

Product Integrity Laboratory

5151-47th Street, NE Calgary, Alberta T3J 3R2 Tel: (403) 568-6605 Fax: (403) 568-6970

Certification Test Report

CFR 47 FCC Part 15, Subpart C Section 15.225

Estech Systems Inc. FCC ID # 1T1MF08B33727

Project Code CG-126

(Report CG-126-0)

Revision: 0

July 25, 2005

Prepared for: Estech Systems Inc.

Author: Kuganesan Pararajasingam

EMC Engineer

Approved by: Nick Kobrosly

Director of Operations

Confidentiality Statement: This report and the information contained herein represent the results of testing articles/products identified and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from National Technical Systems ("NTS") and the customer.

Report Summary NTS Canada

Product Integrity Laboratory

5151-47th Street, N.E. Calgary Alberta T3J 3R2

Accreditation Numbers: FCC 101386

IC 46405-3978 File # IC3978-2

Standards Council of Canada Accredited Laboratory No. 440

Performed For: Estech Systems Inc.

3701 E. Plano Parkway Plano, Texas 75074

USA

Customer Representative: Craig Kibby

Senior Hardware Engineer

EUT Description:

EUT Description	Manufacturer	Model	Revision	Serial Number
125kHz Panther RFID Reader	Estech Systems Inc.	IVX	А	

Test Summary

ndix	Test/Requirement	Deviations* from:		Dans / Esti	Applicable Rule		
Appendix	Description Base Standard		Test Basis	NTS Procedure	Pass / Fail	Parts	
Α	Radiated E-Field Emissions 30 MHz – 1 GHz	No	No	No	PASS	FCC 15.209	
В	Conducted Voltage Emissions 150 kHz – 30 MHz AC Power Leads	No	No	No	PASS	FCC 15.207	
С	Radiated H-Field Emissions 9 kHz – 30 MHz	No	No	No	PASS	FCC 15.209	

Test Result:	The product	presented for t	testina com	plied with test	requirements as	shown above.

Prepared By: Kuganesan Pararajasingam

EMC Engineer

Checked By: _____

Glen Moore EMC Manager

Table of Contents

	T SUMMARY	
TEST S	UMMARY	3
	ER OF REVISIONS	
1.0	INTRODUCTION	6
1.1	Purpose	6
2.0	EUT DESCRIPTION	6
2.1	CONFIGURATION	6
2.2	Mode of Operation	6
3.0	SUPPORT EQUIPMENT	6
3.1	CONFIGURATION	6
3.2	CABLES	7
	DICES	
	DIX A: RADIATED EMISSIONS 30 MHZ – 1 GHZ	
APPENI	DIX B: CONDUCTED EMISSIONS 150 KHZ – 30 MHZ	12
	DIX C: RADIATED H-FIELD EMISSIONS 9 KHZ - 30 MHZ	
APPENI	DIX D: TEST EQUIPMENT	21
END OF	DOCUMENT	24

REGISTER OF REVISIONS

Revision	Date	Description of Revisions
0	July 25, 2005	Draft release for review

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to describe the tests applied by NTS Canada to demonstrate compliance of the Panther RFID Reader from Estech Systems Inc. to FCC Part 15 Subpart C section 15.207 and 15.209 for Intentional Radiator and the equivalent sections of Industry Canada's RSS 210 Issue 5

2.0 EUT DESCRIPTION

2.1 CONFIGURATION

Description of EUT

	Name	Model	Revision	Serial Number	
EUT	Panther RFID Reader	IVX			
Classification	Low Power Transmitter				
Size (m)	NA				
Weight	NA				
Power	120VAC				
Description	125kHz Panther RFID Reader				

2.2 MODE OF OPERATION

The Panther RFID Reader was tested while in a Reader mode with worst case results reported.

3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

All support equipment information was supplied by the client and was not verified by NTS.

The support equipments were placed out of the 10-meter Chamber for the radiated emission test, as the communication cable length is 30 meter.

The EUT and support equipments were placed inside the 10-meter anechoic chamber for the conducted emission test.

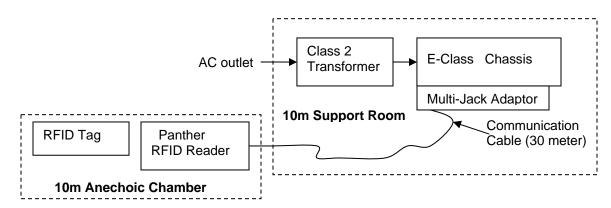


Figure 1 Radiated Emission Test Configuration

E-Class System

<u> </u>				
Position	Model	Model #	P/N	Serial Number
10m Support Room	ESI		NA	

Class 2 Transformer

Position	Model	Model #	P/N	Serial Number
10m Support Room	ESI	AP3388	4020-1227	NA

Multi-Jack Adaptor

Position	Model	Model #	P/N	Serial Number
10m Support Room	ORTRONICS	OR-812045643		

3.2 CABLES

Support Cable List

tity		Routing			Cable
Quantity	Model	From	То	Description	Length (m)
1	Power	AC Mains	Class 2 Transformer	Unshielded, Permanent connection to Class 2 Transformer	1.9
1	Power	Class 2 Transformer	E-Class System	Unshielded, Permanent connection to Class 2 Transformer	1.85
1	Communication	E-Class System	Panther RFID Reader	Unshielded, BERK-TEK Hyper-Plus 24 AWG	30

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

APPENDICES

APPENDIX A: RADIATED EMISSIONS 30 MHZ - 1 GHZ

A.1. Base Standard & Test Basis

Base Standard	e Standard CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.209 – Radio Frequency Devices			
Test Basis	ANSI C63.4 - 2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz			
Test Method	NTS Radiated Emissions Test Method E001R7			

A.2. Specifications

Frequency	FCC Part 15 10-m Limit (Quasi-Peak)
MHz	dBμV/m
30 - 88	29.54
88 - 216	33.06
216 - 960	35.56
960 - 1000	43.52

Notes: Limit extrapolated from 3m using 10m Limit = 3m Limit $-20 * log_{10}(10/3)$

A.3. Measurement Uncertainty

Radiated Emissions 30 MHz – 1 GHz	Measurement Uncertainty	Expanded Uncertainty (K=2)		
(dB)	+2.32/-2.36	+4.65/-4.72		

A.4. Deviations

Deviation	Time &	Description and	De			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

A.5. Test Method

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a motorized turntable. The emission levels were maximized by rotating the turntable through 360 degrees, a measurement antenna was positioned at a distance of 10meters as measured from the closest point of the EUT, and scanned from 1-4 meters.

A spectrum analyzer with peak detection was used to find the maximum field strength during the scans. The EUT was tested in 3 orthogonal planes, with the worst case results being reported.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Test Results

Compliant. The worst case emission level at 10m was $33.13 dB_{\mu}V/m$ at 393.24 MHz with a margin of 2.43dB.

A.6. Sample Calculation

Emission Level = Measured Level + Correction Factors Margin = Limit – Emission Level

A.7. Test Data

Product Integrity Laboratory V2.5	Project Number: Model: Comments:	CG-126 IVX Estech Conf01:E-C the tablewit	lass S	ystem and		aptor were p	Tester: Test ID: laced in the	Kuganesan RE02c-10n support roc	n-126	3000 - 300 - 300	der was I	aid flat on
Standard	FCC15_B		Measu	rement Di	stance		10	meters	7-1			
Antenna	CL	Frequency	AF	CL+LNA	Total CF	Detector	Measured Value	Corrected Value	Limit	Margin	Mast Height	Turntable Angle
Horizontal		MHz	dB/m	dB	dB/m		dBuV	dBuV/m	dBuV/m	dB	cm	degrees
2261 RX BiCon Hpol	10M Total Link Factor	368.66	15.00	-23.21	-8.21	QP	38.79	30.58	35.56	4.98	267.8	193.9
2261 RX BiCon Hpol	10M Total Link Factor	393.24	15.30	-23.29	-7.99	QP	41.12	33.13	35.56	2.43	302.1	187.3
Vertical	20								20 00		70	
2261 RX BiCon Vpol	10M Total Link Factor	67.58	7.00	-25.44	-18.44	QP	30.76	12.32	29.54	17.23	159.0	173.6
2261 RX BiCon Vpol	10M Total Link Factor	118.78	12.47	-24.84	-12.36	QP	36.45	24.09	33.06	8.98	400.0	138.8
2261 RX BiCon Vpol	10M Total Link Factor	188.42	9.70	-24.03	-14.33	QP	39.60	25.27	33.06	7.80	187.3	323.8
2261 RX BiCon Vpol	10M Total Link Factor	213.00	10.06	-23.72	-13.65	QP	43.66	30.01	33.06	3.06	95.4	92.1

A.8. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Kuganesan Pararajasingam

Function: EMC Technician

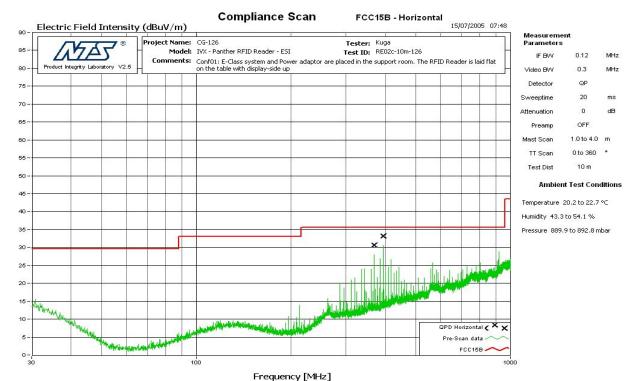


Figure 2 RE - Horizontal - 30 MHz - 1 GHz

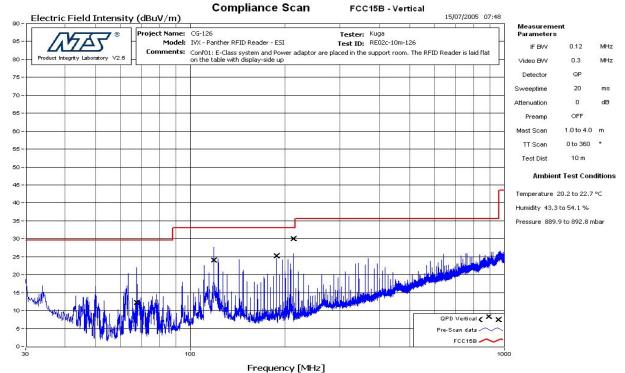


Figure 3 RE - Vertical – 30 MHz – 1 GHz

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

APPENDIX B: CONDUCTED EMISSIONS 150 KHZ - 30 MHZ

B.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.207 – Radio Frequency Devices
Test Basis	ANSI C63.4 - 2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
Test Method	NTS Conducted Emissions Test Method E011R1

B.2. Specifications

Frequency	Limit				
Trequency	Quasi-Peak	Average			
MHz	dΒμV	dΒμV			
0.150 - 0.500	66 to 56 ¹	56 to 46 ¹			
0.500 - 5.00	56	46			
5.00 - 30.00	60	50			

Note 1: decrease with the logarithm of the frequency

B.3. Measurement Uncertainty

Conducted Current Emissions 150 kHz – 30 MHz	Measurement Uncertainty	Expanded Uncertainty (K=2)		
(dB)	+1.21/-1.33	+2.41/-2.66		

B.4. Deviations

Deviation	Time &	Description and	De	viation Referen	ce	
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

B.5. Test Results

Compliant. The worst case emission level was 32.84dBµV at 7.77MHz with a margin of 17.16dB.

B.6. Sample Calculation

Correction Factor = LISN Correction Factor + Cable Loss Corrected Value = Measurement + Correction Factor Margin = Limit – Corrected Emission Level

B.7. Test Data

oduct Integrity boratory V2.5	9	Project Numbe Model: Comments:	ber: CG-126 IVX Estech Systems Inc. Conf01:E-Class System and Power adaptor were placed in the tablewith display-side up.			re placed in the	Test ID:	Kuganesan Pararajasingam CE02tc-10m-126 I. The RFID Reader was laid flat	
andard:	FCC15_B								
Voltage/Line	LISN/Lead	Frequency	Measurement Detector	Measured Value	CF	Corrected Value	Limit Detector Type	Limit	Margin
		MHz		dBu∀	dB	dBu∀	100	dBu∀	dB
Phase1	TT LISN A1	0.15	QP	31.25	12.44	43.69	QP	65.97	22.28
Phase1	TT LISN A1	7.77	QP	28.82	11.48	40.30	QP	60.00	19.70
Phase1	TT LISN A1	18.64	QP	24.42	12.13	36.55	QP	60.00	23.45
Phase1	TT LISN A1	25.12	QP	26.56	12.40	38.96	QP	60.00	21.04
Neutral	TT LISN A4	0.15	QP	30.75	12.24	42.99	QP	65.92	22.94
Neutral	TT LISN A4	0.21	QP	21.33	11.40	32.73	QP	63.04	30.31
Neutral	TT LISN A4	0.47	QP	16.3	10.65	26.95	QP	56.45	29.50
Neutral	TT LISN A4	7.51	QP	29.7	11.12	40.82	QP	60.00	19.18
Phase1	TT LISN A1	0.40	Avg	11.45	10.96	22.41	Avg	47.87	25.46
Phase1	TT LISN A1	0.27	Avg	17.92	11.24	29.16	Avg	51.01	21.85
Phase1	TT LISN A1	7.77	Avg	21.35	11.49	32.84	Avg	50.00	17.16
Phase1	TT LISN A1	18.64	Avg	19.07	12.13	31.20	Avg	50.00	18.80
Neutral	TT LISN A4	0.15	Avg	14.98	12.26	27.24	Avg	55.98	28.75
Neutral	TT LISN A4	0.40	Avg	11.09	10.73	21.82	Avg	47.75	25.94
Neutral	TT LISN A4	0.49	Avg	11.02	10.65	21.67	Avg	46.22	24.55
Neutral	TT LISN A4	7.51	Avg	17.72	11.12	28.84	Avg	50.00	21.16

B.8. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Kuganesan Pararajasingam

Function: EMC Technician

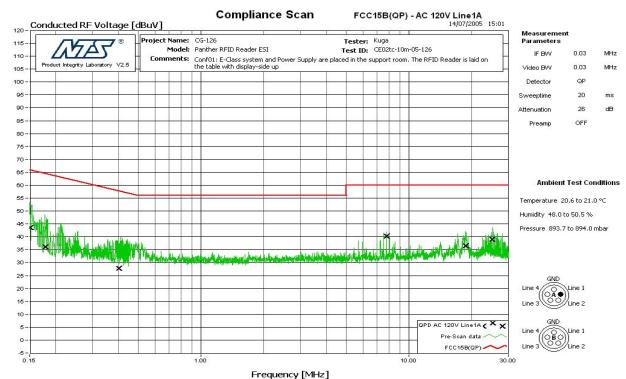


Figure 4 CE –Line A1 – 150 kHz – 30 MHz (QP Detector)

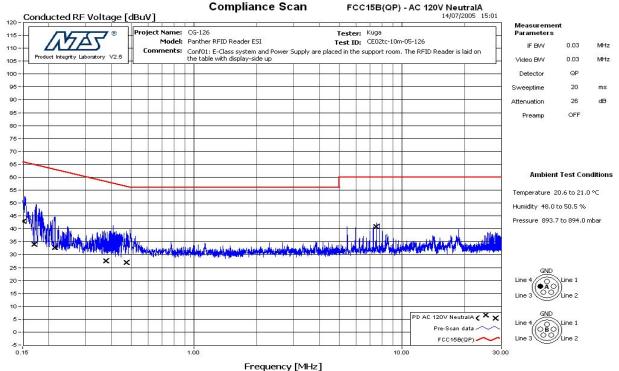


Figure 5 CE –Return A2 – 150 kHz – 30 MHz (QP Detector)

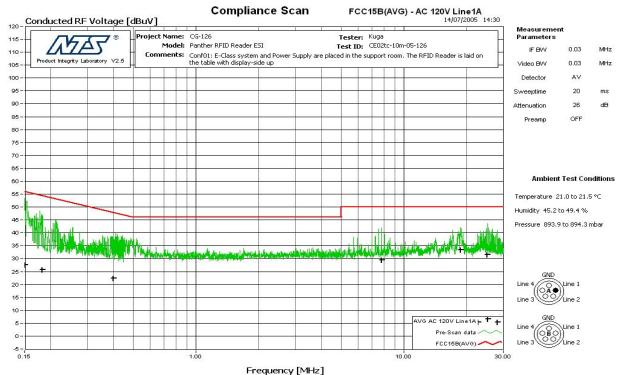


Figure 6 CE –Line A1 – 150 kHz – 30 MHz (Average Detector)

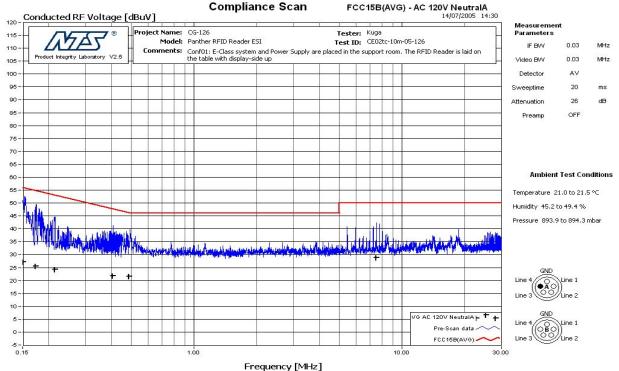


Figure 7 CE –Return A2 – 150 kHz – 30 MHz (Average Detector)

APPENDIX C: RADIATED H-FIELD EMISSIONS 9 KHZ - 30 MHZ

C.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.209 and Part 15.225 – Radio Frequency Devices
Test Basis	ANSI C63.4 - 2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
Test Method	NTS Radiated H-Field Emissions Test Method 28.2, Rev 1.0

C.2. Specifications

Frequency	Lim	nit	Limit at 3m		
(F)	Field Strength	Distance	Lillin at Sill		
MHz	μV/m	m	dBμV/m		
0.009 - 0.49	2400/ F(kHz)	300	128.5 to 93.8 ¹		
0.49 – 1.705	24000/ F(kHz)	30	73.8 to 63.0 ¹		
1.705 – 30	30	30	69.5		

Notes:

1. decrease with the logarithm of the frequency.

2. Limit is extrapolated from 300m and 30 to 3m by adding 80dB and 40dB respectively.

C.3. Measurement Uncertainty

Radiated H-Field Emissions 9kHz – 30MHz	Measurement Uncertainty	Expanded Uncertainty (K=2)		
(DB)	+2.15/-2.19	+4.30/-4.38		

C.4. Deviations

Deviation	Time &	Time & Description and		Deviation Reference				
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval		
none								

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

C.5. Test Method

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a motorized turntable. The fundamental field strength was maximized by rotating the turntable through 360 degrees. The receive Loop antenna was positioned with its plane vertical at a distance of 3 meters as measured from the closest point of the EUT and 1 meter above the ground plane and rotated about its vertical axis for maximum response. A spectrum analyzer with peak detection was used to find the maximum field strength during the scans. The EUT was tested in 3 orthogonal planes, with the worst case results being reported.

C.6. Test Results

Compliant. The worst case fundamental field strength is $73.07 dB_{\mu}V/m$

C.7. Sample Calculation

Margin = Limit - Emission Level

C.8. Test Data

Product Integrity Laboratory V2.5	Project Number: Model: Comments:	CG-126 IVX - Panthe Conf02:E-Cl the table at t	ass syst	em and F		/ are placed	Test ID:	Kuga RE01-10m- ort room, Th		ader stands	s still (
Standard :	FCC Part 15	rt 15 Measurement Distance :		ince :	3 meters		Measurement Type :		H-Field		
	Antenna	Frequency	AF	CL	Total CF	Detector	Measured Value	Corrected Value	Limit at 3 meter	Margin	
	Horizontal	MHz	dB/m	dB	dB/m		dBuV	dBuV/m	dBuV/m	dB	
	R&S HFH2-Z2 Loop	0.0510	19.50	0.08	19.58	Peak	41.57	61.15	113.45	52.30	
	R&S HFH2-Z2 Loop	0.1020	19.40	0.08	19.48	Peak	32.47	51.95	107.43	55.48	
	R&S HFH2-Z2 Loop	0.1250	19.38	0.09	19.47	Peak	53.60	73.07	105.67	32.60	
	Vertical										
	R&S HFH2-Z2 Loop	0.0510	19.50	0.08	19.58	Peak	36.94	56.52	113.45	56.93	
	R&S HFH2-Z2 Loop	0.1020	19.40	0.08	19.48	Peak	28.71	48.19	107.43	59.24	
	R&S HFH2-Z2 Loop	0.1250	19.38	0.09	19.47	Peak	50.26	69.73	105.67	35.94	

C.9. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Kuganesan Pararajasingam

Function: EMC Technician

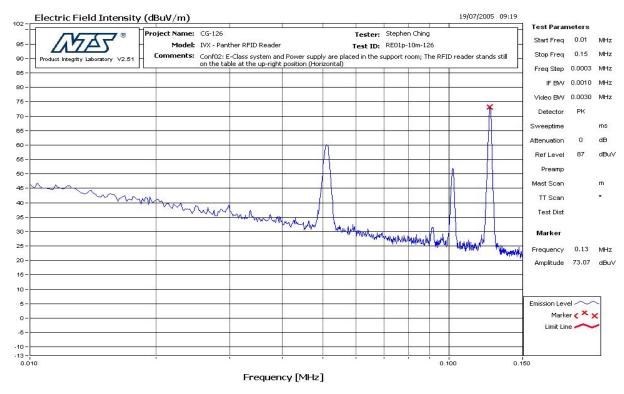


Figure 8 RE - Horizontal – 9kHz – 150kHz (EUT on Up-right Position)

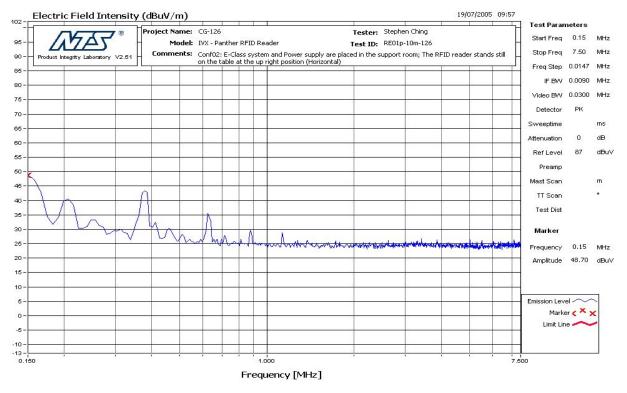


Figure 9 RE - Horizontal – 150kHz – 7.5MHz (EUT on Up-right Position)

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

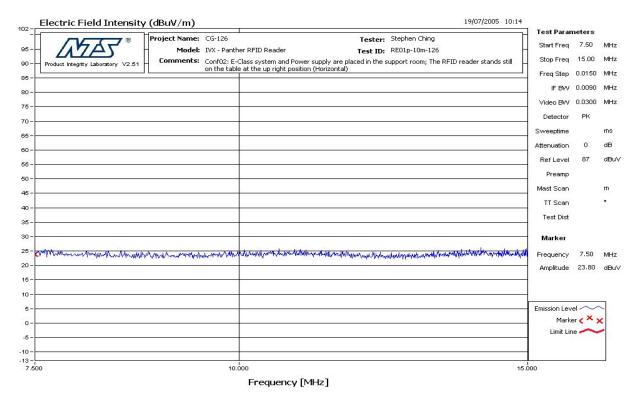


Figure 10 RE - Horizontal – 7.5Hz – 15MHz (EUT on Up-right Position)

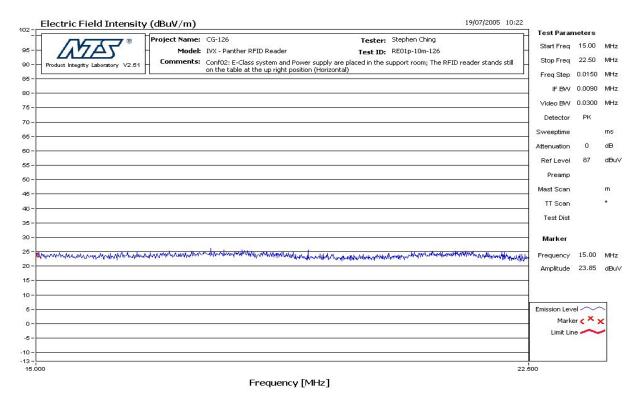


Figure 11 RE - Horizontal – 15Hz – 22.5MHz (EUT on Up-right Position)

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

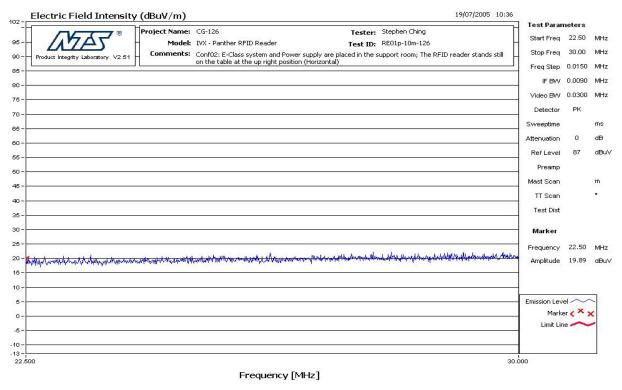


Figure 12 RE - Horizontal – 22.5Hz – 30MHz (EUT on Up-right Position)

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

APPENDIX D: TEST EQUIPMENT

D.1. Radiated Emissions 30 MHz – 1 GHz Measurement Equipment

Description	Manufacturer	Type/Model	Asset #	Cal Due	Cal Date				
10m ANECHOIC CHAMBER									
Bilog Antenna	☐ Chase	CBL 6111B	260398	09JULY06	09JULY04				
Bilog Antenna		CBL 6112B	260301	03002100					
RF Cable	Suhner Succoflex	Ferrite bead loaded cable	260388	07JAN06	07JAN04				
	CONTROL ROOM								
Test Receiver	Rohde & Schwarz	ESAI	260110 / 260111	2FEB06	2FEB05				
Mast Controller	EMCO	2090	260165	N/A	N/A				
Multi Device Controller TT1 (Turntable)	07JAN06	07JAN04		N/A	N/A				
RF 10m East site Link		<u> </u>							
- Cable 1	Suhner Succoflex	NA	263135						
- Cable 2	Suhner Succoflex	NA	263161		08JAN04				
- Cable 3	Suhner Succoflex	NA	263162	08JAN06					
- Cable 4	TDL	SMC-002	260162						
- Amplifier	Hewlett Packard	8447F	260164						

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

D.2. Conducted Emissions 10 kHz – 30 MHz Measurement Equipment

Description		Manufacturer	Type/Model	Serial #	Cal Due	Cal Date	
10m ANECHOIC CHAMBER							
A LISN Link							
-LISN A Switch 🛛 A		NA	NA	263177	07JAN06	07JAN04	
-Cable Switch to Limiter	⊠A	NA	NA	263164			
	⊠ A1	Succoflex	NA	263168	07JAN06	07JAN04	
- Cable	☐ A2	Succoflex	NA	263169	07JAN06	07JAN04	
LISN to Switch	☐ A3	Succoflex	NA	263170	07JAN06	07JAN04	
	⊠ A4	Succoflex	NA	263171	07JAN06	07JAN04	
- Table Top LISN	⊠TT	EMCO	3825	260354	08JAN06	08JAN04	
CONTROL ROOM							
Test Receiver		Rohde & Schwarz	ESAI	260110 / 260111	2FEB06	2FEB05	
Mast Controller		EMCO	2090	260166	N/A	N/A	
Switch Matrix		TDL	SMC-002	260162	07JAN06	07JAN04	
Cable Switch Matrix to Receiver		NA	NA	263166	07JAN06	07JAN04	
A LISN Link							
-LISN A Limiter 🛛 A		NA	NA	263178	07JAN06	07JAN04	
-Cable Switch to Limiter	⊠A	NA	NA	263164			

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

D.3. Radiated H-Field Emissions 10kHz – 30MHz Measurement Equipment

Description		Manufacturer	Type/Model	Serial #	Cal Due	Cal Date		
10m ANECHOIC CHAMBER								
L	.oop Antenna	R&S	HFH2-Z2	DE12245	09NOV05	09NOV04		
Loop	Antenna Power Supply	NA	NA	263257	N/A	N/A		
Cable		Succoflex	NA	263136	08JAN06	08JAN04		
Cable	H-Field site bulkhead to antenna	Succoflex	NA	263387	08JAN06	08JAN04		
CONTROL ROOM								
Mast Controller		EMCO	2090	260166	N/A	N/A		
Multi Device Controller TT1 (Turntable)		EMCO	2090	260165	N/A	N/A		
Test Receiver		Rohde & Schwarz	ESAI	260110 / 260111	02FEB06	02FEB05		
□ RF 3m Center site Link								
- Cable 1		Succoflex	NA	263188	08JAN06	08JAN04		
- Cable 2		Succoflex	NA	263134				
☐ RF 1	0m H-Field site Link							
- Cable 1		Succoflex	NA	263184				
- Cable 2		le 2 Succoflex		263189	08JAN06	08JAN04		
- Cable 3		Succoflex	NA	263167				
- Switch Matrix Controller		TDL	SMC-002	260162				

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

END OF DOCUMENT