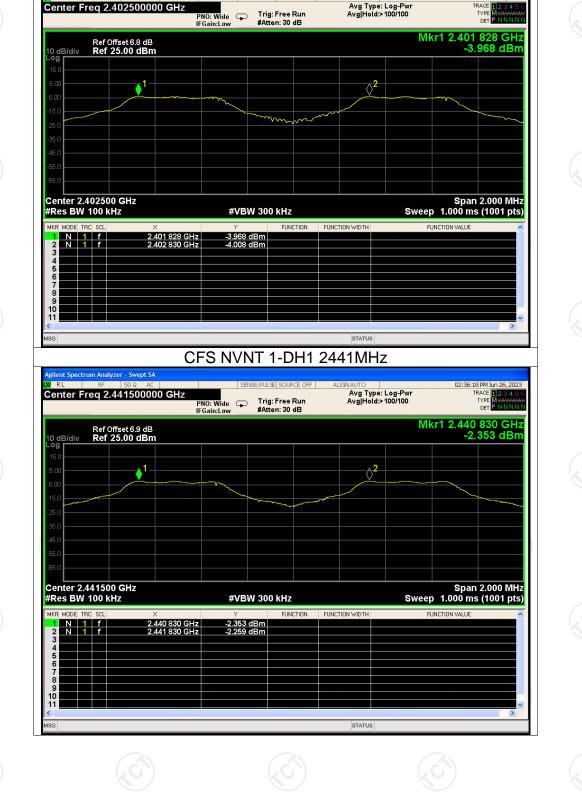
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT230619E025

Page 38 of 82



Report No.: TCT230619E025


Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.828	2402.830	1.002	0.876	Pass
NVNT	1-DH1	2440.830	2441.830	1.000	0.876	Pass
NVNT	1-DH1	2478.830	2479.830	1.000	0.876	Pass
NVNT	2-DH1	2401.830	2402.830	1.000	0.837	Pass
NVNT	2-DH1	2440.830	2441.830	1.000	0.837	Pass
NVNT 🔇	2-DH1	2478.830	2479.830	1.000	0.837	Pass

Carrier Frequencies Separation

Page 41 of 82

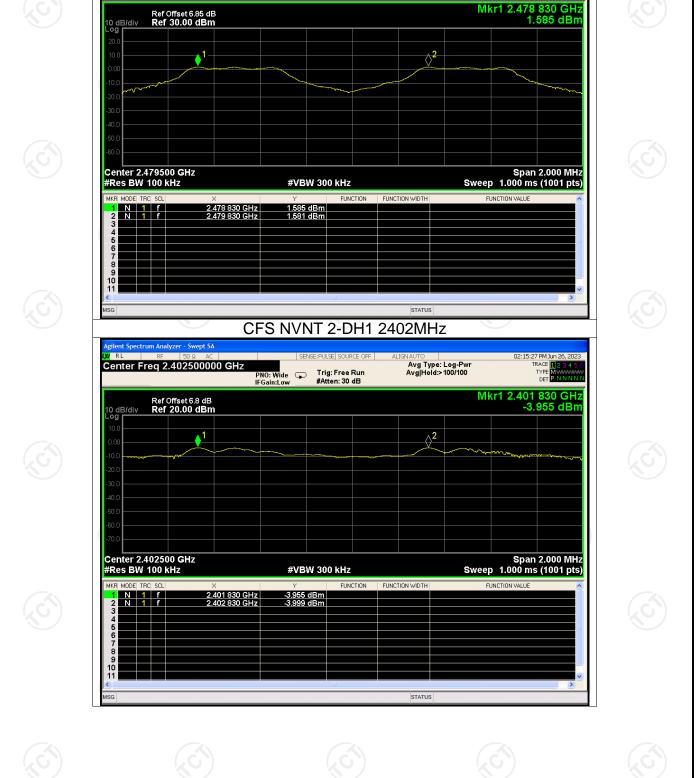
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Test Graphs CFS NVNT 1-DH1 2402MHz

Avg Type: Log-Pwr Avg|Hold:>100/100

SENSE:PULSE SOURCE OFF

Report No.: TCT230619E025


Page 42 of 82

46 PM Jun 26, 2023

RL

gilent Spectrum Analyzer - Swept SA

Center Freq 2.402500000 GHz

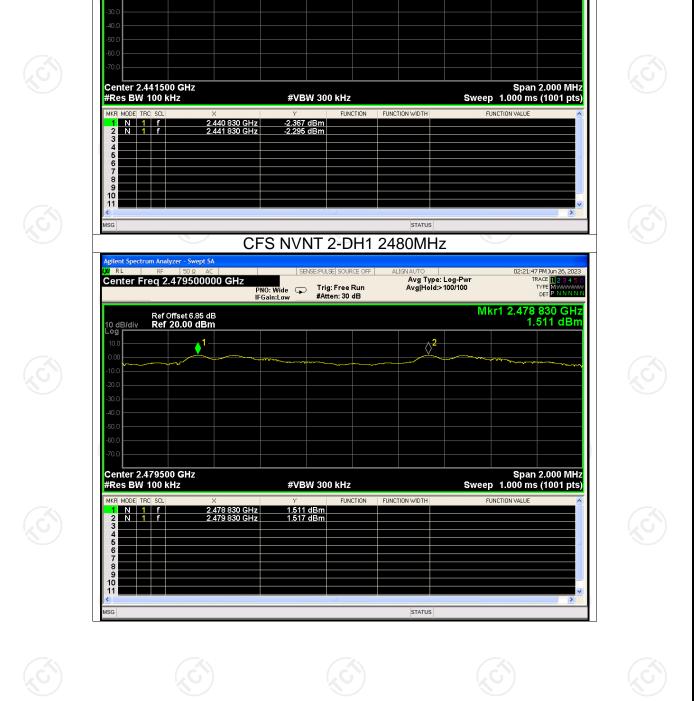
CFS NVNT 1-DH1 2480MHz SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold:>100/100

PNO: Wide Free Run IFGain:Low Atten: 34 dB

FCT通测检测 TESTING CENTRE TECHNOLOGY

RL

gilent Spectrum Analyzer - Swept SA


Center Freq 2.479500000 GHz

Page 43 of 82

Report No.: TCT230619E025

02:39:30 PM Jun 26, 202 TRACE 1 2 3 4 5

TYPE DET

CFS NVNT 2-DH1 2441MHz

PNO: Wide Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold:>100/100

(¢²

FCT通测检测 TESTING CENTRE TECHNOLOGY

RL

10 dB/div Log

gilent Spectrum Analyzer - Swept SA

Center Freq 2.441500000 GHz

Ref Offset 6.9 dB Ref 20.00 dBm

♦¹

Report No.: TCT230619E025

02:18:25 PM Jun 26, 202 TRACE 1 2 3 4 5

TYPE DET

Mkr1 2.440 830 GHz -2.367 dBm

Page 44 of 82

Page 45 of 82

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

			Band Edge			
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-46.87	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-45.11	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-46.42	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-47.71	-20	Pass

Report No.: TCT230619E025

Test Graphs Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref 1:06 PM Jun 26, 2023 Avg Type: Log-Pwr Avg|Hold: 2000/2000

N hour AW

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

Band Edge NVNT 1-DH1 2402MHz **No-Hopping Emission**

STATUS

#VBW 300 kHz

RL	RF	lyzer - Swept S/ 50 Ω AC 35600000	00 GHz	SEP PNO: Fast Gain:Low	ISE:PULSE SOUF Trig: Free #Atten: 30	Run		pe: Log-Pwr Id: 2000/2000		31:39 PM Jun 26, 202 TRACE 12345 TYPE MWWWW DET PNNNN
0 dB/div		Offset 6.8 dB 26.80 dBm							Mkr1 2	.401 8 GH 4.119 dBr
. og 16.8										
5.80										1
3.20										
3.2										-23.93 d
3.2								. 4		
3.2 3.2	والموماني	and frank and the state of the	لعلامهما ومسمومه	مرحوله المالية المراجع	monumation	-	an and the second second		escond and	mark L
53.2										
tart 2.30 Res BW				#VB	N 300 kHz			Sv	Stop weep 9.600	2.40600 GH ms (1001 pt
KR MODE TR	RC SCL		× 2.401 8 GHz	۲ -4.119		CTION	FUNCTION WIDTH		FUNCTION VALU	JE
2 N 1 3 N 1	f		2.400 0 GHz 2.390 0 GHz	-52.167	dBm					
4 N 1	f		2.390 0 GHZ 2.374 8 GHz	-50.796	dBm					
6 7										
8										
1										>

Page 46 of 82

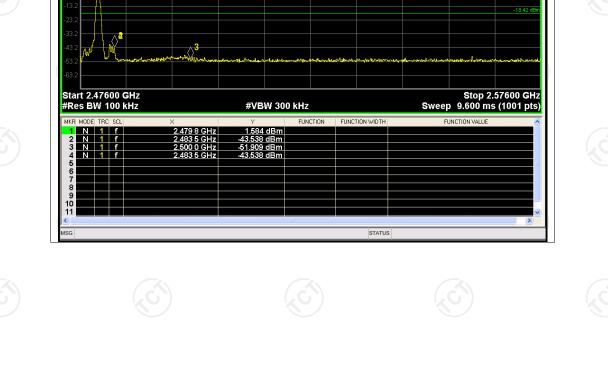
Report No.: TCT230619E025

TRACE 123456 TYPE MMMMMM DET PNNNNN

Mkr1 2.401 832 GHz -3.925 dBm

Span 8.000 MHz Sweep 1.000 ms (1001 pts)

gilent Spectrum Analyzer - Swept SA


Center 2.402000 GHz #Res BW 100 kHz

Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 26.80 dBm

RL

10 dB/div Log r

Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

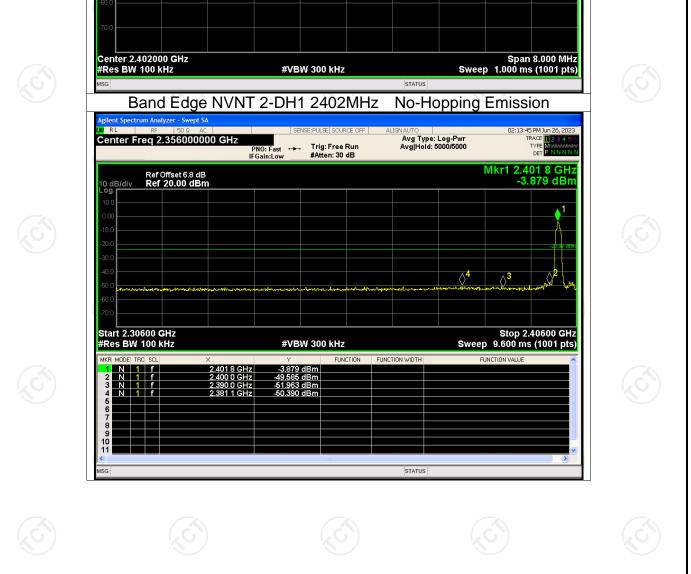
PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 2000/2000

RL

10 dB/div

Center Freq 2.480000000 GHz


Ref Offset 6.85 dB Ref 26.85 dBm

Report No.: TCT230619E025

02:37:33 PM Jun 26, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N

TYPE DET

Mkr1 2.479 832 GHz 1.582 dBm

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

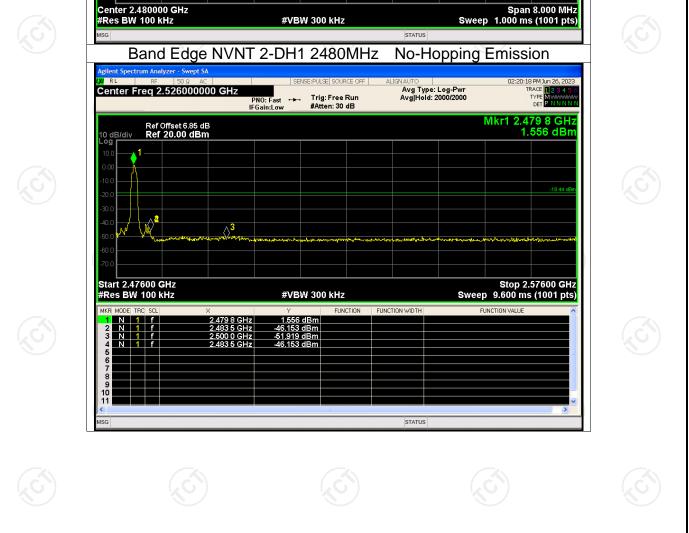
M

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 5000/5000

mm

RL

10 dB/div


Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 20.00 dBm Report No.: TCT230619E025

Page 48 of 82

02:12:25 PM Jun 26, 20 TRACE 1 2 3 4

Туре Милони Det P NNNN Mkr1 2.401 832 GHz -3.965 dBm

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

▲1

SENSE:PULSE SOURCE OFF

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 2000/2000

RL

10 dB/div

Center Freq 2.480000000 GHz

Ref Offset 6.85 dB Ref 20.00 dBm

mmm

~/~

]

Report No.: TCT230619E025

02:19:46 PM Jun 26, 20 TRACE 1234

ТУРЕ Милини Det P NNNN Mkr1 2.479 840 GHz 1.564 dBm

Page 49 of 82

		Page 50

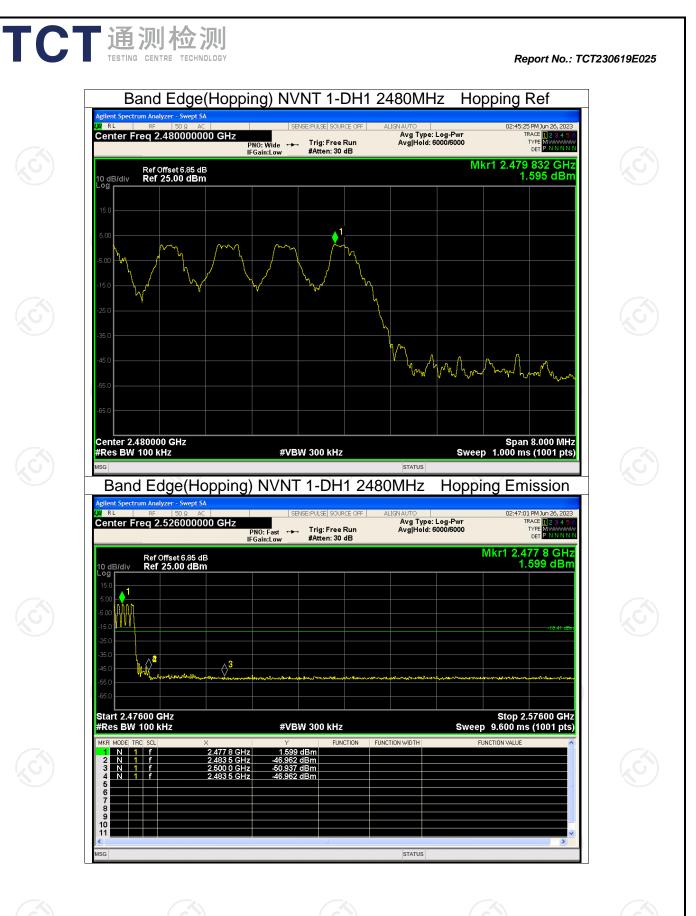
Rand	Edge(Hon	nina)
Dana	Lugu		pilig/

		Balla				
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-46.67	-20	Pass
NVNT	1-DH1	2480	Hopping	-48.56	-20	Pass
NVNT	2-DH1	2402	Hopping	-46.65	-20	Pass
NVNT	2-DH1	2480	Hopping	-50.64	-20	Pass
(

Report No.: TCT230619E025

0 of 82

Test Graphs


Band Edge(Hopping) NVNT 1-DH1 2402MHz

gilent Spectrum Analyzer - Swept SA

Report No.: TCT230619E025

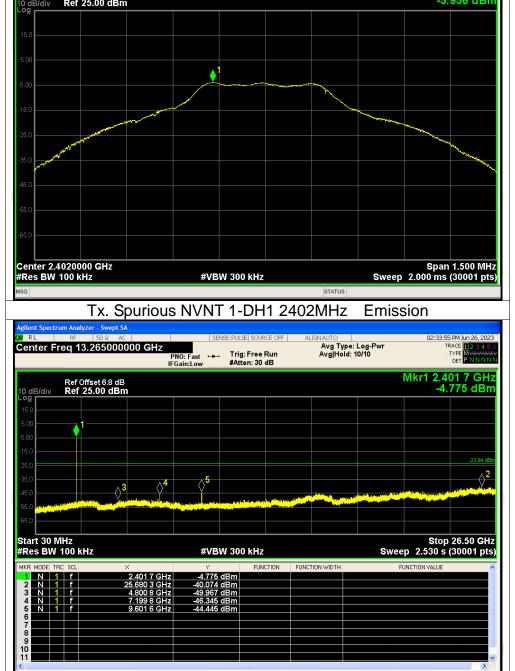
Page 51 of 82

Hopping Ref

Page 52 of 82

Page 53 of 82

Report No.: TCT230619E025



Conducted	RF	Spurious	Fmission
Conducted	111	opulious	

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-36.13	-20	Pass
NVNT	1-DH1	2441	-37.48	-20	Pass
NVNT	1-DH1	2480	-41.96	-20	Pass
NVNT	2-DH1	2402	-41.50	-20	Pass
NVNT	2-DH1	2441	-46.29	-20	Pass
NVNT	2-DH1	2480	-48.50	-20	Pass

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Tx. Spurious NVNT 1-DH1 2402MHz Ref gilent Spectrum Analyzer - Swept SA RL :33:26 PM Jun 26, 2023 SENSE:PULSE SOURCE OF Center Freq 2.402000000 GHz PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 1000/1000 Mkr1 2.401 829 85 GHz -3.936 dBm Ref Offset 6.8 dB Ref 25.00 dBm 10 dB/div Log

Test Graphs

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT230619E025

TRACE 123456 TYPE MMMMMM DET PNNNNN

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Center 2.4410000 GHz Span 1.500 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.000 ms (30001 pts) Msg status

Tx. Spurious NVNT 1-DH1 2441MHz Emission

RL RF nter Freq 1	50 Ω AC 3.2650000	000 GHz	NO: Fast Gain:Low	NSE:PULSE S Trig: Fi #Atten:	ee Run			Log-Pwr 10/10		TYP	1 Jun 26, 2 E <mark>1 2 3</mark> 4 E M WWW T P N N N
dB/div Ref	Offset 6.9 dB 26.90 dB m								Mkr1	2.441 -2.62	
9											
	1										
•											
1											
1											-22.34
1											
1		<mark>4</mark>	5								a harden arte
1		terhanstand in		a part and a second	an a pridate.						ris o Marilli
and the second			ter and the second		(in all Middle						tin on Marine Sta
and the second											
art 30 MHz	۲		#VB	W 300 k	Hz			Sw	reep 2.5	Stop 26	6.50 G 0001 j
art 30 MHz es BW 100 k	>		Y		Hz Function	FUNCTION W	IDTH	Sw	reep 2.5	30 s (30	6.50 G 0001 p
1 art 30 MHz es BW 100 k 1 MODE TRC SCL N 1 f	>	2.441 4 GHz	Y -2.628	dBm		FUNCTION W	IDTH	Sw	-	30 s (30	6.50 G 0001 p
Art 30 MHz es BW 100 k Mode TRC SCL N 1 f	>		Y -2.628 -39.821	dBm dBm		FUNCTION W	IDTH	Sw	-	30 s (30	6.50 G 0001 p
art 30 MHz es BW 100 k MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2	2.441 4 GHz 26.132 9 GHz 4.898 7 GHz 7.317 2 GHz	-2.628 -39.821 -49.807 -46.997	dBm dBm dBm dBm		FUNCTION W	IDTH	Sw	-	30 s (30	6.50 G 0001 p
art 30 MHz es BW 100 k MODE TRC SCL N 1 f N 1 f	2	2.441 4 GHz 26.132 9 GHz 4.898 7 GHz	-2.628 -39.821 -49.807	dBm dBm dBm dBm		FUNCTION W	IDTH	Sw	-	30 s (30	6.50 G 0001 p
1 art 30 MHz es BW 100 k N 1 f N 1 f N 1 f N 1 f N 1 f	2	2.441 4 GHz 26.132 9 GHz 4.898 7 GHz 7.317 2 GHz	-2.628 -39.821 -49.807 -46.997	dBm dBm dBm dBm		FUNCTION W		Sw	-	30 s (30	6.50 G
art 30 MHz es BW 100 k MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2	2.441 4 GHz 26.132 9 GHz 4.898 7 GHz 7.317 2 GHz	-2.628 -39.821 -49.807 -46.997	dBm dBm dBm dBm		FUNCTION W		Sw	-	30 s (30	6.50 G
art 30 MHz es BW 100 k MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2	2.441 4 GHz 26.132 9 GHz 4.898 7 GHz 7.317 2 GHz	-2.628 -39.821 -49.807 -46.997	dBm dBm dBm dBm		FUNCTION W		Sw	-	30 s (30	6.50 G 0001 p
art 30 MHz es BW 100 k Mode TRC SCL N 1 f N 1 f N 1 f N 1 f	2	2.441 4 GHz 26.132 9 GHz 4.898 7 GHz 7.317 2 GHz	-2.628 -39.821 -49.807 -46.997	dBm dBm dBm dBm		FUNCTION W		Sw	-	30 s (30	6.50 G

Report No.: TCT230619E025

Tx. Spurious NVNT 1-DH1 2480MHz

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 2000/2000

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectr

Center Freq 2.480000000 GHz

Ref Offset 6.85 dB Ref 25.00 dBm

RL

10 dB/div

RL

Center Freq 13.265000000 GHz

Ref Offset 6.85 dB Ref 25.00 dBm

Tx. Spurious NVNT 1-DH1 2480MHz Emission

Avg Type: Log-Pwr Avg|Hold: 10/10

SENSE:PULSE SOURCE OFF

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

Page 58 of 82

Report No.: TCT230619E025

02:38:42 PM Jun 26, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

13 PM Jun 26, 2023 TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN

TYPE DET Mkr1 2.480 2 GHz 1.283 dBm

Mkr1 2.479 830 85 GHz 1.560 dBm

Ref

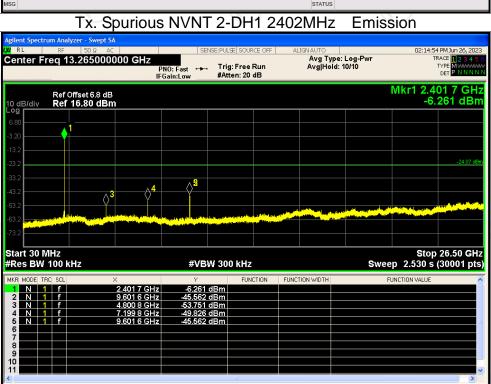
Page 59 of 82

Tx. Spurious NVNT 2-DH1 2402MHz

PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 2000/2000

TCT通测检测 TESTING CENTRE TECHNOLOGY

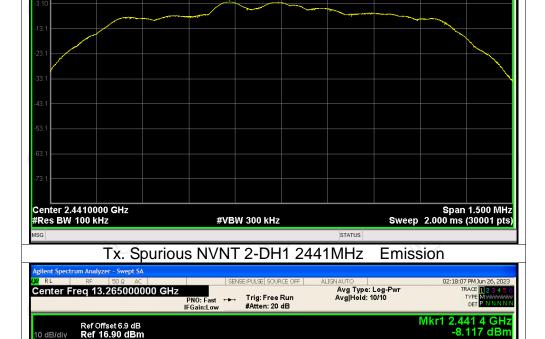

gilent Spectr

Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 16.80 dBm

RL

10 dB/div


Report No.: TCT230619E025

02:14:22 PM Jun 26, 202 TRACE 12345 TYPE MWWWW DET PNNN

Mkr1 2.401 828 90 GHz -4.065 dBm

Ref

Tx. Spurious NVNT 2-DH1 2441MHz

PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB

1

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 2000/2000

gilent Spectr

Center Freq 2.441000000 GHz

Ref Offset 6.9 dB Ref 16.90 dBm

RL

10 dB/div

10 dB/di Log

Report No.: TCT230619E025

02:17:38 PM Jun 26, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Mkr1 2.440 830 45 GHz -2.429 dBm

Ref

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

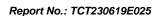
SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 2000/2000 RL 02:20:56 PM Jun 26, 202 TRACE 12345 TYPE MWWWM DET PNNN Center Freq 2.480000000 GHz PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.479 830 05 GHz 1.444 dBm Ref Offset 6.85 dB Ref 16.85 dBm 10 dB/div ١ Center 2.4800000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT 2-DH1 2480MHz Emission 25 PM Jun 26, 202 TRACE 1 2 3 4 5 TYPE MWAAAAA DET P N N N N RL SENSE:PULSE SOURCE OFF Avg Type: Log-Pwr Avg|Hold: 10/10 Center Freq 13.265000000 GHz

PNO: Fast ↔→ Trig: Free Run IFGain:Low #Atten: 20 dB

03

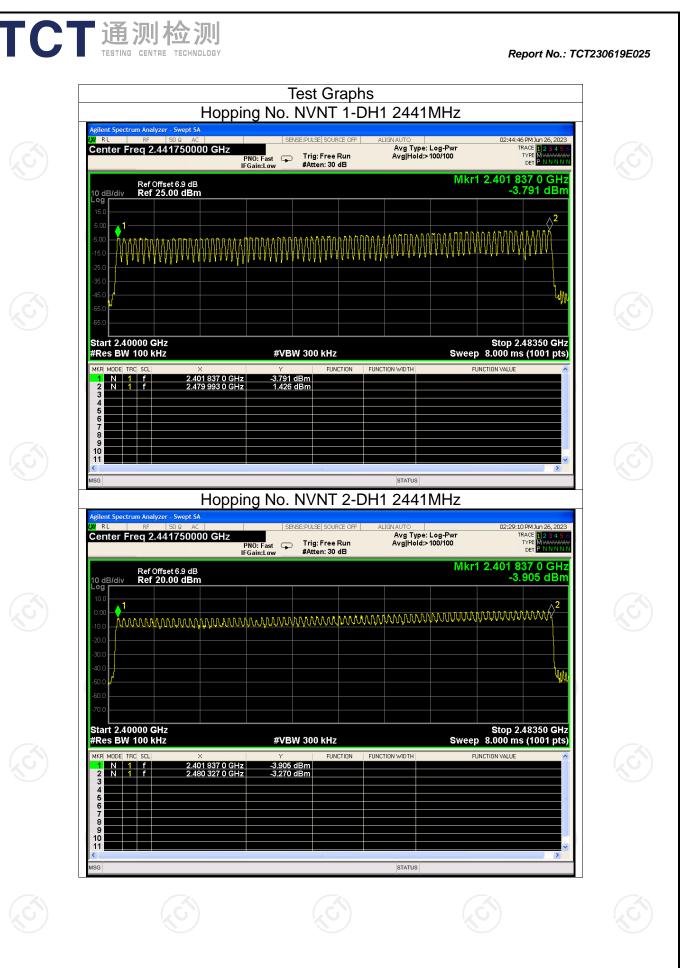
Ref Offset 6.85 dB Ref 16.85 dBm

10 dB/di Log


Page 61 of 82

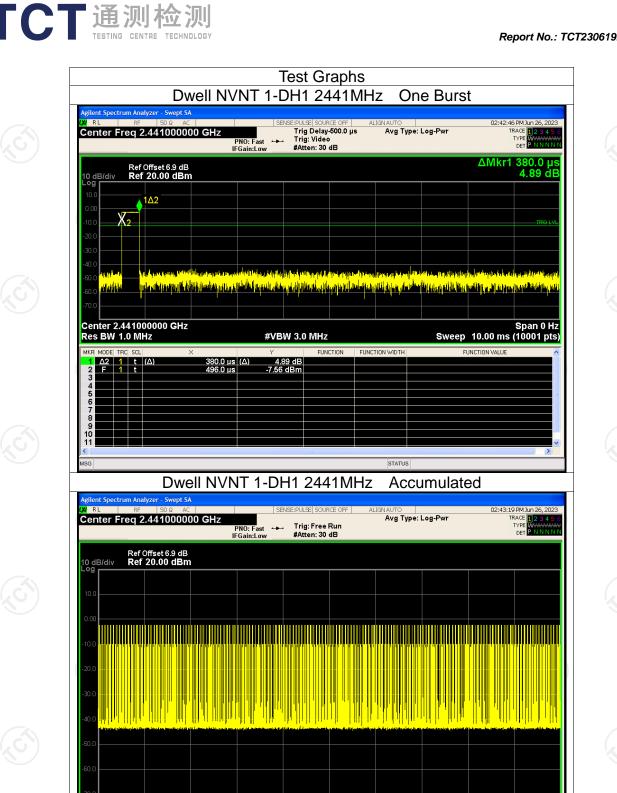
Ref

Tx. Spurious NVNT 2-DH1 2480MHz


TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectr

TYPE DET Mkr1 2.480 2 GHz -0.208 dBm


Verd Pas	Limit 15	g Channe lumber	lopping N 79	e F 1	Mode 1-DH	Condition NVNT	C
Pas	15		79		2-DH	NVNT	

Dwell Time								
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.38	120.84	318	31600	400	Pass
NVNT	1-DH3	2441	1.64	260.76	159	31600	400	Pass
NVNT	1-DH5	2441	2.89	268.77	93	31600	400	Pass
NVNT 🐇	2-DH1	2441	0.39	123.24	316	31600	400	Pass
NVNT	2-DH3	2441	1.64	272.24	166	31600	400	Pass
NVNT	2-DH5	2441	2.89	300.56	104	31600	400	Pass
Ś				<u>c</u>				

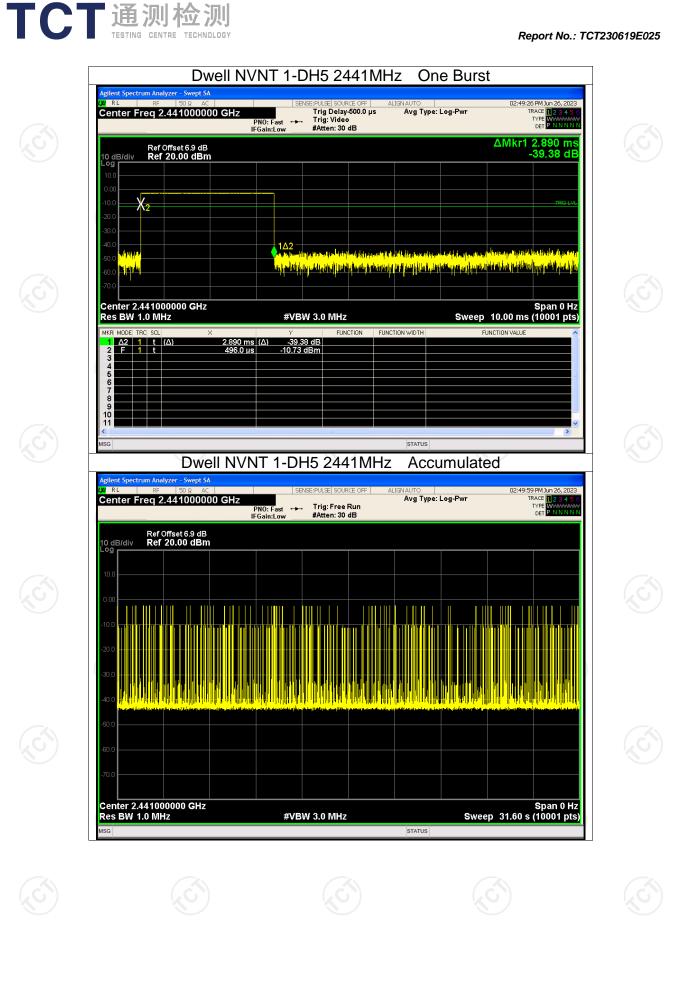
Page 64 of 82

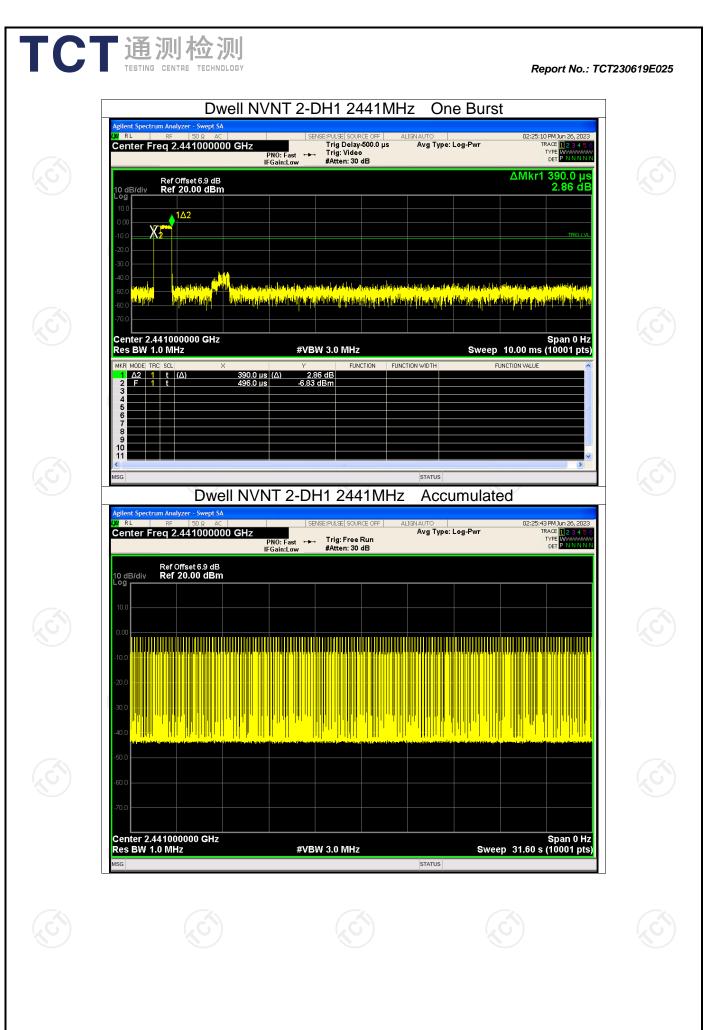
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

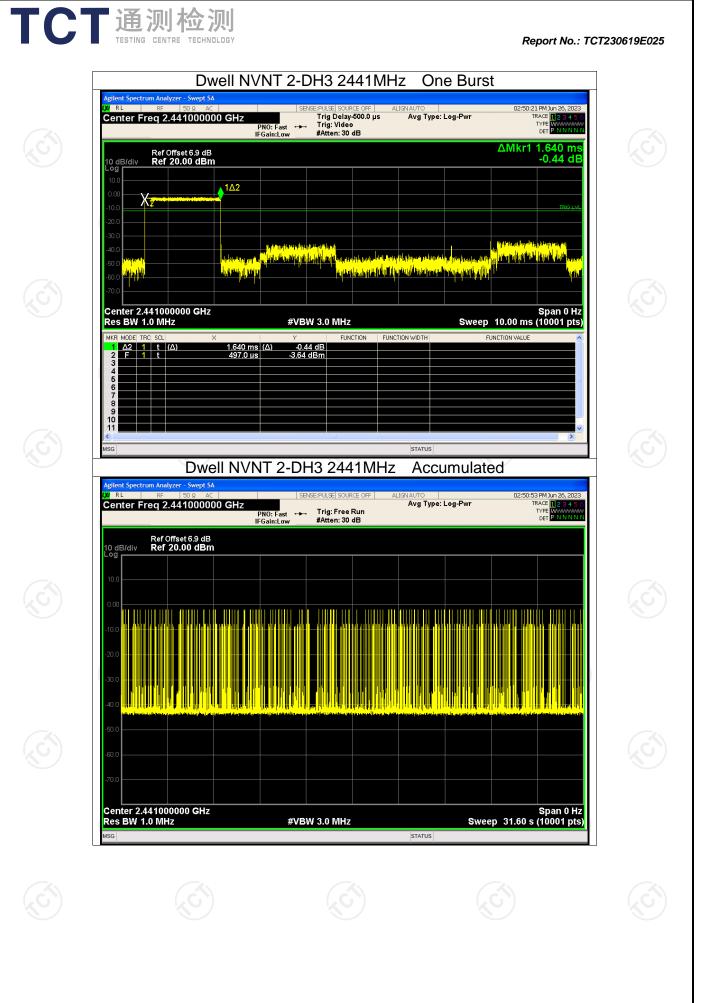
Page 65 of 82

Span 0 Hz Sweep 31.60 s (10001 pts)

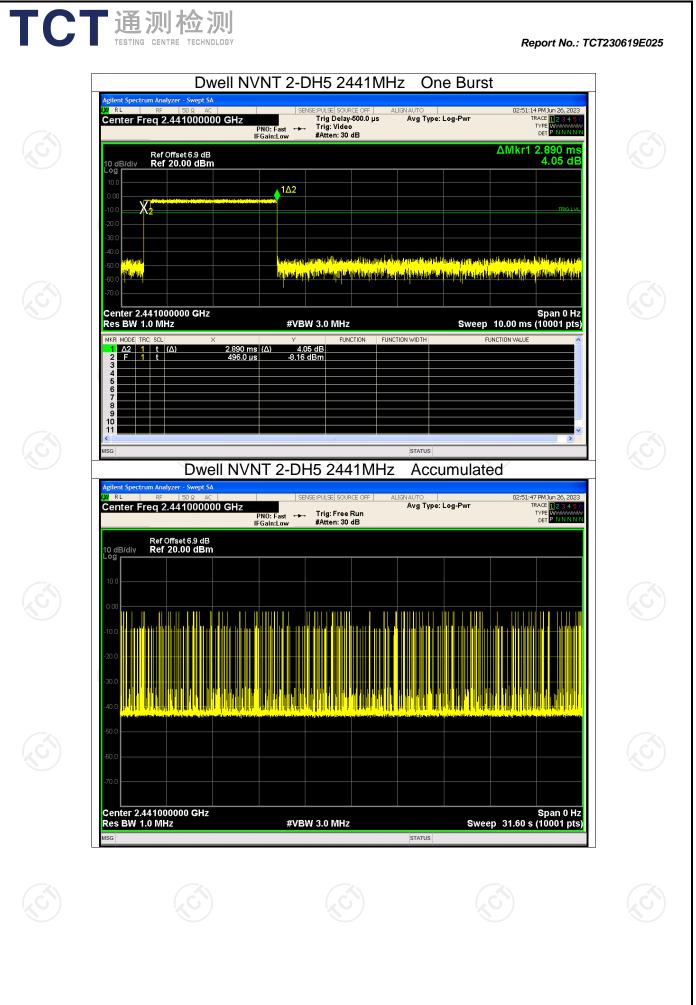
#VBW 3.0 MHz

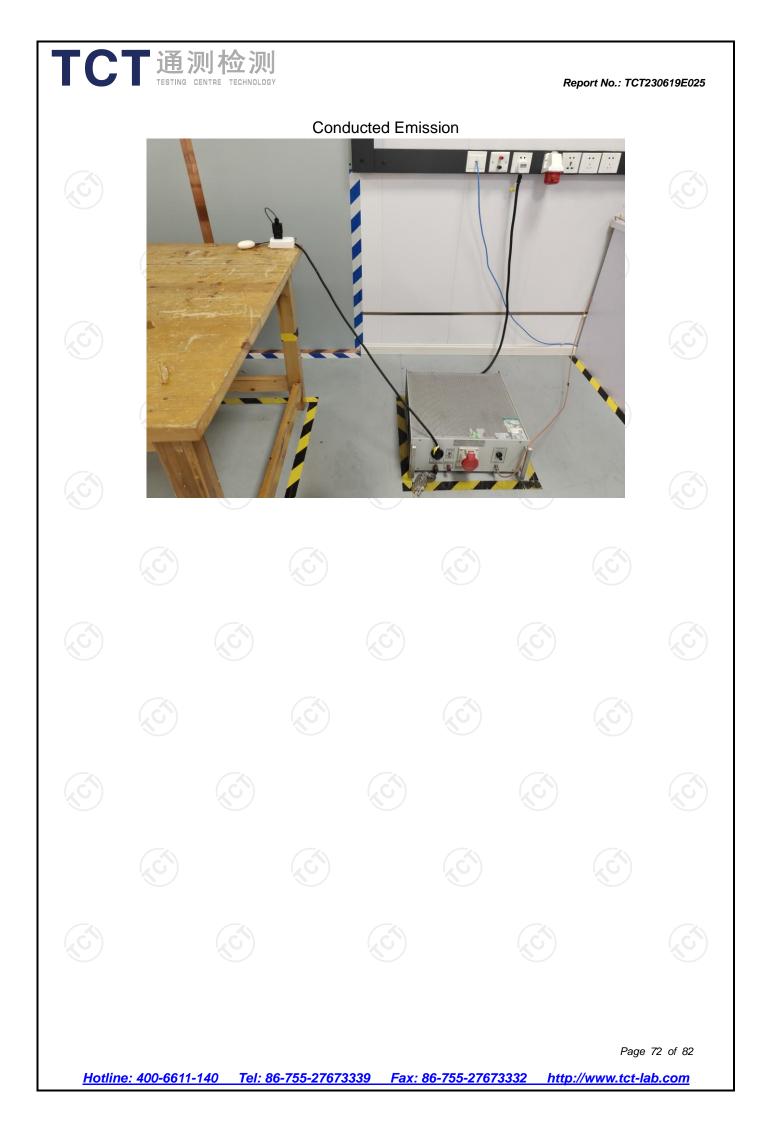

STATUS


Center 2.441000000 GHz Res BW 1.0 MHz

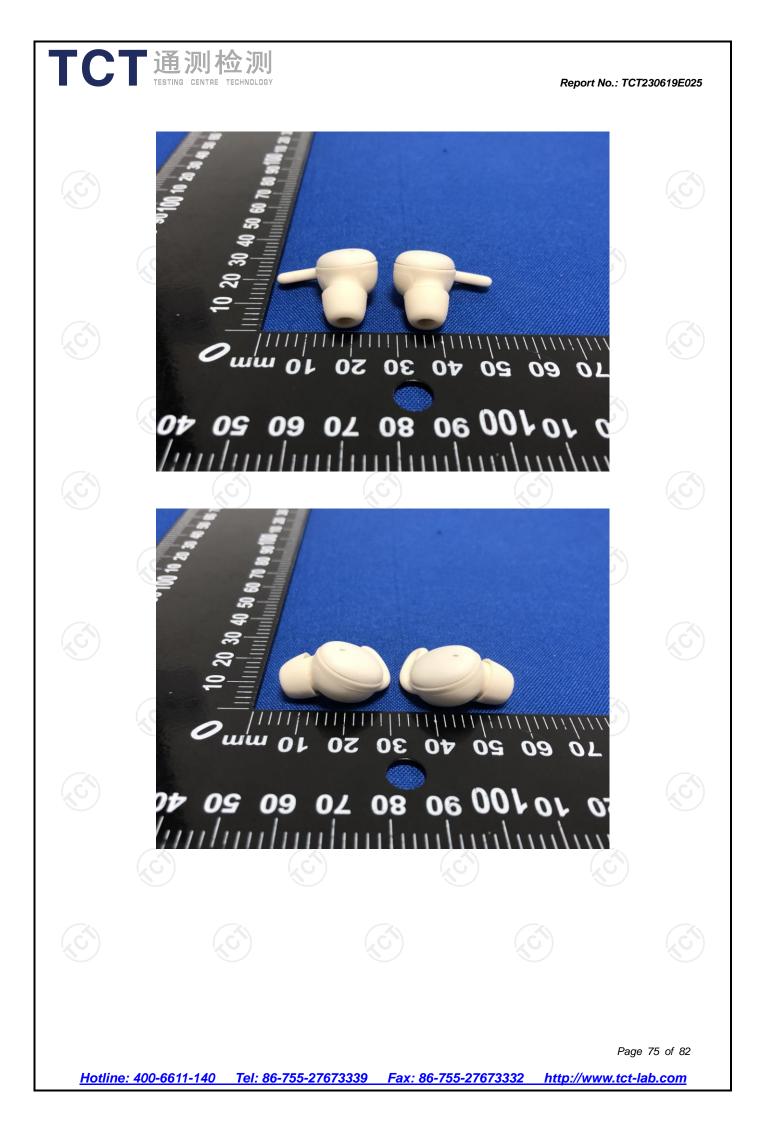

ГСТ	通测检测 TESTING CENTRE TECHNOLOGY Report No.	: TCT230619E025
	Dwell NVNT 1-DH3 2441MHz One Burst	
	Agilent Spectrum Analyzer - Swept SA Sense:PULSE Source OFF ALIGN AUTO 02:48:31 PM Jun 26, 202 20 RL RF 50 Ω AC Sense:PULSE Source OFF ALIGN AUTO 02:48:31 PM Jun 26, 202 Center Freq 2.441000000 GHz Trig Delay-500.0 µs Avg Type: Log-Pwr TRACE 12 3 4 PN0: Fast → Trig: Video TVPE IFGain:Low #Atten: 30 dB pet P.NINN	6
	Ref Offset 6.9 dB ΔMkr1 1.640 m 10 dB/div Ref 20.00 dBm -43.70 dl	s (C)
		4
	-20.0 -30.0 -40.0	
	-50.0 and the second second by the part of the first of the first of the first of the part	
S)	70.0 Span 0 H Center 2.441000000 GHz Span 0 H Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.00 ms (10001 pt)	
	MRR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 Δ2 1 t (Δ) 1.640 ms (Δ) -43.70 dB 43.70	
	3	a -
	8 8 9 9 9 10 8 9 11 1 9 11 9 11 9 11 9 11 9 11 9 11	 ✓
	MASG STATUS Dwell NVNT 1-DH3 2441MHz Accumulated	
l	Agilent.Spectrum Analyzer - Swept.SA WR RL RF 50 Ω AC SENSE:PULSE SOURCE OFF ALIGN AUTO 02:49:05 PM.3un 26,202 Center Freq 2.441000000 GHz Avg Type: Log-Pwr TRACE 12 3 4 E PNO: Fast → Trig: Free Run TYPE WWWWAA FEGEInt Juw #Atten: 30 dB DET P NINNE	3
	PNO: Fast Ing: Free Run IFGain:Low #Atten: 30 dB DET PNNNT Ref Offset 6.9 dB 10 dB/div Ref 20.00 dBm	
S		
	-100	
S	-60.0	
	-70.0 Center 2.441000000 GHz Span 0 H	
	Res BW 1.0 MHz #VBW 3.0 MHz Sweep 31.60 s (10001 pt Msg status	5)

Page 66 of 82


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 69 of 82


Page 70 of 82

