

FCC PART 15.247 IC RSS-210, ISSUE 7, JUNE 2007 TEST AND MEASUREMENT REPORT

For

Tivo, Inc.

2160 Gold Street, PO Box 2160, Alviso, CA 95002, USA

FCC ID: TGN-C00240 IC: 4672A-C00240

Report Type: Product Type:

Original Report Bluetooth Remote Control

Test Engineer: Dennis Huang

Report Number: R1005061-247

Report Date: 2010-06-07

Victor Zhang

Reviewed By: Test Engineer

Prepared By:

(84)

Bay Area Compliance Laboratories Corp.

1274 Appilyood Avenue

1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GEN	NERAL INFORMATION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION OF EUT	5
	1.3	EUT PHOTOGRAPH	5
	1.4	Objective	
	1.5	RELATED SUBMITTAL(S)/GRANT(S)	
	1.6	TEST METHODOLOGY	
	1.7	MEASUREMENT UNCERTAINTY	
	1.8	TEST FACILITY	
2		TEM TEST CONFIGURATION	
	2.1	JUSTIFICATION	
	2.2	EUT Exercise Software	
	2.3	SPECIAL ACCESSORIES	
	2.4	EQUIPMENT MODIFICATIONS	
	2.5	POWER SUPPLY INFORMATION	
	2.6 2.7	LOCAL SUPPORT EQUIPMENT	
3		MARY OF TEST RESULTS	
4	FCC	C §15.203 & IC RSS-GEN §7.1.4 - ANTENNA REQUIREMENT	
	4.1	APPLICABLE STANDARD	
	4.2	ANTENNA CONNECTED CONSTRUCTION	9
		C §15.205, §15.209 & §15.247(D) & IC RSS-210 §2.2, §A8.5 – RESTRICT BAND AND UNWANTE	
E	MISSIC	ONS	
	5.1	APPLICABLE STANDARD:	10
	5.2	TEST SETUP DIAGRAM	11
	5.3	TEST PROCEDURE	
	5.4	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	5.5	TEST EQUIPMENT LIST AND DETAILS	
	5.5	TEST ENVIRONMENTAL CONDITIONS	
	5.6 5.7	SUMMARY OF TEST RESULTS	
6	FCC	C §15.247(A)(1) & IC RSS-210 §A8.1(D) – 20 DB CHANNEL BANDWIDTH	
	6.1	APPLICABLE STANDARD	20
	6.2	MEASUREMENT PROCEDURE	
	6.3	TEST EQUIPMENT LIST AND DETAILS	
	6.4	TEST ENVIRONMENTAL CONDITIONS	
	6.5	MEASUREMENT RESULTS	
7	FCC	C §15.247(A)(1) & IC RSS-210 §A8.1(B) - HOPPING CHANNEL SEPARATION	23
	7.1	APPLICABLE STANDARD	23
	7.2	MEASUREMENT PROCEDURE	
	7.3	TEST EQUIPMENT LIST AND DETAILS	
	7.4	TEST ENVIRONMENTAL CONDITIONS	
	7.5	MEASUREMENT RESULTS	24
8	FCC	C §15.247(A)(1)(III) & IC RSS-210 §A8.1(D) - NUMBER OF HOPPING FREQUENCIES USED	26
	8.1	APPLICABLE STANDARD	26

8.2 8.3 8.4 8.5	MEASUREMENT PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS MEASUREMENT RESULT	26 26
9 F	CC §15.247(A)(1)(III) & IC RSS-210 §A8.1(D) - DWELL TIME	28
9.1	APPLICABLE STANDARD	28
9.2	MEASUREMENT PROCEDURE	28
9.3	TEST EQUIPMENT LIST AND DETAILS	
9.4	TEST ENVIRONMENTAL CONDITIONS	
9.5	MEASUREMENT RESULTS	29
10	FCC §15.247(B)(1) & IC RSS-210 §A8.1(B) - MAXIMUM PEAK OUTPUT POWER	31
10.1	APPLICABLE STANDARD	
10.2	MEASUREMENT PROCEDURE	
10.3	TEST EQUIPMENT LIST AND DETAILS	31
10.4	TEST ENVIRONMENTAL CONDITIONS	
10.5	MEASUREMENT RESULT	32
11	FCC §15.247(D) & IC RSS-210 §A8.5 - BAND EDGES	33
11.1	APPLICABLE STANDARD	
11.2	MEASUREMENT PROCEDURE	
11.3	TEST EQUIPMENT LIST AND DETAILS	
11.4	TEST ENVIRONMENTAL CONDITIONS	33
11.5	Measurement Results	34
12	FCC §15.247(D) & IC RSS-210 §A8.5 - SPURIOUS EMISSIONS AT ANTENNA PORT	35
12.1	APPLICABLE STANDARD	
12.1	TEST RESULT	
13	IC RSS-GEN §4.10 & RSS-210 - §2.6 RECEIVER SPURIOUS EMISSIONS	
13.1	APPLICABLE STANDARD	
13.2	TEST SETUP	
13.3 13.4	TEST PROCEDURE	
13.4	TEST EQUIPMENT LISTS AND DETAILS	
13.6	TEST ENVIRONMENTAL CONDITIONS.	
13.7	SUMMARY OF TEST RESULTS	
13.8	TEST DATA AND PLOTS	
14	EXHIBIT A – FCC & IC LABELING REQUIREMENTS	30
14.1	FCC ID LABEL REQUIREMENTS	
	IC LABEL REQUIREMENTS	
14.2	FCC ID & IC LABEL CONTENTS.	
		44
15	EXHIBIT B – TEST SETUP PHOTOGRAPHS	
15.1	EXHIBIT B – TEST SETUP PHOTOGRAPHS	41
15.1 15.2	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ)	41 41
15.1 15.2 15.3	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ)	41 41 42
15.1 15.2	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ)	41 41 42
15.1 15.2 15.3	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS	41 42 42 43
15.1 15.2 15.3 15.4 16	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS EUT – TOP VIEW	41 42 42 43
15.1 15.2 15.3 15.4 16 16.1 16.2	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS EUT – TOP VIEW EUT - BOTTOM VIEW	41 42 42 43 43
15.1 15.2 15.3 15.4 16 16.1 16.2 16.3	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS EUT – TOP VIEW EUT – BOTTOM VIEW EUT – SIDE VIEW	41 42 43 43 43
15.1 15.2 15.3 15.4 16 16.1 16.2 16.3 16.4	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS EUT – TOP VIEW EUT – BOTTOM VIEW EUT – SIDE VIEW EUT – KEYBOARD OPEN TOP VIEW	41 42 43 43 43 44
15.1 15.2 15.3 15.4 16 16.1 16.2 16.3 16.4 16.5	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS EUT – TOP VIEW EUT – BOTTOM VIEW EUT – SIDE VIEW EUT – SIDE VIEW EUT – KEYBOARD OPEN TOP VIEW EUT – PCB ASSEMBLY CONTROL BOARD TOP VIEW	
15.1 15.2 15.3 15.4 16 16.1 16.2 16.3 16.4 16.5 16.6	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS EUT – TOP VIEW EUT – BOTTOM VIEW EUT – SIDE VIEW EUT – SIDE VIEW EUT – KEYBOARD OPEN TOP VIEW EUT – PCB ASSEMBLY CONTROL BOARD TOP VIEW EUT – PCB ASSEMBLY CONTROL BOARD TOP VIEW	
15.1 15.2 15.3 15.4 16 16.1 16.2 16.3 16.4 16.5	EXHIBIT B – TEST SETUP PHOTOGRAPHS RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ) RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHZ) RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ) EXHIBIT C - EUT PHOTOGRAPHS EUT – TOP VIEW EUT – BOTTOM VIEW EUT – SIDE VIEW EUT – SIDE VIEW EUT – KEYBOARD OPEN TOP VIEW EUT – PCB ASSEMBLY CONTROL BOARD TOP VIEW	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1005061-247	Original Report	2010-06-07

1 General Information

1.1 Product Description for Equipment under Test (EUT)

This test report was prepared on behalf of *Tivo*, *Inc* and their product model: Qbert, FCC ID: TGN-C00240, IC: 4672A-C00240 or the "EUT" as referred to in this report is a Bluetooth remote control. It operates in the 2.4 GHz ISM Band: 2400~2483.5 MHz.

1.2 Mechanical Description of EUT

The EUT measures approximately 170 mm (L) x 55 mm (W) x 32mm (H) and weighs approximately 120g.

The test data gathered are from typical production sample. Serial number: R1005061-1, assigned by BACL.

1.3 EUT Photograph

Please refer to Exhibit C for more EUT photographs.

1.4 Objective

This type approval report is prepared on behalf of *Tivo*, *Inc* in accordance with Part 2, Subpart J, Part 15, Subparts A, B, and C and IC RSS-210.

1.5 Related Submittal(s)/Grant(s)

N/A

1.6 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003.

1.7 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from ± 2.0 for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

1.8 Test Facility

The semi-anechoic chambers used by BACL to collect radiated and conducted emissions measurement data is located in the building at it's facility in Sunnyvale, California, USA.

BACL's test sites have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464 and VCCI Registration No.: C-2698 and R-2463. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

2 System Test Configuration

2.1 Justification

The system was configured for testing in accordance with ANSI C63.4-2003.

The EUT was tested in the testing mode to represent worst-case results during the final qualification test.

2.2 EUT Exercise Software

The software is provided by customer. The EUT exercise program used during radiated testing was designed to exercise the system components.

Radio Mode	Low Channel	Middle Channel	High Channel	
	(MHz)	(MHz)	(MHz)	
Bluetooth	2402	2441	2480	

2.3 Special Accessories

N/A.

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Power Supply Information

Manufacturers	Descriptions	Models	Serial Numbers
-	-	-	-

2.6 Local Support Equipment

Manufacturers	Descriptions	Models	Serial Numbers
Dell	Laptop	Latitude D610	27474201109
Broadcom	Programming/Control Board	-	110-115471-0010

2.7 EUT Internal Configuration

Manufacturers	Descriptions	Models	Serial Numbers
Tivo, Inc	PCB Assembly – Remote Control Board	RB79A-B-PCB	1BG-0342A
Tivo, Inc	PCB Assembly- Bluetooth Board	RB79A-G-PCB	1BG-0341A

3 Summary of Test Results

FCC 15C & IC RSS-210 Rules	Description of Test	Results
FCC §15.203 IC RSS-Gen §7.1.4	Antenna Requirements	Compliant
FCC §15.207 (a) IC RSS-Gen §7.2.2	Conducted Emissions	N/A*
FCC §15.205, §15.209 & §15.247(d) IC RSS-210 §2.2, §A8.5	Restricted Band and Unwanted Emissions	Compliant
FCC §2.1051 & 15.247(d) IC RSS-210 §A8.5 & RSS-Gen §7.2	Spurious Emissions at Antenna Port	N/A**
FCC §15.247 (a)(1) IC RSS-210 §A8.1 (a)	20 dB Bandwidth & 99% Bandwidth	Compliant
FCC §15.247 (a)(1) IC RSS-210 §A8.1(d)	Hopping Channel Separation	Compliant
FCC §15.247 (a)(1)(iii) IC RSS-210 §A8.1(d)	Number of Hopping Frequencies Used	Compliant
FCC §15.247 (a)(1)(iii) IC RSS-210 §A8.1(d)	Dwell Time	Compliant
FCC \$15.247 (b)(3) IC RSS-210 \$A8.4(b)	Maximum Peak Output Power	Compliant
FCC § 15.247 (d) IC RSS-210 §A8.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
IC RSS-Gen §4.10	Receiver Spurious Emissions	Compliant

Note: *EUT powered by Battery.
** No Antenna port provided.

4 FCC §15.203 & IC RSS-Gen §7.1.4 - Antenna Requirement

4.1 Applicable Standard

For intentional device, according to FCC Part §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Per IC RSS-Gen §7.1.4, A transmitter can only be sold or operated with antennas with which it was certified. A transmitter maybe certified with multiple antenna types. An antenna type comprises antennas having similar inband and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in IC RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to IC RSS-210 Annex 8 or RSS-210 Annex 9, the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to IC RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

4.2 Antenna Connected Construction

The antenna for this device is an integral antenna that the end user cannot access. It is fully enclosed by the	
EUT chassis and removal/modification would result in irreparable damage to the device. Maximum gain is 1.	.87
dBi	

\boxtimes	Compliant	□N/A

5 FCC §15.205, §15.209 & §15.247(d) & IC RSS-210 §2.2, §A8.5 – Restrict Band and Unwanted Emissions

5.1 Applicable Standard:

As per FCC §15.205 and IC RSS-210 §2.2, Restricted bands of operation

(a) Except as shown in §15.205 paragraphs (d), only spurious emissions are permitted in any of the frequency bands listed below:

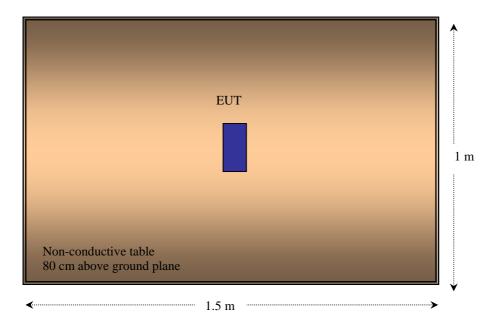
MHz	MHz	MHz	MHz	MHz	GHz	GHz
0.090 - 0.110	8.291 – 8.294	16.69475 – 16.69525	156.7 – 156.9	1435 – 1626.5	3.332 – 3.339	10.6 - 12.7
0.495 – 0.505	8.362 – 8.366	25.5 – 25.67	162.0125 –167.17	1645.5 – 1646.5	3.3458 – 3.358	13.25 – 13.4
2.1735 – 2.1905	8.37625 - 8.38675	37.5 – 38.25	167.72 – 173.2	1660 – 1710	3.600 - 4.400	14.47 – 14.5
4.125 – 4.128	8.41425 - 8.41475	73 – 74.6	240 – 285	1718.8 – 1722.2	4.5 – 5.15	15.35 – 16.2
4.17725 – 4.17775	12.29 – 12.293	74.8 – 75.2	322 – 335.4	2200 – 2300	5.35 - 5.46	17.7 – 21.4
4.20725 – 4.20775	12.51975 – 12.52025	108 – 121.94	399.9 – 410	2310 – 2390	7.25 - 7.75	22.01 – 23.12
6.215 – 6.218	12.57675 – 12.57725	123 – 138	608 - 614	2483.5 – 2500	8.025 - 8.5	23.6 – 24.0
6.26775 – 6.26825	13.36 – 13.41	149.9 - 150.05	960 – 1240	2690 – 2900	9.0 - 9.2	31.2 – 31.8
6.31175 – 6.31225	16.42 – 16.423	156.52475 – 156.52525	1300 - 1427	3260 - 3267	9.3 - 9.5	36.43 – 36.5
						Above 38.6

- (b) Except as provided in 15.205 paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

As per FCC §15.209 Radiated emission limits, general requirements.

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 1	3
88 - 216	150 ¹	3
216 - 960	200 1	3
Above 960	500	3


¹ Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c)).

IC RSS-Gen §4.9 the measurement method shall be described in the test report. The same parameter, peak power or average power, used for the transmitter output power measurement shall be used for unwanted emission measurements. The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate or carrier frequency), or from 30 MHz, whichever is the lower, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

5.2 Test Setup Diagram

The radiated emissions tests were performed in the 3-meter semi-anechoic chamber test site, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15C & IC RSS-210 limits.

5.3 Test Procedure

For the radiated emissions test, the EUT, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

RBW = 100 kHz/VBW = 300 kHz/Sweep = Auto

Above 1000 MHz:

Peak: RBW = 1MHz/VBW = 1MHz/Sweep = Auto Average: RBW = 1MHz/VBW = 10Hz/Sweep = Auto

5.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Cable Loss, and Attenuator Factor adding to the Indicated Reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Cable Loss + Attenuator Factor

For example, a Corrected Amplitude of 34.08 dBuV/m = Indicated Reading (23.85 dBuV) + Cable Factor (0.22 dB) + Attenuator Factor (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit.

5.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29
Rohde & Schwarz	EMI Test Receiver	1166.5950K03	100337	2010-03-24
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
Sunol Science Corp	Combination Antenna	JB3	A0020106-2	2009-08-20
HP	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

5.5 Test Environmental Conditions

Temperature:	20~23 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

Report Number: R1005061-247

^{*}Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3.

5.6 Summary of Test Results

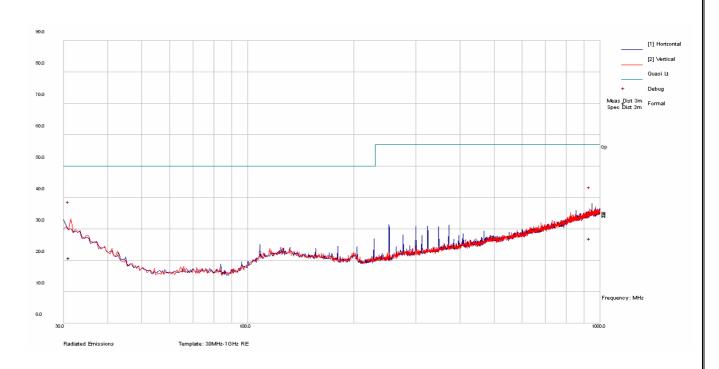
According to the data hereinafter, the EUT <u>complied with the FCC Part 15C & IC RSS-210</u> emissions limits, and had the worst margin of:

30 - 1000 MHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-19.02	946.4402	Horizontal	Middle, 30-1000 MHz

Above 1 GHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-	-	-	Low, 1-25 GHz
-	-	-	Middle, 1-25 GHz
-	-	-	High, 1-25 GHz


Note: - All emission levels were at the noise floor level and/or more than 20 dB below the limit.

Please refer to the following table and plots for specific test result details

5.7 Radiated Emissions Test Result Data and Plots

30 – 1000 MHz:

Worst-Case: Middle Channel (2441 MHz) Measured at 3 meter

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
31.58724	20.77	279	V	180	40	-19.23
946.4402	26.98	296	Н	141	46	-19.02

1 – 25 GHz:

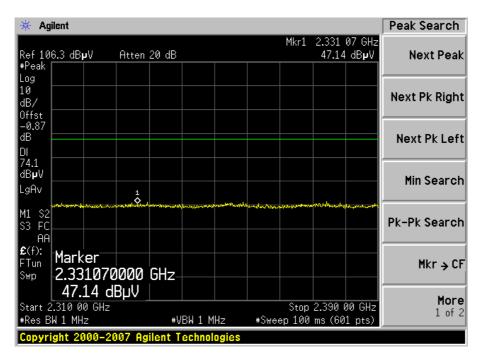
Low Channel 2402 MHz, measured at 3 meters

Frequency	S.A.	Azimuth	Т	est Anteni	na	Cable	Pre-	Cord.	FCC	& IC	
Frequency (MHz)	Reading (dBµV)	(degrees)		Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
-	-	-	-	-	-	-	-	-	-	-	_1

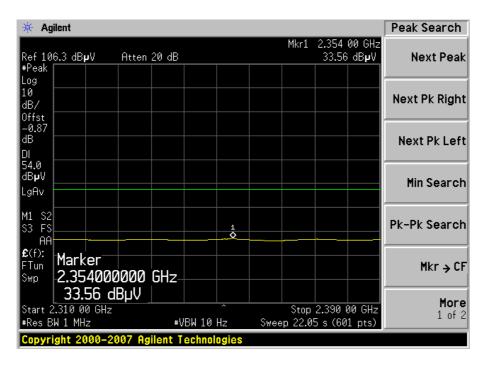
Middle channel 2441 MHz measured at 3 meters

Frequency (MHz)	Keading	Azimuth (degrees)		est Anteni Polarity (H/V)		Cable Loss (dB)	Pre- Amp. (dB)	Cord. Reading (dBµV/m)	FCC Limit (dBµV/m)	Margin	Comments
-	-	-	-	-	1	-	-	-	-	1	_1

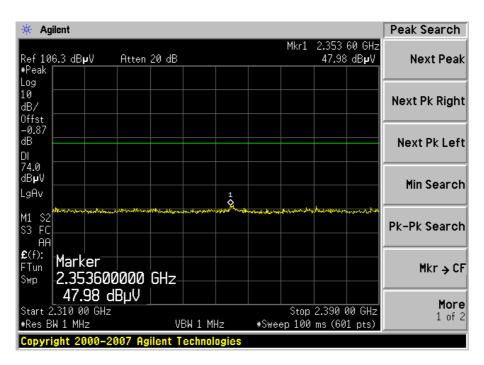
High channel 2480 MHz measured at 3 meters

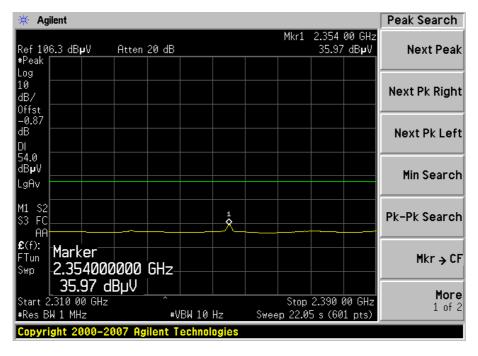

Frequenc	S.A.	Azimuth	Т	est Anteni	na	Cable	Pre-	Cord.	FCC	& IC	
(MHz)	" Readinσ	(degrees)	TT-2-1-4	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
-	-	-	-	-	-	-	-	-	-	-	_1

Page 15 of 46

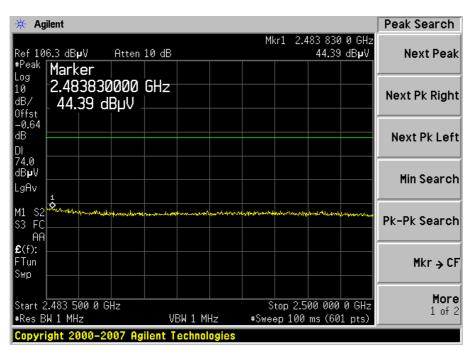

¹**Note:** All emissions were on the noise floor level and/or more than 20 dB below the limit.

Restricted Band:

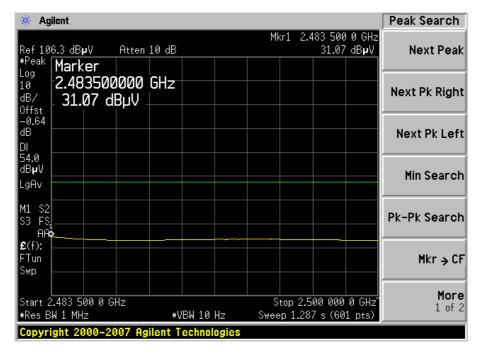

Lowest Channel - 2402 MHz


Polarization: Horizontal - Peak

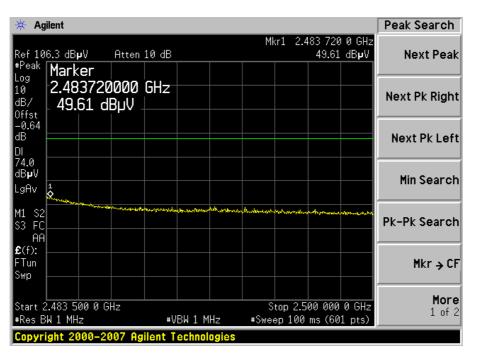
Polarization: Horizontal - Average

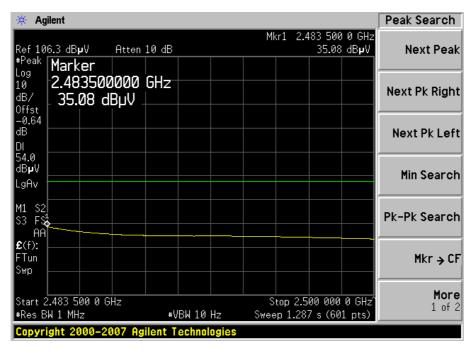


Polarization: Vertical - Peak



Polarization: Vertical - Average


Highest Channel – 2480 MHz


Polarization: Horizontal - Peak

Polarization: Horizontal - Average

Polarization: Vertical – Peak

Polarization: Vertical - Average

6 FCC §15.247(a)(1) & IC RSS-210 §A8.1(d) – 20 dB Channel Bandwidth

6.1 Applicable Standard

According to FCC§15.247(a)(l), the maximum 20 dB bandwidth of the hopping channel shall be presented.

According to IC RSS-210 §A8.1 (d), the frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

6.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emissions bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

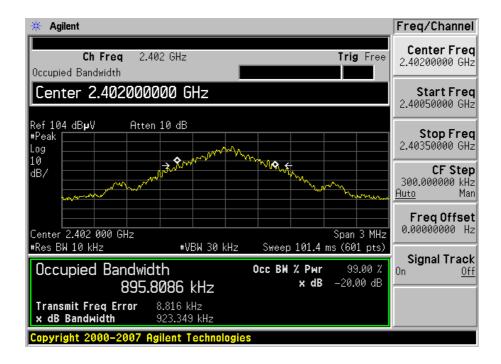
6.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29
HP	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23

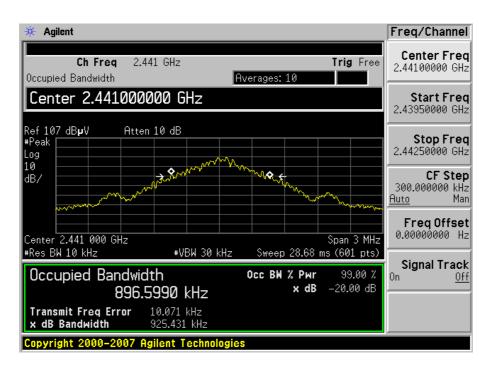
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.4 Test Environmental Conditions

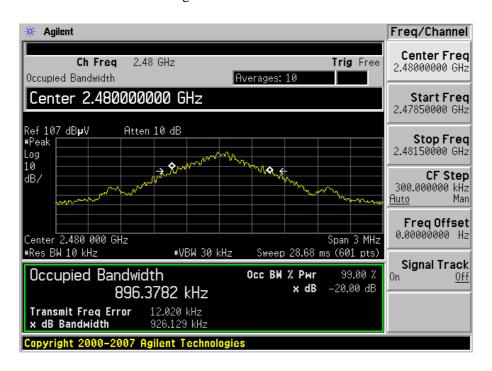
Temperature:	20~23 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa


Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3.

6.5 Measurement Results


Channel	Frequency (MHz)	20 dB Channel Bandwidth (kHz)
Low	2402	923.34
Mid	2441	925.43
High	2480	926.12

Please refer to the following plots.


Low Channel – 2402 MHz

Middle Channel - 2441 MHz

High Channel – 2480 MHz

7 FCC §15.247(a)(1) & IC RSS-210 §A8.1(b) - Hopping Channel Separation

7.1 Applicable Standard

According to §15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to IC RSS-210 §A8.1 (b), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument Turn on the EUT and set it to any one convenient frequency within its operating range.
- 3. By using the Max-Hold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

7.3 Test Equipment List and Details

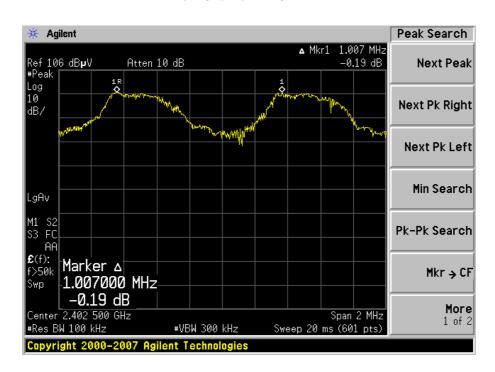
Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29
НР	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

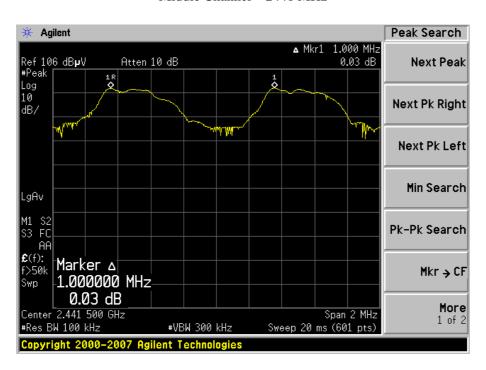
Page 23 of 46

7.4 Test Environmental Conditions

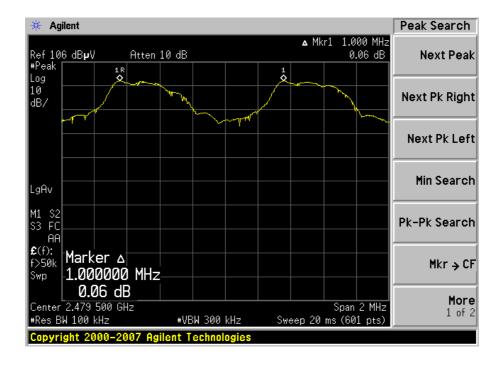
Temperature:	20~23 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa


Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3.

7.5 Measurement Results


Channel	Frequency (MHz)	Measured Channel Separation (kHz)	Limit 20 dB BW (kHz)
Low	2402	1007	> 923.34
Mid	2441	1000	> 925.43
High	2480	1000	> 926.12

Please refer to the following plots.


Low Channel – 2402 MHz

Middle Channel – 2441 MHz

High Channel – 2480 MHz

FCC §15.247(a)(1)(iii) & IC RSS-210 §A8.1(d) - Number of Hopping **Frequencies Used**

8.1 **Applicable Standard**

According to FCC §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

According to IC RSS-210 §A8.1(d), the frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

8.2 **Measurement Procedure**

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the bench without connection to measurement instrument. Turn on the EUT and set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

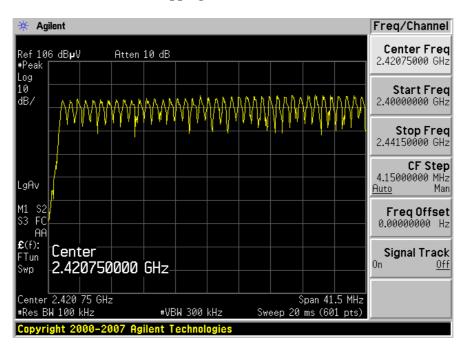
Test Equipment List and Details 8.3

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29
НР	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23

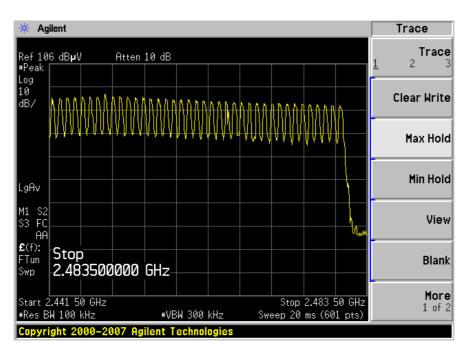
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Test Environmental Conditions 8.4

Report Number: R1005061-247


Temperature:	20~23 ℃
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3.


8.5 Measurement Result

79 channels. Please refer to the following plots.

Hopping Channel Number

40 Channels between 2400 to 2441.5 MHz

39 Channels between 2441.5 to 2483.5 MHz

9 FCC §15.247(a)(1)(iii) & IC RSS-210 §A8.1(d) - Dwell Time

9.1 Applicable Standard

According to FCC §15.247 (a)(1)(iii), the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

According to IC RSS-210 §A8.1 (d), the frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29
НР	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23

Page 28 of 46

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions

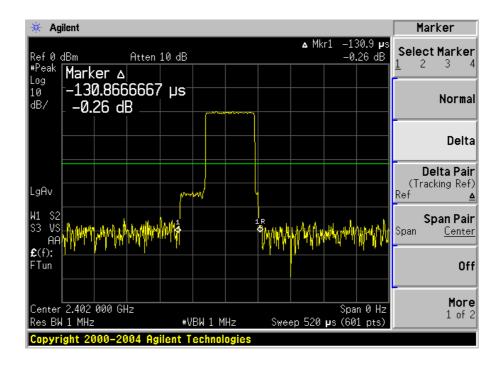
Temperature:	20~23 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3.

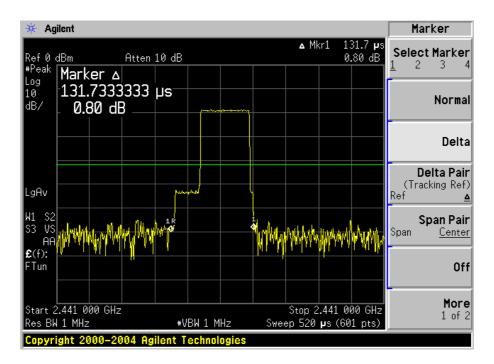
9.5 Measurement Results

Channel	Frequency (MHz)	Pulse Width (ms)	Dwell Time (Sec.)	Limit (Sec.)	Results
Low	2402	0.130	0.00280	0.4	Compliant
Mid	2441	0.131	0.00283	0.4	Compliant
High	2480	0.128	0.00276	0.4	Compliant

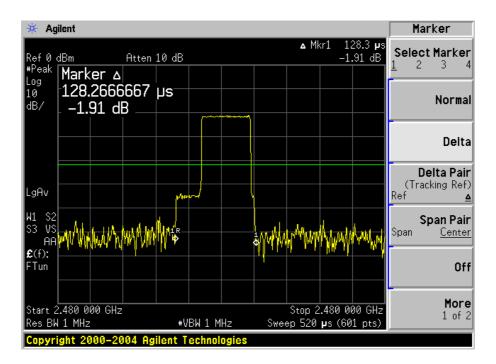
Note:


Dwell time = Pulse time*(hop rate/6/number of channels)*6.4 sec

- Hopping Rate = 1600, Number of Channels = 79
- Modulation type: DM1


Dwell time = Pulse time*(1600/6/79)*6.4 sec

Please refer the following plots.


Low Channel – 2402 MHz

Middle Channel – 2441 MHz

High Channel – 2480 MHz

10 FCC §15.247(b)(1) & IC RSS-210 §A8.1(b) - Maximum Peak Output Power

10.1 Applicable Standard

According to FCC $\S15.247(b)(1)$, for frequency hopping systems in the 2400-2483.5MHz band employing at least 75 hopping channels, and all direct sequence systems, the maximum peak output power of the transmitter shall not exceed 1 Watt. For all other frequency hopping system in the 2400 – 2483.5 MHz band, the maximum peak output power of the transmitter shall not exceed 0.125 Watt.

According to IC RSS-210 §A8.1(b), the frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

10.2 Measurement Procedure

Radiated, FCC DA 00-705

- 1. Place the EUT on the turntable and set it in transmitting mode.
- 2. The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.
- 3. Record the highest emission.
- 4. Calculate the transmitter's peak power using the following equation

$$P = (E*D)^2/30G$$

10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29
НР	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Page 31 of 46

10.4 Test Environmental Conditions

Temperature:	20~23 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3.

10.5 Measurement Result

Channel	Frequency	Max Peak Output Power		Limit	Result
Chamiei	(MHz)	(dBm)	(mw)	(mw)	Result
Low	2402	-1.20	0.758	125	Pass
Mid	2441	-0.97	0.799	125	Pass
High	2480	0.19	1.044	125	Pass

Page 32 of 46

11 FCC §15.247(d) & IC RSS-210 §A8.5 - Band Edges

11.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

According to IC RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

11.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29
HP	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23

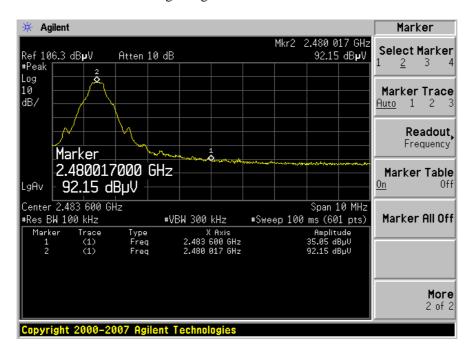
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

11.4 Test Environmental Conditions

Temperature:	20~23 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

Report Number: R1005061-247

Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3.


11.5 Measurement Results

Please refer to the following plots.

 $Band\ Edge:\ Lowest\ Channel-2402\ MHz$

Band Edge: Highest Channel – 2480 MHz

12 FCC §15.247(d) & IC RSS-210 §A8.5 - Spurious Emissions at Antenna Port

12.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

According to IC RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

Page 35 of 46

12.2 Test Result

N/A; No antenna port.

13 IC RSS-Gen §4.10 & RSS-210 - §2.6 Receiver Spurious Emissions

13.1 Applicable Standard

IC RSS-Gen §4.10 & RSS-210 §2.6.

General Field Strength Limits for Transmitters and Receivers at Frequencies above 30 MHz

Frequency	Field Strength microvolts/m at 3 meters (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30 - 88	100 (3 nW)	100 (3 nW)				
88 - 216	150 (6.8 nW)	150 (6.8 nW)				
216 - 960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

13.2 Test Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2003.

13.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**QP**" in the data table.

13.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emissions are 7 dB below the maximum limit. The equation for margin calculation is as follows:

Page 36 of 46

Margin = Corrected Amplitude - Limit

13.5 Test Equipment Lists and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date	
Agilent	Analyzer, Spectrum	E4446A	US44300386	2009-06-29	
Rohde & Schwarz	EMI Test Receiver	1166.5950K03	100337	2010-03-24	
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	
Sunol Science Corp	Combination Antenna	JB3	A0020106-2	2009-08-20	
HP	Amplifier, Pre	1-26.5 GHz	3147A00400	2010-01-29	
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

13.6 Test Environmental Conditions

Temperature:	20~23 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

Testing was performed by Dennis Huang on 2010-05-12 to 2010-05-13 at chamber 3

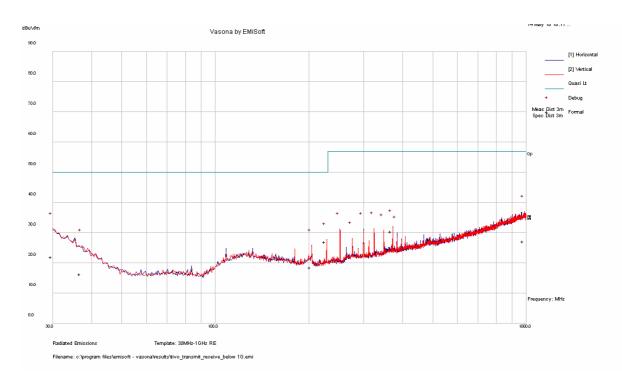
13.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the IC RSS-Gen</u> emissions limits, and had the worst margin of:

30 - 1000 MHz:

Mode: Receiving Mode							
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range				
-18.06	30.00	Horizontal	Middle, 30-1000 MHz				

Above 1 GHz:


Mode: Receiving Mod	e		
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-	-	-	Middle, 1-25 GHz

Note: All emission levels were at the noise floor level and/or more than 20 dB below the limit.

Please refer to the following table and plots for detailed test result

13.8 Test Data and Plots

30 - 1000 MHz:

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV/m)	olitude Height Polarity		Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
30.00	21.94	116	Н	345	40	-18.06
987.66	27.20	121	V	262	54	-26.80
228.01	26.98	210	Н	135	46	-19.02
203.98	18.60	202	Н	258	43.5	-24.9

Above 1 GHz:

Frequency		Turntable	Test Antenna		Cable Pre-		Cord.	IC			
(MHz) Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)		Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments	
-	-	-	-	-	-	-	-	-	-	-	-

Note: All emissions were at the noise floor level and/or more than 20 dB below the limit.