TEST REPORT

「CT通测检测 TESTING CENTRE TECHNOLOGY

FCC ID: TJ7-H29 Product: TRUE WIRELESS EARBUDS

Model No.: H29

Additional Model No.: N/A

Trade Mark: Lindero, SounSparking, Sounkindy, SounSwet, Eryin

Report No.: TCT210525E001

Issued Date: Jun. 01, 2021

Issued for:

Shenzhen SHI KISB Electronic Co., Ltd. 3-5F, A Building, Shanghe Industrial Zone, Nanchang Road, Bao'an District, Shenzhen, 518126 China

Issued By:

Shenzhen Tongce Testing Lab TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	Test Certification	
2.	Test Result Summary	4
3.	EUT Description	
4.	General Information	6
	4.1. Test environment and mode	6
	4.2. Description of Support Units	6
5.	Facilities and Accreditations	
	5.1. Facilities	7
	5.2. Location	
	5.3. Measurement Uncertainty	7
6.	Test Results and Measurement Data	B
	6.1. Antenna requirement	8
	6.2. Conducted Emission	9
	6.3. Conducted Output Power1	
	6.4. 20dB Occupy Bandwidth1	4
	6.5. Carrier Frequencies Separation1	5
	6.6. Hopping Channel Number1	7
	6.7. Dwell Time	
	6.8. Pseudorandom Frequency Hopping Sequence1	9
	6.9. Conducted Band Edge Measurement2	
	6.10.Conducted Spurious Emission Measurement2	1
	6.11.Radiated Spurious Emission Measurement2	2
Α	opendix A: Test Result of Conducted Test	
Α	opendix B: Photographs of Test Setup	
	opendix C: Photographs of EUT	

1. Test Certification

Product:	TRUE WIRELESS EARBUDS			
Model No.:	H29			
Additional Model No.:	N/A			
Trade Mark:	Lindero, SounSparking, Sounkindy, SounSwet, Eryin			
Applicant:	Shenzhen SHI KISB Electronic Co., Ltd.			
Address:3-5F, A Building, Shanghe Industrial Zone, Nanchang Road District, Shenzhen, 518126 China				
Manufacturer:	SHENZHEN SHI KISB ELECTRONIC CO., LTD.			
Address:	3-5/F, A Building Shanghe Industrial Park Nanchang Road, Xixiang Town Bao'an District Shenzhen, Guangdong, 518103 P.R. China			
Date of Test:	May 26, 2021 – May 31, 2021			
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013			

The above equipment has been tested by Shenzhen Tongce Testing Lab and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Men Date: Brews Xu Reviewed By: Date:	May 31, 2021
P. Marlino	O
Reviewed By: Date:	
CONSCERE CO	Jun. 01, 2021
Approved By:	Jun. 01, 2021
Tomsin	

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	TRUE WIRELESS EARBUDS
Model No.:	H29
Additional Model No.:	N/A
Trade Mark:	Lindero, SounSparking, Sounkindy, SounSwet, Eryin
Bluetooth Version:	V5.2
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	-1.15dBi
Power Supply:	Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
			S				
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
9)	🔇	9)		0)		9)	🖌
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-

4. General Information

4.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	25.0 °C	25.0 °C			
Humidity:	55 % RH	55 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Mode:					

Mode 1:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.
Mode 2:	Keep the EUT in charging

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested , only worse case DH1 is reported.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment Model No. Seria		Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735		1 6

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

Designation Number: CN1205

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

CAB identifier: CN0031

The 3m Semi-anechoic chamber of SHENZHEN TONGCE TESTING LAB has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

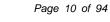
Address: TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: 86-755-27673339

5.3. Measurement Uncertainty

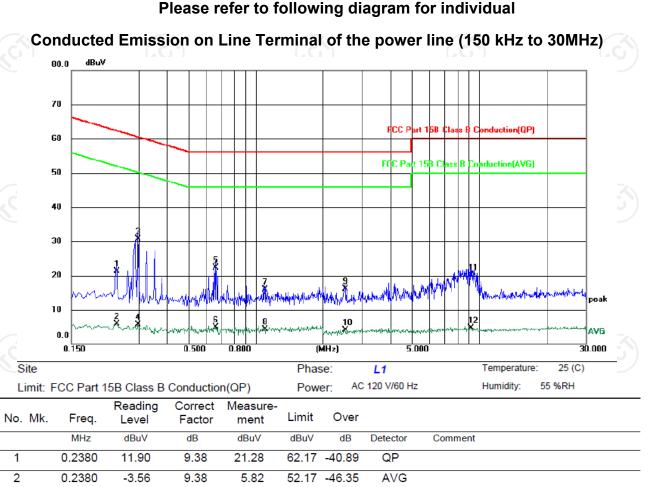
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6.2. Conducted Emission


6.2.1. Test Specification

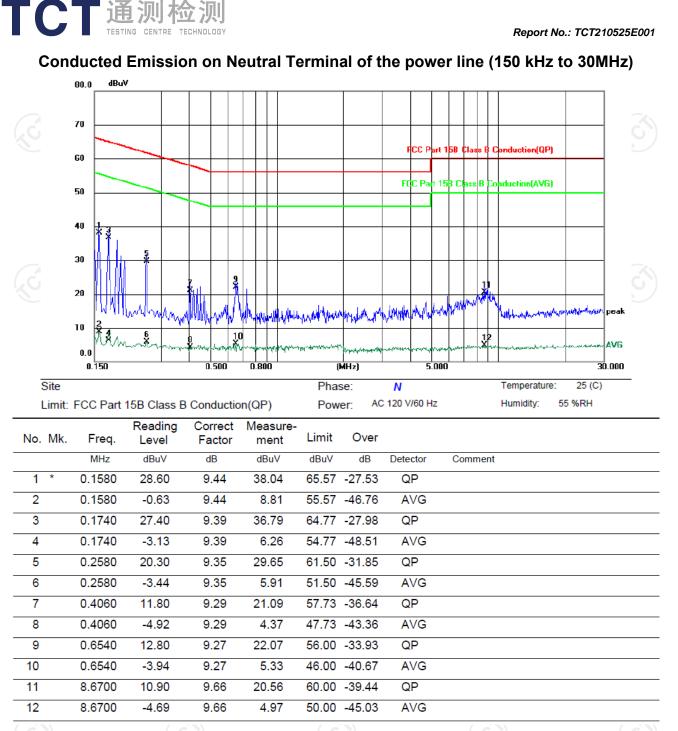
Test Requirement:	FCC Part15 C Section	15.207			
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz	(C)			
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Áverage		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane	201		
Test Setup:	E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver	AC power		
Test Mode:	Charging				
	1 The ELLT is conne				
Test Procedure:	 impedance stabiliz provides a 50ohm/s measuring equipme 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables 	zation network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm terr diagram of the line are checke nce. In order to fi e positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all co l according to		
Test Procedure: Test Result:	 impedance stabiliz provides a 50ohm/s measuring equipme 2. The peripheral device power through a Lin coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative 	zation network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm terr diagram of the line are checke nce. In order to fi e positions of equ must be changed	pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all c l according to		



6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843) Equipment Manufacturer Model Serial Number Calibration Due						
Equipment	Manufacturer	woder	Serial Number	Calibration Due		
Test Receiver	R&S	ESCI3	100898	Jul. 27, 2021		
LISN-2	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2021		
Line-5	тст	CE-05	N/A	Sep. 02, 2021		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		
	Technology					

6.2.3. Test data



1	0.2380	11.90	9.38	21.28	62.17 -40.89	QP	
2	0.2380	-3.56	9.38	5.82	52.17 -46.35	AVG	
3 *	0.2980	21.30	9.35	30.65	60.30 -29.65	QP	
4	0.2980	-3.59	9.35	5.76	50.30 -44.54	AVG	
5	0.6620	13.10	9.24	22.34	56.00 -33.66	QP	
6	0.6620	-4.41	9.24	4.83	46.00 -41.17	AVG	
7	1.0940	6.40	9.41	15.81	56.00 -40.19	QP	
8	1.0940	-5.15	9.41	4.26	46.00 -41.74	AVG	
9	2.5020	6.50	9.55	16.05	56.00 -39.95	QP	
10	2.5020	-5.40	9.55	4.15	46.00 -41.85	AVG	
11	9.1940	10.50	9.65	20.15	60.00 -39.85	QP	
12	9.1940	-4.92	9.65	4.73	50.00 -45.27	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Report No.: TCT210525E001

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

Page 12 of 94

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.			
Test Setup:				
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation Contract of the second secon			
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.			
Test Result:	PASS			

6.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Page 13 of 94

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021
				(K

Page 14 of 94

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channe carrier frequencies separated by a minimum of 25 kHz o the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS
Hotline: 400-6611-140 Tel	Page 15 of 9 : 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.con

6.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 Hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 			
Test Result:	PASS			
6.6.2. Toot Instruments				

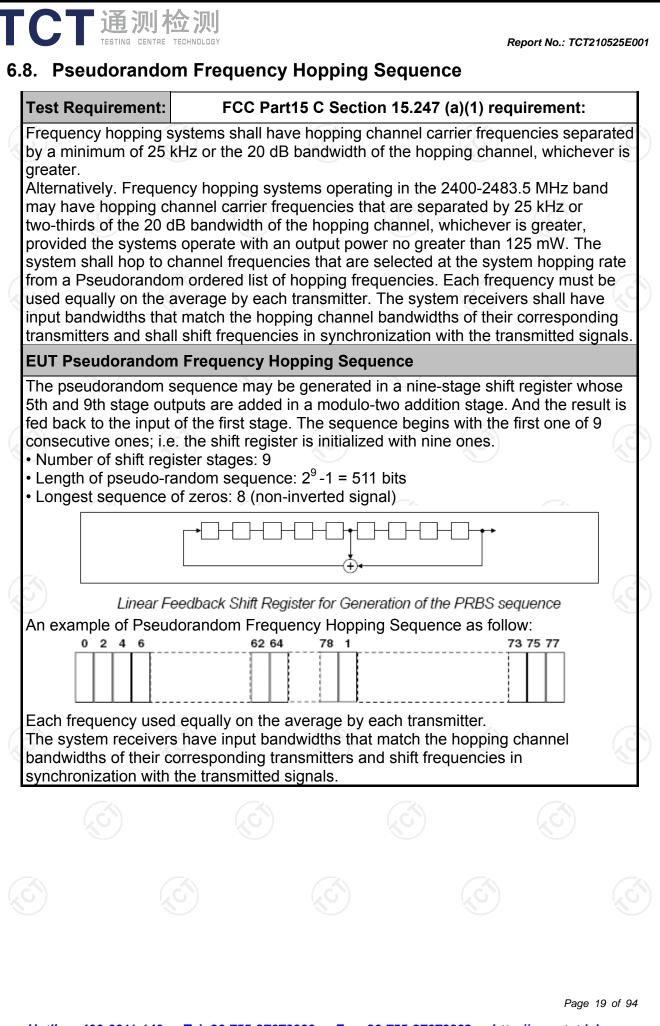
6.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021
	(\mathcal{L})	(\mathbf{c})	(\mathcal{S})	

Page 17 of 94

6.7. Dwell Time

6.7.1. Test Specification


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

6.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Report No.: TCT210525E001

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer EUT
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

6.9.2. Test Instruments

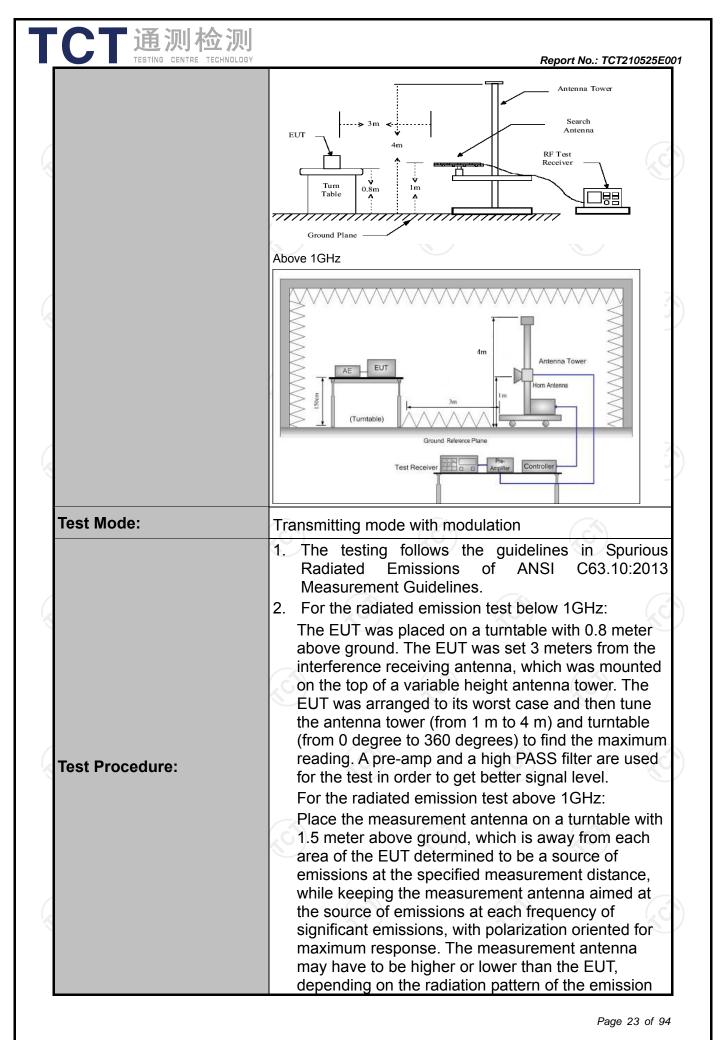
Name	Manufacturer	Model No.	Serial Number	Calibration Due	
Spectrum Analyzer			MY49100619	Sep. 11, 2021	
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021	
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021	
$\langle \mathcal{O} \rangle$	$\langle \mathcal{C} \rangle$	(\mathcal{O})	(\mathcal{S})	(C)	

6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

6.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021	
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	5 N/A	Sep. 02, 2021	
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021	
	(C)	<u>(</u> 0)			


Page 21 of 94

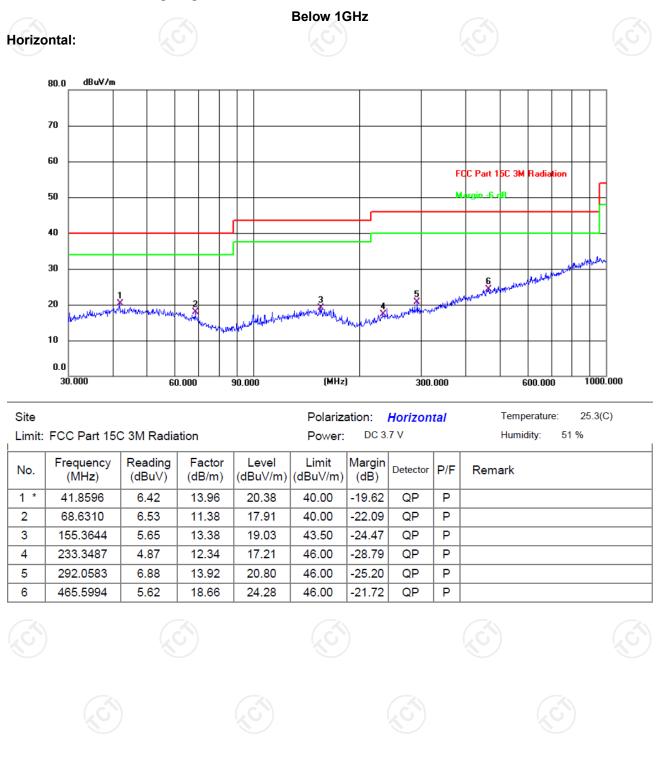
6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

Test Requirement:	FCC Part15	C Section	n 15.209			
Test Method:	ANSI C63.10):2013	· · · · · · · · · · · · · · · · · · ·			
Frequency Range:	9 kHz to 25 (GHz			_	
Measurement Distance:	3 m		<u>(</u> <u>(</u>))
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector	RBW	VBW		Remark
	9kHz- 150kHz	Quasi-peal	k 200Hz	1kHz	Quas	i-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz		i-peak Value
	30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quas	i-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Pe	eak Value
	Above IGHZ	Peak	1MHz	10Hz	Ave	rage Value
			Field Str	enath	Mer	asurement
	Frequen	су	(microvolts			nce (meters)
	0.009-0.4	190	2400/F(2.50	300
	0.490-1.7		24000/F			30
	1.705-3		30			30
	30-88		100		1	3
	88-216		150		3	
.imit:	216-96		200		3	
	Above 960		500		3	
	Above 1GHz		500 5000	(meters) 3 3		Average Peak
Test setup:		stance = 3m	30MHz		Comput	
3		E)	(J.		
Hotline: 400-6611-140 Tel: 86	6-755-2767333 <u>9</u>	Fax: 86-7	55-2767333	2 http:/		Page 22 of §

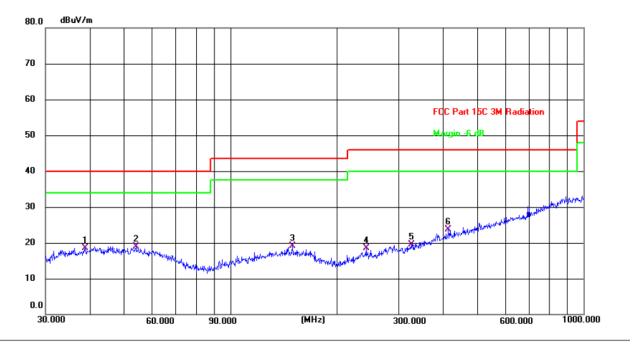
	CENTRE TECHNOLDBY	rece mea max ante restr abov 3. Set EUT 4. Use (1) (2)	= max holo For averag	aximum sigr ntenna elev missions. T on for maxin inge of heig d or referer imum powe ontinuously. ng spectrum wide enoug eing measur 20 kHz for ; VBW≥RB outo; Detect d for peak je measuren factor meth	nission so nal. The fi ration sha The measu num emis ghts of from nce groun er setting n analyzer h to fully o red; f < 1 GHz W; tor functio ment: use nod per	nal II be that y urement ssions sha m 1 m to d plane. and enat r settings: capture th z, RBW=1 n = peak; e duty cyc	which all be 4 m ble the ne MHz Trace le
		<u>s</u>	On time =N Where N1 length of ty Average E Level + 20 Corrected F	is number o /pe 1 pulses mission Lev *log(Duty c Reading: An	of type 1 µ s, etc. vel = Peal ycle) itenna Fac	pulses, L´ k Emissio ctor + Cal	Nn*Lr 1 is n ole
Γest results:		<u>s</u>	On time =N Where N1 length of t Average E Level + 20	is number o /pe 1 pulses mission Lev *log(Duty c Reading: An	of type 1 µ s, etc. vel = Peal ycle) itenna Fac	pulses, L´ k Emissio ctor + Cal	Nn*Lr 1 is n ole
Test results:		Ċ	On time =N Where N1 length of ty Average E Level + 20 Corrected F	is number o /pe 1 pulses mission Lev *log(Duty c Reading: An	of type 1 µ s, etc. vel = Peal ycle) itenna Fac	pulses, L´ k Emissio ctor + Cal	Nn*Lr 1 is n ole
Test results:		Ċ	On time =N Where N1 length of ty Average E Level + 20 Corrected F	is number o /pe 1 pulses mission Lev *log(Duty c Reading: An	of type 1 µ s, etc. vel = Peal ycle) itenna Fac	pulses, L´ k Emissio ctor + Cal	Nn*Lr 1 is n ole
Test results:		Ċ	On time =N Where N1 length of ty Average E Level + 20 Corrected F	is number o /pe 1 pulses mission Lev *log(Duty c Reading: An	of type 1 µ s, etc. vel = Peal ycle) itenna Fac	pulses, L´ k Emissio ctor + Cal	Nn*Lr 1 is n ole

6.11.2. **Test Instruments**


	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022
Antenna Mast	Keleto	RE-AM	N/A	N/A
Line-4	тст	RE-high-04	N/A	Sep. 02, 2021
Line-8	тст	RE-01	N/A	Jul. 27, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Page 25 of 94

6.11.3. Test Data


Please refer to following diagram for individual

Report No.: TCT210525E001

Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY

Site					Polarization: Vertical				Temperature: 25.3(C)
Limit:	FCC Part 150	C 3M Radia	tion		Power:	DC 3	.7 V		Humidity: 51 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.8878	4.63	13.82	18.45	40.00	-21.55	QP	Р	
2 *	54.0711	5.40	13.51	18.91	40.00	-21.09	QP	Ρ	
3	150.0108	5.83	13.33	19.16	43.50	-24.34	QP	Ρ	
4	242.5253	5.67	12.75	18.42	46.00	-27.58	QP	Ρ	
5	325.5958	4.80	14.64	19.44	46.00	-26.56	QP	Ρ	
6	414.7223	6.23	17.57	23.80	46.00	-22.20	QP	Ρ	

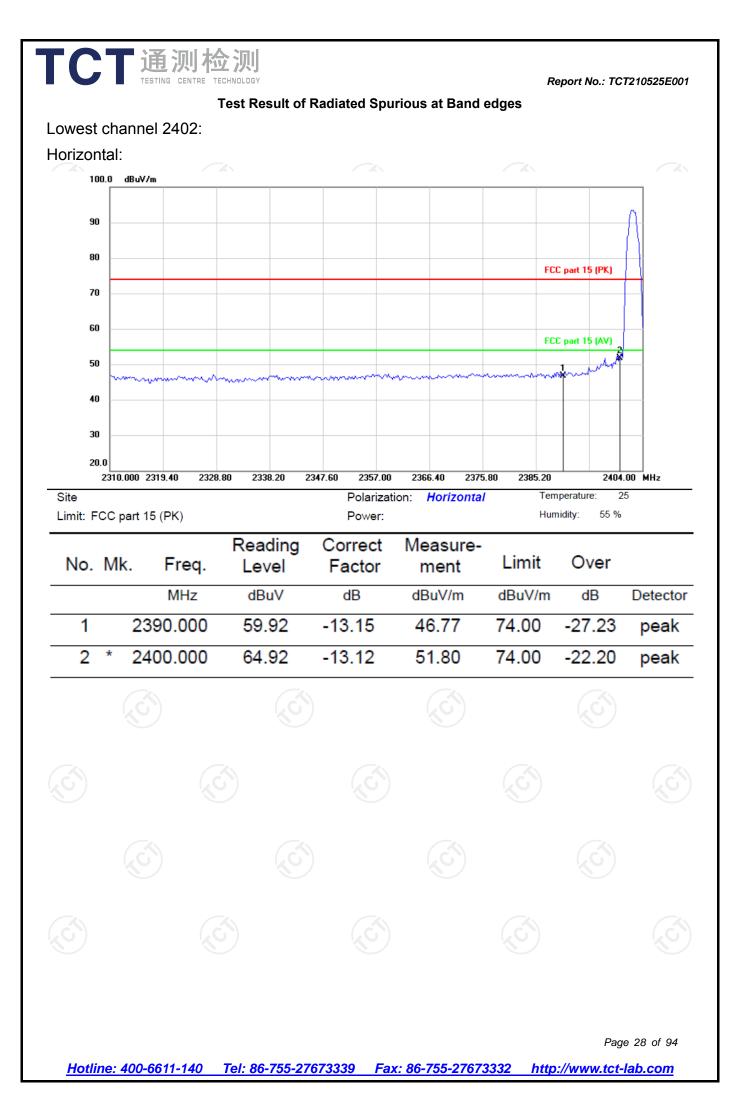
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

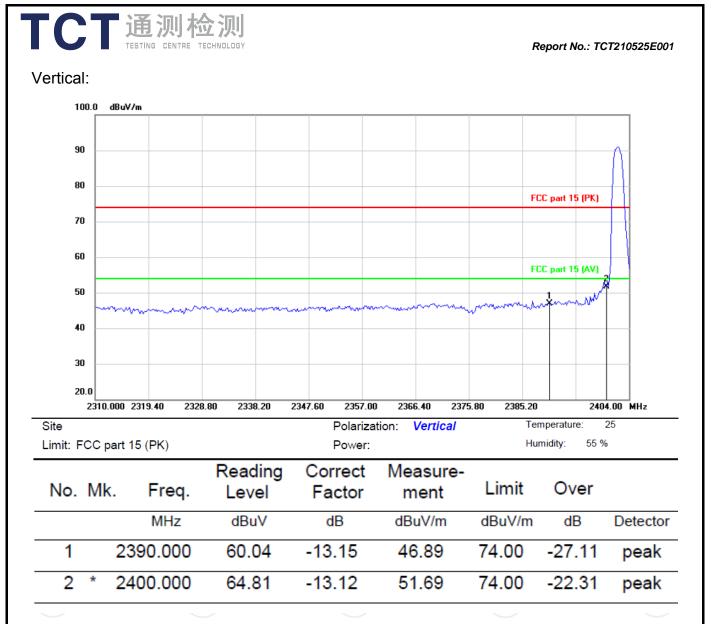
2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (lowest channel and 8DPSK) was submitted only.

3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$

Correction Factor = Antenna Factor + Cable loss - Pre-amplifier

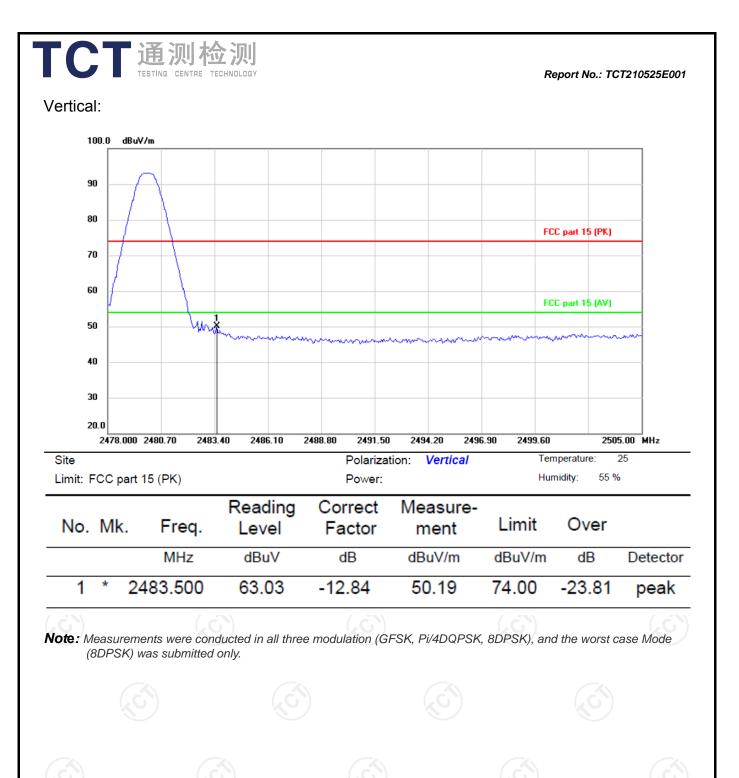

Limit $(dB\mu V/m) = Limit$ stated in standard


 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Page 27 of 94

Report No.: TCT210525E001



Page 29 of 94

Report No.: TCT210525E001 Highest channel 2480: Horizontal: 100.0 dBuV/m 90 80 FCC part 15 (PK) 70 60 FCC part 15 (AV) Vie. 1 50 40 30 20.0 2478.000 2480.70 2483.40 2486.10 2488.80 2491.50 2494.20 2496.90 2499.60 2505.00 MHz Polarization: Horizontal Site Temperature: 25 Humidity: 55 % Limit: FCC part 15 (PK) Power: Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector 1 * 2483.500 60.69 -12.84 47.85 74.00 -26.15peak

Page 30 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Above 1GHz

Modulation	Type: 8D	PSK							
Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.39		0.66	46.05		74	54	-7.95
7206	Н	35.71		9.50	45.21		74	54	-8.79
	Н					~~-			
	C		J_	`)		·C`)		(\mathcal{O})	
4804	V	45.48		0.66	46.14		74	54	-7.86
7206	V	36.05		9.50	45.55		74	54	-8.45
	V								

Mid	dle cha	nnel: 2441	MHz							Š
	equency MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)		n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4	4882	Н	45.62		0.99	46.61	·	74	54	-7.39
-	7323	ζOH)	36.90	-120	9.87	46.77		74	54	-7.23
		Ĥ				`	<u> </u>			
4	4882	V	44.57		0.99	45.56		74	54	-8.44
	7323	V	35.14		9.87	45.01		74	54	-8.99
	/	V			~~~ \X	7				

High channel: 2480 MHz

ICI. 2400 N								
Ant Pol	Peak	AV		Emissic	n Level	Peak limit	ΔV limit	Margin
H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV			(dB)
H	46.83		1.33	48.16		74	54	-5.84
Н	37.26		10.22	47.48		74	54	-6.52
Н								
	(.c)		(.0			(.c.)		0.)
V	47.75		1.33 🔪	49.08		74	54	-4.92
V	37.42		10.22	47.64		74	54	-6.36
V								
ſ	Ant. Pol. H/V H	Ant. Pol. H/V Peak reading (dBµV) H 46.83 H 37.26 H V 47.75 V 37.42	Ant. Pol. reading (dBµV) reading (dBµV) H 46.83 H 37.26 H V 47.75 V 37.42	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) H 46.83 1.33 H 37.26 10.22 H 10.22 H 1.33 V 47.75 1.33 V 37.42 10.22	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Peak (dBµV/m) H 46.83 1.33 48.16 H 37.26 10.22 47.48 H 1.33 48.08 V 47.75 1.33 49.08 V 37.42 10.22 47.64	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) H 46.83 1.33 48.16 H 37.26 10.22 47.48 H 1.33 49.08 V 47.75 10.22 47.64	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) Peak limit (dBµV/m) H 46.83 1.33 48.16 74 H 37.26 10.22 47.48 74 H 1.33 49.08 74 V 47.75 1.33 49.08 74 V 37.42 10.22 47.64 74	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

	Maximum Conducted Output Power											
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict					
NVNT	1-DH1	2402	9.073	0	9.073	30	Pass					
NVNT	1-DH1	2441	7.995	0	7.995	30	Pass					
NVNT	1-DH1	2480	7.236	0	7.236	30	Pass					
NVNT	2-DH1	2402	9.165	0	9.165	21	Pass					
NVNT	2-DH1	2441	8.269	0	8.269	21	Pass					
NVNT	2-DH1	2480	7.423	0	7.423	21	Pass					
NVNT	3-DH1	2402	9.668	0	9.668	21	Pass					
NVNT	3-DH1	2441	8.811	0	8.811	21	Pass					
NVNT	3-DH1	2480	7.996	0	7.996	21	Pass					

Appendix A: Test Result of Conducted Test

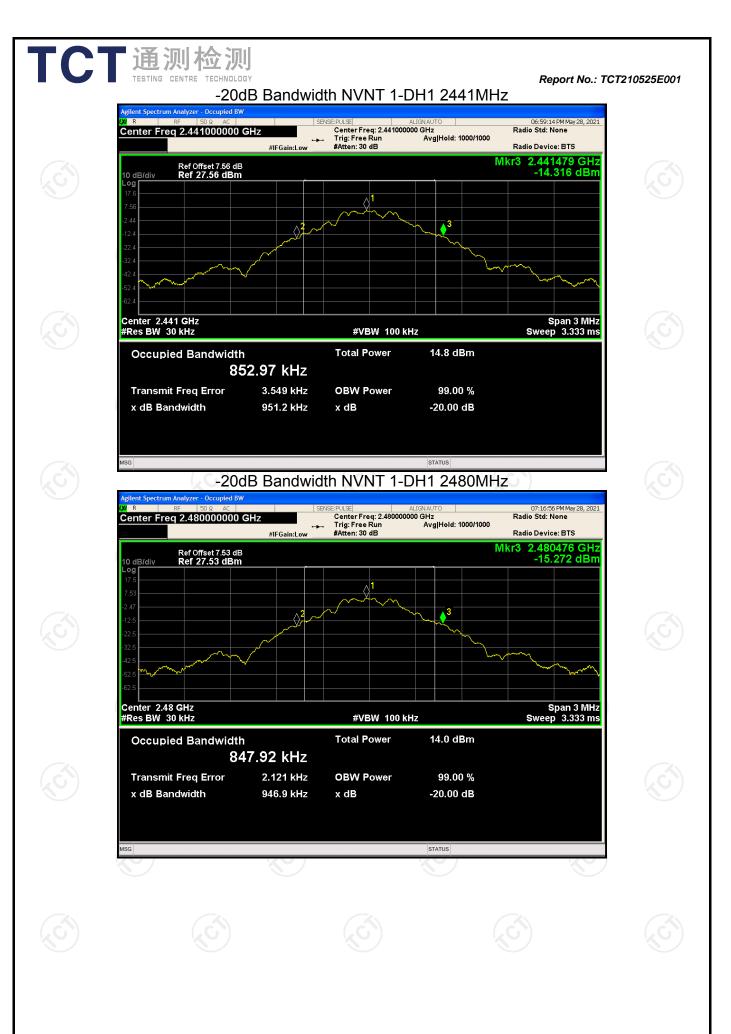
Power NVNT 1-DH1 2402MHz

TCT		Power NVNT 1-DH1	2441MHz	Report No.: TCT210	525E001
	x R RF 50Ω AC Center Freq 2.441000000 GH	PNO: Fast +++ Irig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	06:59:27 PM May 28, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 7.56 dB 10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1	2.440 748 GHz 7.995 dBm	
		.1			
	0.00				
	-10.0				
	-20.0				
	-30.0				
$\langle \mathcal{C} \rangle$	-40.0				
	-50.0				
	-60.0				
	-70.0				
	Center 2.441000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep 7	Span 6.000 MHz I.000 ms (1001 pts)	
	ASG	Power NVNT 1-DH1	status 2480MHz	*)	
	Agilent Spectrum Analyzer - Swept SA XI R RF 50 Ω AC	SENSE:PULSE	ALIGNAUTO	07:17:12 PM May 28, 2021	
	Center Freq 2.480000000 GH	Z PNO: Fast 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 123456 TYPE MWWWWW DET PNNNNN	
	Ref Offset 7.53 dB 10 dB/div Ref 20.00 dBm		Mkr1 2	.479 810 4 GHz 7.236 dBm	
	10.0				
	0.00				
No.	-10.0				
	-20.0				
	-30.0				
	-40.0				
	-00.0				
	-70.0				
	Center 2.480000 GHz			Span 6.000 MHz	
	#Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep 1.	333 ms (10001 pts)	
			S		
				Page 34	of 94

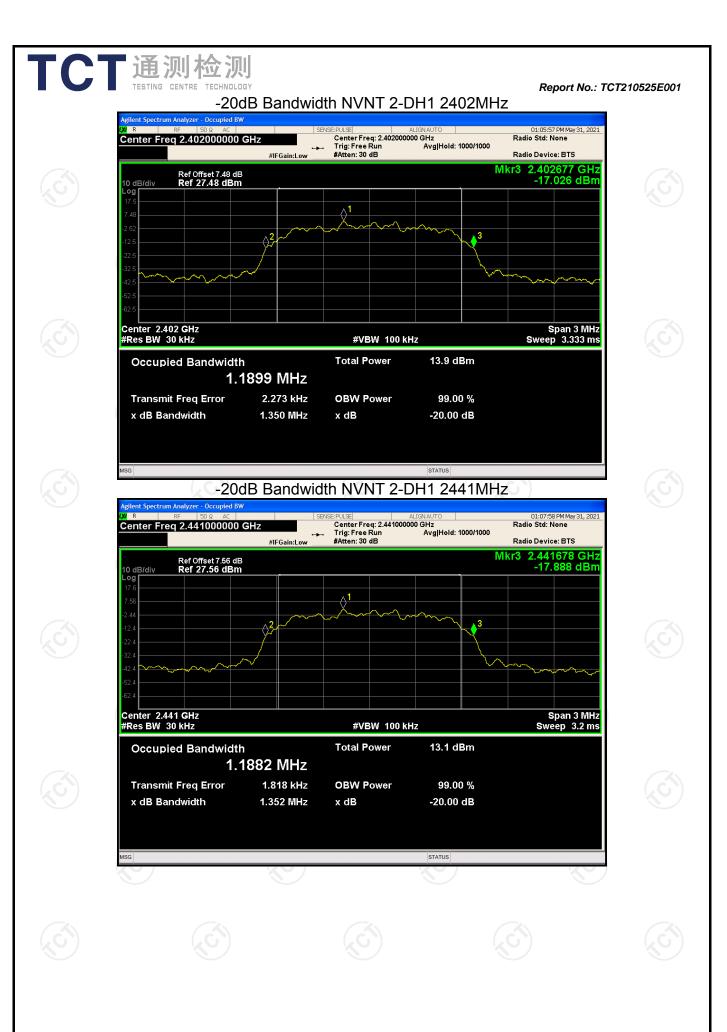
Center	RF 50Ω AC r Freq 2.402000000 GH		SENSE:PULSE → Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pw Avg Hold: 2000/200	01:06:13 PM May 31, 2021 T TRACE 1 2 3 4 5 6 10 TYPE MWWWW DET P N N N N N	
10 dB/di Log	Ref Offset 7.48 dB iv Ref 20.00 dBm				Mkr1 2.402 084 GHz 9.165 dBm	
10.0			↓ 1			
0.00						
-10.0						
-20.0						
-30.0						6
-40.0						
-60.0						
-70.0						
	2.402000 GHz				Span 6.000 MHz Sweep 1.000 ms (1001 pts)	
#Res E	3W 2.0 MHz		BW 6.0 MHz	STATUS	sweep 1.000 ms (1001 pts)	
	pectrum Analyzer - Swept SA		VNT 2-DH1		(_X O ⁻)	
Center	RF 50Ω AC r Freq 2.441000000 Gł	Hz PNO: Fast ↔ IFGain:Low	SENSE:PULSE Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pw Avg Hold: 1000/100	01:08:10 PM May 31, 2021 TRACE 12 3 4 5 6 TYPE MWWWW DET P N N N N N	
10 dB/di	Ref Offset 7.56 dB iv Ref 20.00 dBm				Mkr1 2.441 090 GHz 8.269 dBm	
Log			1			
0.00						(
-10.0						
-20.0						
-30.0						
-40.0						
-60.0						
-70.0						
	2.441000 GHz				Span 6.000 MHz	
#Res E	SW 2.0 MHz	#V	BW 6.0 MHz	STATUS	Sweep 1.000 ms (1001 pts)	

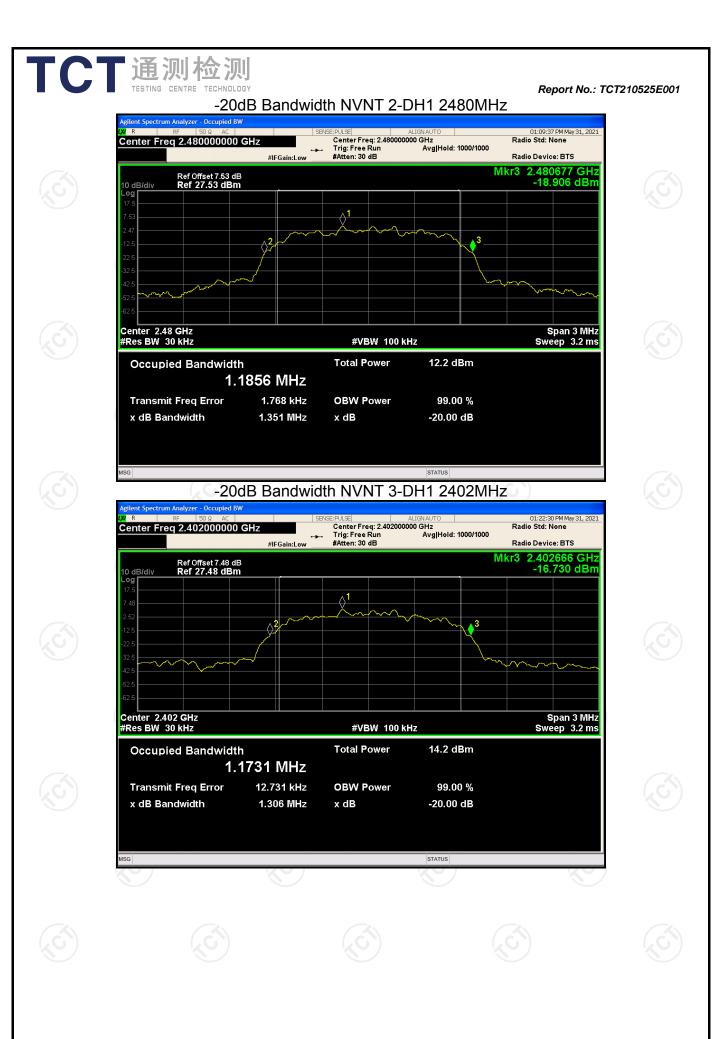
<mark>0% R RF 50Ω AC</mark> Center Freq 2.480000000 GH		ENSE:PULSE Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	01:09:49 PM May 31, 2021 TRACE 12 3 4 5 6 TYPE MWWWWW DET P N N N N N	
Ref Offset 7.53 dB 10 dB/div Ref 20.00 dBm			N	lkr1 2.480 090 GHz 7.423 dBm	
		1			
0.00					
-10.0					
-20.0					
-30.0					
-40.0					
-50.0					
-60.0					
Center 2.480000 GHz #Res BW 2.0 MHz	#VI	BW 6.0 MHz	Swe	Span 6.000 MHz ep 1.000 ms (1001 pts)	
(₂ G*)	Power N	/NT 3-DH1		(° U)	
Agilent Spectrum Analyzer - Swept SA ΔX R RF 50 Ω AC Center Freq 2.402000000 GF	lz	ENSE:PULSE	ALIGN AUTO	01:22:43 PM May 31, 2021 TRACE 1 2 3 4 5 6 TYPE M MANANAN DET P N N N N N	
Ref Offset 7.48 dB	PNO: Fast ↔ IFGain:Low	#Atten: 30 dB	Avg Hold: 1000/1000	Ikr1 2.401 928 GHz 9.668 dBm	
10 dB/div Ref 20.00 dBm		1		9.668 dBm	
10.0					
-10.0					
-10.0					
-30.0					
-30.0					
-40.0					
-40.0					
-40.0 -50.0 -60.0	#VI	3W 6.0 MHz	Swe	Span 6.000 MHz ep 1.000 ms (1001 pts)	
-40.0 -50.0 -60.0 -70.0 -70.0 Center 2.402000 GHz	#VI	3W 6.0 MHz	Swe	Span 6.000 MHz ep 1.000 ms (1001 pts)	
-40.0 -50.0 -60.0 -70.0 Center 2.402000 GHz #Res BW 2.0 MHz	#VI	3W 6.0 MHz	· · · · · · · · · · · · · · · · · · ·	Span 6.000 MHz ep 1.000 ms (1001 pts)	
-40.0 -50.0 -60.0 -70.0 Center 2.402000 GHz #Res BW 2.0 MHz	#VI	3W 6.0 MHz	· · · · · · · · · · · · · · · · · · ·	Span 6.000 MHz ep 1.000 ms (1001 pts)	

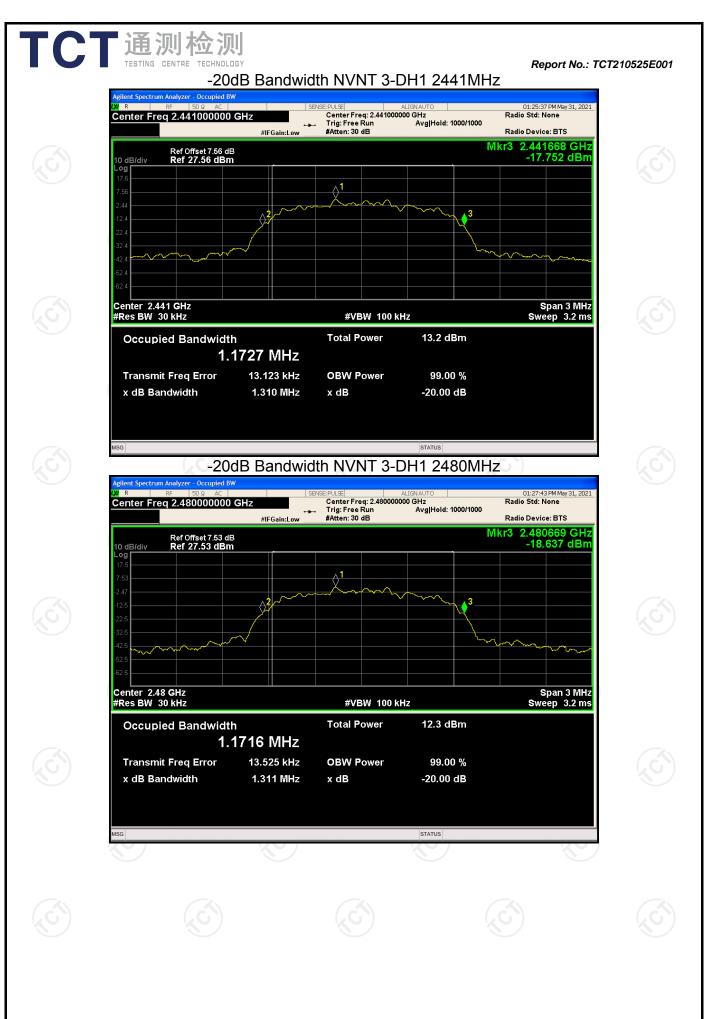
Cer	RF 50 Ω AC hter Freq 2.441000000 GH		SENSE:PULSE Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	01:26:09 PM May 31, 20 TRACE 1234 TYPE MWWW DET P N N N	21 5 6 W N
10 d	Ref Offset 7.56 dB B/div Ref 20.00 dBm				Mkr1 2.440 916 GH 8.811 dB	
Log 10.0			↓ 1			
0.00						
-10.0						
-20.0						
-30.0						
-40.0						
-50.0						
-70.0						
Cen	ter 2.441000 GHz				Span 6.000 MI	łz
	s BW 2.0 MHz	#VI	BW 6.0 MHz	STATUS	weep 1.000 ms (1001 pt	s)
Arile	nt Spectrum Analyzer - Swept SA	Power N	VNT 3-DH1	2480MHz	(<u>x</u> G`)	
LXI R		Z PNO: Fast ↔	SENSE:PULSE	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	01:27:58 PM May 31, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N	21 5 6
	Ref Offset 7.53 dB	IFGain:Low	#Atten: 30 dB		Mkr1 2.479 976 GF 7.996 dB	
	B/div Ref 20.00 dBm		1			
10.0						
-10.0						
-20.0						
-30.0						
-40.0						
-50.0						
-60.0						
	ter 2.480000 GHz				Span 6.000 MI	
#Re MSG	s BW 2.0 MHz	#VI	BW 6.0 MHz	STATUS	weep 1.000 ms (1001 pt	s)
No.)	N.			K.	7



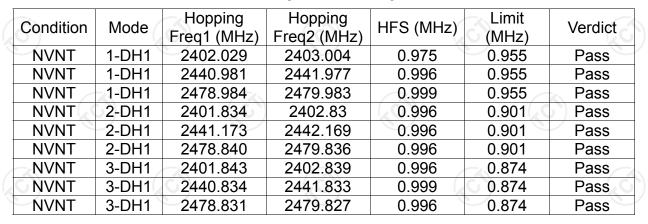
Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.955	0	Pass
NVNT	1-DH1	2441	0.951	0	Pass
NVNT	1-DH1	2480	0.947	0	Pass
NVNT	2-DH1	2402	1.350	0	Pass
NVNT	2-DH1	2441	1.352	0	Pass
NVNT	2-DH1	2480	1.351	0	Pass
NVNT	3-DH1	2402	1.306	0, ()	Pass
NVNT	3-DH1	2441	1.310	0	Pass
NVNT	3-DH1	2480	1.311	0	Pass


-20dB Bandwidth

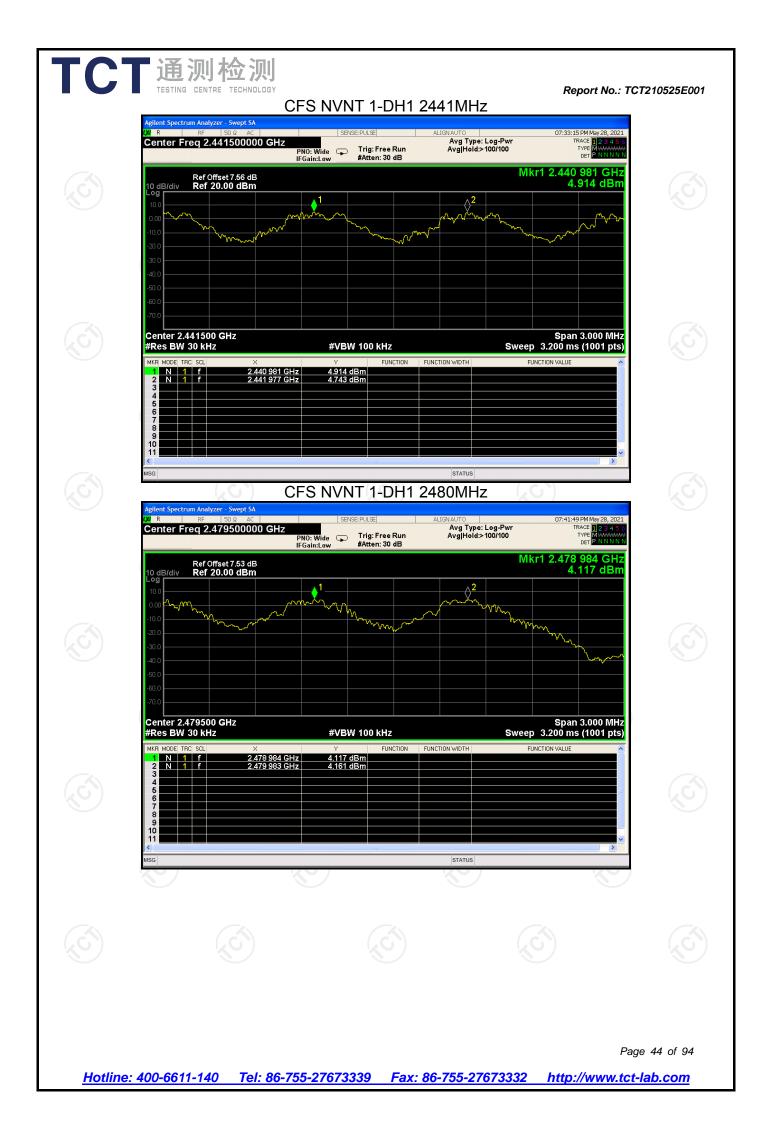

Page 38 of 94



Page 39 of 94



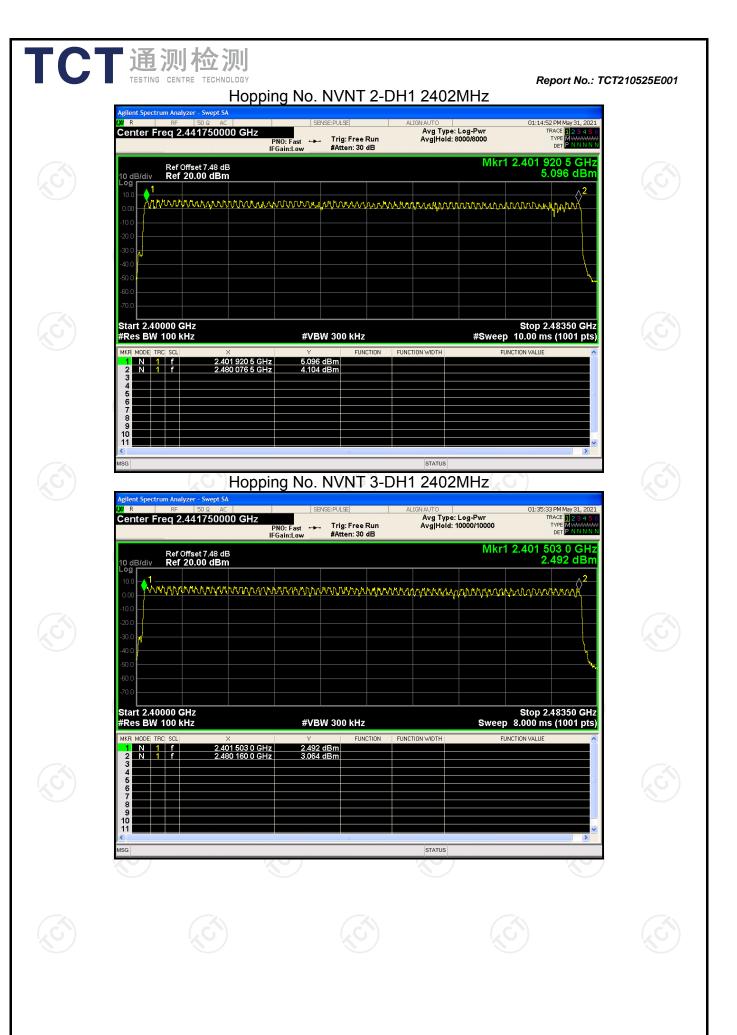
Page 40 of 94


Page 42 of 94

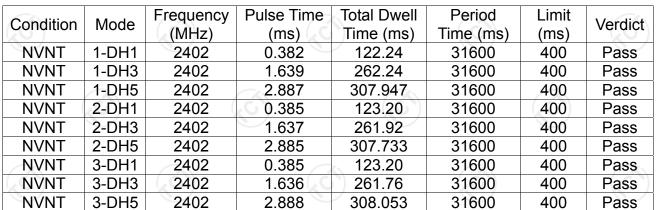


Carrier Frequencies Separation

CFS NVNT 1-DH1 2402MHz



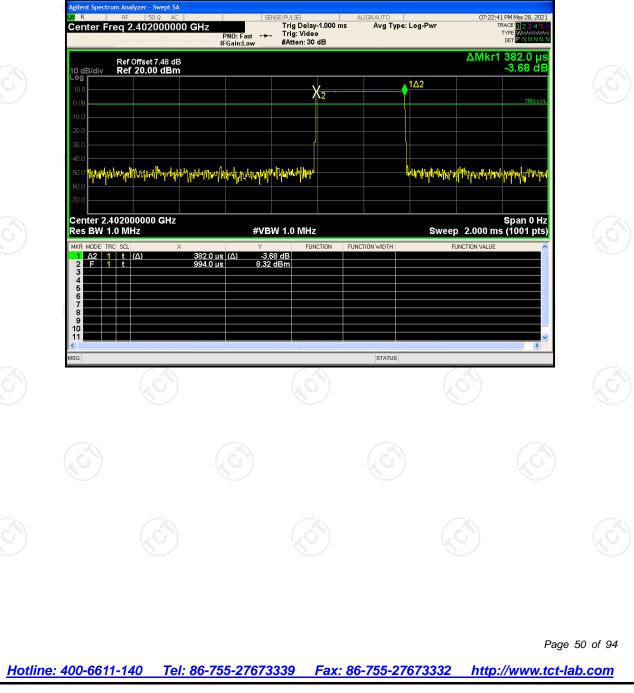
TCT		CFS NVNT 3-DH1 2	2441MHz	Report No.: TCT2105	25E001
	Agilent Spectrum Analyzer - Swept SA KM R RF 50 Ω AC Center Freq 2.441500000 GHz	PNO: Wide 😱 Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold>100/100	01:38:02 PM May 31, 2021 TRACE 12 3 4 5 6 TYPE MY MANNMM DET P. N.N.N.N.N	
(\mathcal{C})	Ref Offset 7.56 dB 10 dB/div Ref 20.00 dBm Log	IFGain:Low #Atten: 30 dB		2.440 834 GHz 2.257 dBm	
	10.0 0.00 -10.0 -20.0 -30.0 -40.0				
	-50 0 -60 0 -70 0				
	Center 2.441500 GHz #Res BW 30 kHz	#VBW 100 kHz		Span 3.000 MHz 3.200 ms (1001 pts)	
	Inc Inc f 2.440 834 (2 N 1 f 2.440 834 (3 1 f 2.441 833 (4 5 6 6 6 7 8 9 9 9 1 1	GHz 2.257 dBm			
	MSG	CFS NVNT 3-DH1 2			
	Aglient Spectrum Analyzer - Swept SA XI R RF 150 Ω AC Center Freq 2.479500000 GHz Ref Offset 7.53 dB 10 dB/div Ref 20.00 dBm -00 -10 0 -20 0 -30 0 -40 0 -60 0 -70 0	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	2	01:40:23PM May 31, 2021 TRACE [] 2 3 4 5 6 TYPE MANNIN 2.478 831 GHz 1.286 dBm	
	Center 2.479500 GHz #Res BW 30 kHz	#VBW 100 kHz	Sweep 3	Span 3.000 MHz 3.200 ms (1001 pts)	
	MKR MODE TRC SCL X 1 N 1 f 2.478.831 (C 2 N 1 f 2.479.831 (C 3 1 f 2.479.821 (C 4 5 5 5 5 5 5 5 6 7 7 7 9 9 9 9 10 1 1 1		FUNCTION WIDTH FUNC		
Ś					
Hotline: 4	00-6611-140 Tel: 86-	755-27673339 Fax:	86-755-27673332	Page 47 o	



				5			
	Condition	Mode	Hopping N	Number	Limit	Verdict	
	NVNT	1-DH1	79		15	Pass	-
	NVNT	2-DH1	79		15	Pass	-
	NVNT	3-DH1	79		15	Pass	
G`)	Ho	opping N	o. NVNT 1-	DH1 240	02MHz		(20)
ent Spectru R	m Analyzer - Swept SA RF 50 Ω AC		SENSE:PULSE	ALIGN AUTO		07:27:13	PM May 28, 2021
enter Fr	eq 2.441750000 G	Hz PNO: Fast	斗 Trig: Free Run	Avg T	ype: Log-Pwr old: 8000/8000	TR 1	ACE 123456 TYPE MWWWWWW DET PNNNNN
		IFGain:Low	#Atten: 30 dB		M	lkr1 2.401 83	
dB/div	Ref Offset 7.48 dB Ref 20.00 dBm					8.3	754 dBm
	እስለብለስስስስስስስስስ	በላኮበኮስ		ი ი ს ს ს ს ს ს ს ს ს ს ს ს ს ს ს ს ს ს	0.000.000.00		
.00	₩₩₩₩₩₩₩₩₩₩₩₩		₩₩₩₩₩₩₩₩₩₩	<u>VYYYVVYYY</u>	╎╎╎╎╎╎╎		
1.0 							
3.0							
).0 /).0 /							հ
1.0							¥
art 2.400 Res BW 1		 +	VBW 300 kHz		C14	،Stop 2. eep 8.000 ms	48350 GHz
R MODE TRO			Y FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N 1 2 N 1			754 dBm 532 dBm				
3							
6							
B							
1							<u>~</u>
3				STATL	IS		
			K Z				

Number of Hopping Channel

Page 49 of 94



Dwell Time

TCT通测检测

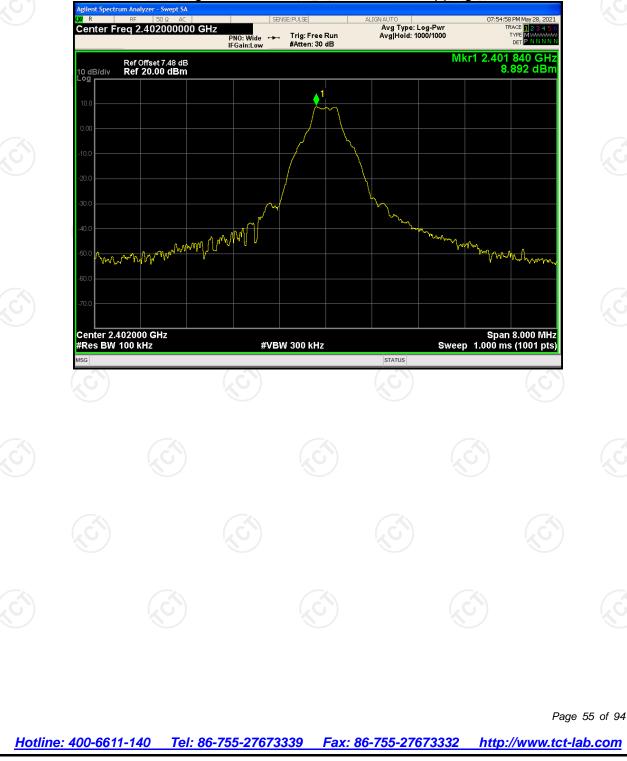
TESTING CENTRE TECHNOLOGY

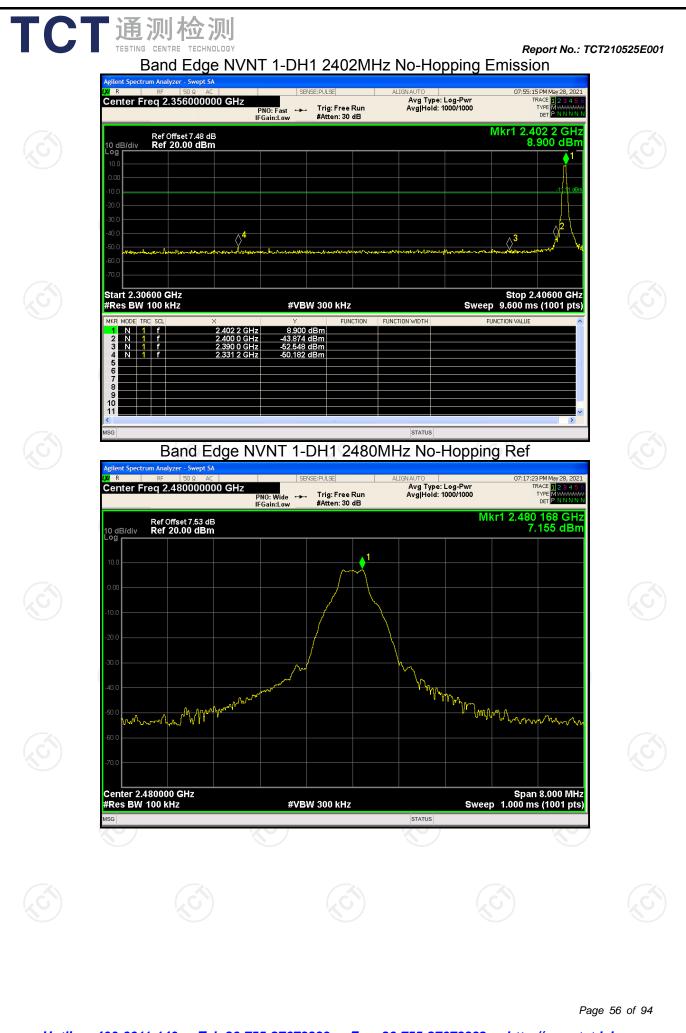
Dwell NVNT 1-DH1 2402MHz

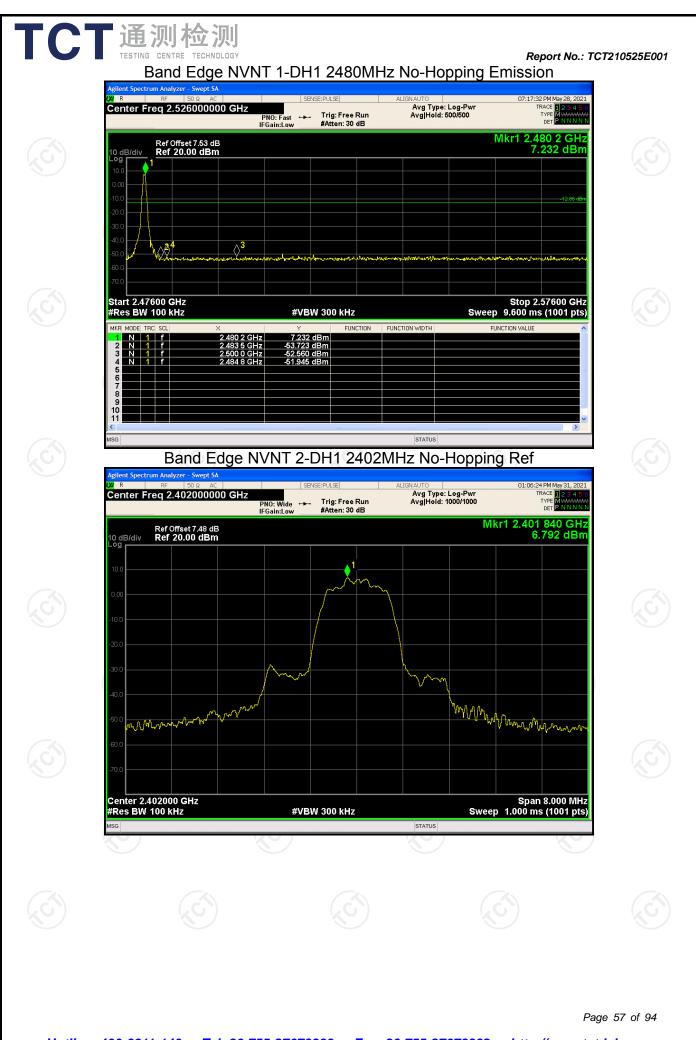
Agilent Spectrum Analyzer - Swept SA Agilent Spectrum Analyzer -	#VBW 1.0 MHz 1.639 ms (Δ) -5.00 dB 999.3 μs 3.04 dBm Dwell NVNT 1-D GHz PN0: Fast IFGain:Low #VBW 1.0 MHz Fig Delay-1 Trig Delay-1 #Atten: 30 d	TION FUNCTION WIDTH	АМКГ1 1.639 ms -5.00 dB	
10.0 0.00 -10.0 -20.0 -20.0 -30.0 -40.0 -40.0 -50.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -60.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.0 -41.0 -70.	#VBW 1.0 MHz #VBW 1.0 MHz 1639 ms (Δ) 5.00 dB 999.3 µs 3.04 dBm Dwell NVNT 1-D GHz PN0: Fast IFGain:Low #VBW 1.0 MHz FUNCT SENSE:PULSE Trig Delay-6 #Atten: 30 d	TION FUNCTION WIDTH	FUNCTION VALUE	
-200 -300 -400 -400 -600 -414 (transition of the state o	#VBW 1.0 MHz 1.639 ms (Δ) -5.00 dB 999.3 μs 3.04 dBm Dwell NVNT 1-D GHz PN0: Fast IFGain:Low #VBW 1.0 MHz Fig Delay-1 Trig Delay-1 #Atten: 30 d	TION FUNCTION WIDTH	Span 0 Hz veep 3.000 ms (10001 pts) FUNCTION VALUE	
-600 Add there the part of the p	#VBW 1.0 MHz 1.639 ms (Δ) -5.00 dB 999.3 μs 3.04 dBm Dwell NVNT 1-D GHz PN0: Fast IFGain:Low #VBW 1.0 MHz Fig Delay-1 Trig Delay-1 #Atten: 30 d	TION FUNCTION WIDTH	Span 0 Hz veep 3.000 ms (10001 pts) FUNCTION VALUE	
Agilent Spectrum Analyzer - Swept SA Agilent Spectrum Analyzer - Swept SA Center Freq 2.402000000 C Ref Offset 7.49 dB Od B/div Ref 20.00 dBm Odd Date Image: Solution of the second sec	PUNCT 1.639 ms (Δ) -5.00 dB 999.3 μs 3.04 dBm Dwell NVNT 1-D GHz PHO: Fast IFGain:Low Y FUNCT FUN	TION FUNCTION WIDTH	veep 3.000 ms (10001 pts) FUNCTION VALUE FUNCTION VALUE Image: Comparison of the state of the s	
1 Δ2 1 t (Δ) 1 2 F 1 t 1 1 2 F 1 t 1 1 3 4 - - - 1 1 4 - <	1.639 ms (Δ) 5.00 dB 999.3 μs 3.04 dBm Dwell NVNT 1-D GHz PH0: Fast IFGain:Low #Atten: 30 d	STATUS H5 2402MHz .000 ms Avg Type: Log-Pw	07:45:31 PM May 28, 2021	
Agilent Spectrum Analyzer - Swept SA Dr R RF 50 Q AC Center Freq 2.402000000 C Ref Offset 7.48 dB Log Ref 20.00 dBm 0 dB/div Ref 20.00 dBm - 0 0	GHZ FRULSE PRO: Fast - Trig: Video IFGain:Low #Atten: 30 d	H5 2402MHz	07:45:31 PM May 28, 2021	
M R RF 50 Ω AC Center Freq 2.402000000 G Ref Offset7.48 dB 10 dB/div Ref 20.00 dBm 000	GHZ FRULSE PRO: Fast - Trig: Video IFGain:Low #Atten: 30 d	ALIGNAUTO ALIGNAUTO ALIGNAUTO ALIGNAUTO AVG Type: Log-Pw	07:45:31 PM May 28, 2021 TRACE 123456	
Log 100 000 -100 -200 -300	IFGain:Low #Atten: 30 d	B	TRACE 123456 TYPE WWWWWW DET P.N.N.N.N.N	
Log 100 000 -100 -200 -300			ΔMkr1 2.887 ms -6.27 dB	
-20.0	X2		1A2 TRI AL	
-co.o. -co.o. <mark>philliphi (philliphi), philliphi (philliphi), philliphi), philliphi (philliphi), philliphi (philliphi), philliphi), philliphi), philliphi (philliphi), philliphi), philliphi), philliphi (philliphi), philliphi), philiphi), philliphi), philiphi), philliphi), ph</mark>				
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz		Span 0 Hz veep 4.000 ms (10001 pts)	
MKR MODE TRC SCI X	2.887 ms (Δ) -6.27 dB 999.2 μs 3.79 dBm	ION FUNCTION WIDTH		
MSG				
		STATUS		
	×	STATUS	N.C.	

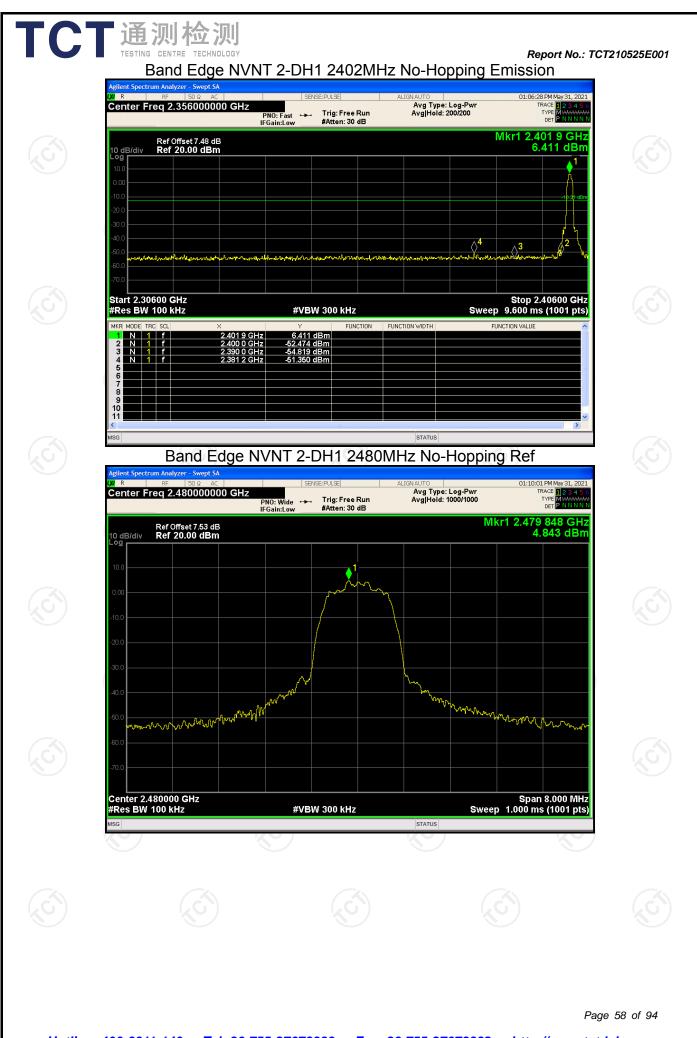
022 R RF 50 Ω AC Center Freq 2.402000000 GH		GNAUTO 01:11:37 PM May 31, 20 Avg Type: Log-Pwr TRACE 2344 TYPE DET PINNI	N 6 NV I N
Ref Offset 7.48 dB		ΔMkr1 385.0 μ -1.35 d	
-10.0	X ₂		
Center 2.40200000 GHz Res BW 1.0 MHz		Span 0 H Sweep 2.000 ms (10001 pt ION WIDTH FUNCTION VALUE	s)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.0 μs (Δ) -1.35 dB 3.8 μs 0.43 dBm		н
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			×
MSG	Dwell NVNT 2-DH3 24	status 02MHz	
Agilent Spectrum Analyzer - Swept SA M RF 50 Ω AC Center Freq 2.402000000 GH	Z Trig Delay-1.000 ms	IGNAUTO 01:21:06 PM May 31, 20 Avg Type: Log-Pwr TRACE 1 2 3 4 1 Type	21
Ref Offset 7.48 dB	PNO: Fast Trig: Video IFGain:Low #Atten: 30 dB	ΔMkr1 1.637 m -3.27 d	S
10.0	X2 Winterful and the second		л.
-10.0 -20.0 -30.0			(C)
-40.0 -50.0 -60.0 -80.0 -70.0			
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Span 0 H Sweep 3.000 ms (10001 pt ION WIDTH FUNCTION VALUE	IZ S)
Center 2.402000000 GHz Res BW 1.0 MHz MKR MODE TRC SCL × 1 A2 1 t (A) 1.65 2 F 1 t 999 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	#VBW 1.0 MHz	Sweep 3.000 ms (10001 pt	
Center 2.402000000 GHz Res BW 1.0 MHz MKR MODE TRC SCL × 1 Δ2 1 t (Δ) 1.63 2 F 1 t 995 3 - 4 - 5 - 6 - 7 - 8 -	#VBW 1.0 MHz	Sweep 3.000 ms (10001 pt	
Center 2.402000000 GHz Res BW 1.0 MHz MKR MODE TRC SCL × 1 Δ2 1 t (Δ) 1.65 2 F 1 t (Δ) 1.65 3 4 5 6 6 6 99 9 9 9 10 11 1 1 1	#VBW 1.0 MHz	Sweep 3.000 ms (10001 pt	

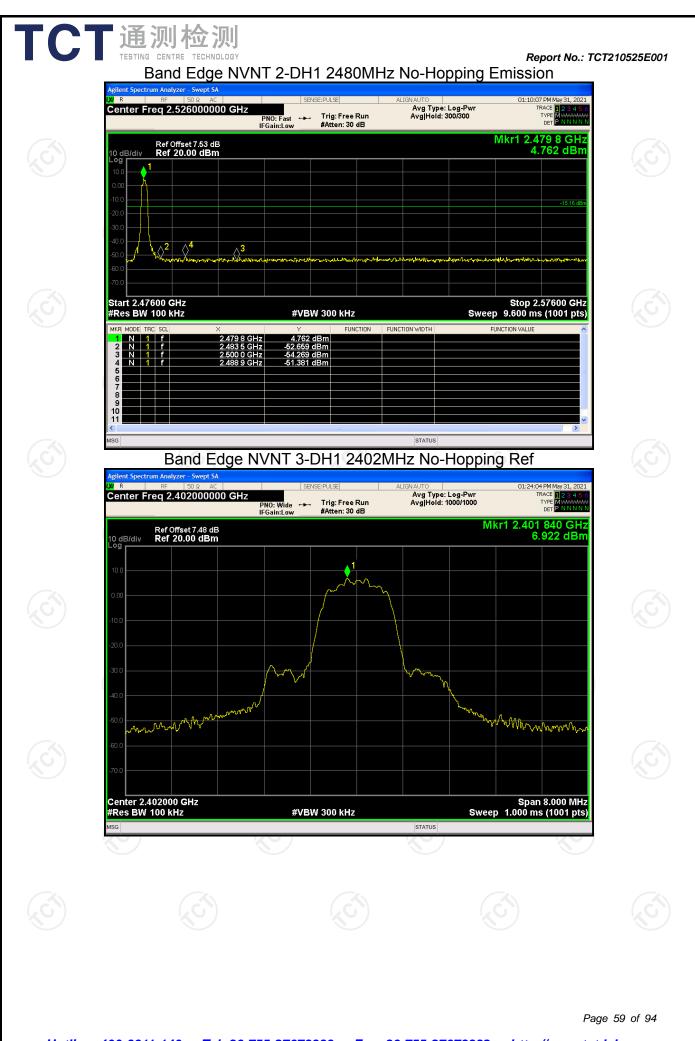
R RF 50 Ω AC Center Freq 2.402000000 GI		NAUTO 01:21:43 PM May 31, 2021 Avg Type: Log-Pwr TRACE 12:3 4 5 6 TYPE WMMMM DEF P NINNIN	
Ref Offset 7.48 dB 10 dB/div Ref 20.00 dBm	IFGall:LOW MACHING VIE	ΔMkr1 2.885 ms -4.48 dB	
10.0 0.00 -10.0 -20.0 -30.0 -40.0			
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Span 0 Hz Sweep 4.000 ms (10001 pts)	
MKR MODE TRC SCL × 1 Δ2 1 t Δ2 2.8 2 F 1 t	Y FUNCTION FUNCTION 385 ms (Δ) -4,48 dB - 38.8 μs 3.63 dBm - -	N WIDTH FUNCTION VALUE	
MSG Agilent Spectrum Analyzer - Swept SA	Dwell NVNT 3-DH1 240	status D2MHz	
04 R RF 50 Q AC Center Freq 2.402000000 G		NAUTO 01:29:57 PM May 31, 2021 Avg Type: Log-Pwr TRACE 23 4 5 G TYPE OCT P NNNNN	
Ref Offset 7.48 dB Log Ref 20.00 dBm 10.0	X2	ΔMkr1 385.0 μs -0.04 dB	
	ntenta dagin printa na infra di printa di Na printa di		
Center 2.402000000 GHz Res BW 1.0 MHz ΜKR MODEL TRC SCL 4 Δ2 1 t Δ2 t	#VBW 1.0 MHz γ FUNCTION FUNCTION 55.0 μs (Δ) -0.04 dB	Span 0 Hz Sweep 2.000 ms (10001 pts)	
2 F 1 t 99 3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	35.0 μs (Δ) -0.04 dB 38.4 μs -0.40 dBm	STATUS	
×			


04 R RF 50 Ω AC Center Freq 2.402000000 GHz	SENSE:PULSE ALIGN AUTO Trig Delay-1.000 ms Avg PNO: Fast → Trig: Video IFGain:Low #Atten: 30 dB	01:41:54 PM May 31, 2021 Type: Log-Pwr TRACE 12 34 5 6 TYPE DET PNNNNN DET PNNNNN	
Ref Offset 7.48 dB 10 dB/div Ref 20.00 dBm Log		ΔMkr1 1.636 ms 1.06 dB	
10.0	χ_2 Margana hali tana kata kata kata kata kata kata kata		
-20.0			
-40.0 -60.0 of the apply of the part of the part of the part of the ball of the part of th	le faite	b vitter growth they to a start of the start	
Center 2.402000000 GHz		Span 0 Hz	
Res BW 1.0 MHz MKRI MODE TRC X 1 Δ2 1 t (Δ) 1.636 m 2 F 1 t 998.4 μ	#VBW 1.0 MHz Y FUNCTION FUNCTION with s 1.06 dB s s 0.39 dBm s	Sweep 3.000 ms (10001 pts)	
2 F i 395.4 µ 3 i 4 4 i 5			
7 8 9 10			
MSG	STA		
Agilent Spectrum Analyzer - Swept SA	Well NVNT 3-DH5 2402N		
Center Freq 2.402000000 GHz		Type: Log-Pwr TRACE 123456 TYPE WWWWW DET PINININ	
Ref Offset 7.48 dB 10 dB/div Ref 20.00 dBm 10 dB/div Ref 20.00 dBm		ΔMkr1 2.888 ms -4.32 dB	
0.00 -10.0	ver deland ge dele Alexandren a sector planatori h, fill yezh egi en fara filledhe di Ariavan. Edi	, <u>, , , , , , , , , , , , , , , , , , </u>	
-20.0			
-so.o. <mark>Whether the state of th</mark>			
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Span 0 Hz Sweep 4.000 ms (10001 pts)	
MKR MODE TC SCI × 1 Δ2 1 t (Δ) 2.888 m 2 F 1 t 998.4 μ	Υ FUNCTION FUNCTION WID s (Δ) -4.32 dB		
3 4 5 6 6			
7 8 9 10 11			
MSG	STA	TUS	


Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
	1-DH1	2402	No-Hopping	-59.07	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-59.1	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-58.14	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-56.22	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-58.95	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-57.04	-20	Pass


Band Edge


TCT通测检测 TESTING CENTRE TECHNOLOGY


Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref

