

# TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**Test Report Serial No:**  
RFI/SARE2/RP73402JD03A

**Supersedes Test Report Serial No:**  
RFI/SARE1/RP73402JD03A

**This Test Report Is Issued Under The Authority Of  
Steve Flooks, Radio Performance Service Leader:**



pp Brian Watson

|                                    |                                                                                     |                              |
|------------------------------------|-------------------------------------------------------------------------------------|------------------------------|
| <b>Checked By:</b><br>Brian Watson |  | <b>Report Copy No:</b> PDF01 |
| <b>Issue Date:</b> 23 June 2008    | <b>Test Dates:</b> 25 March 2008 to 09 May 2008                                     |                              |

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields. This report may be copied in full. The results in this report apply only to the sample(s) tested.

**Test of: MaxID Ltd  
iDL3ID**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

This page has been left intentionally blank.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

### Table of Contents

|                                                               |    |
|---------------------------------------------------------------|----|
| 1. Customer Information .....                                 | 4  |
| 2. Equipment Under Test (EUT).....                            | 5  |
| 3. Test Specification, Methods and Procedures .....           | 9  |
| 4. Deviations from the Test Specification.....                | 10 |
| 5. Operation and Configuration of the EUT during Testing..... | 11 |
| 6. Summary of Test Results .....                              | 13 |
| 7. Measurements, Examinations and Derived Results.....        | 14 |
| Appendix 1. Test Equipment Used .....                         | 29 |
| Appendix 2. Measurement Methods .....                         | 33 |
| Appendix 3. SAR Distribution Scans.....                       | 35 |
| Appendix 4. Photographs .....                                 | 51 |
| Appendix 5. Validation of System.....                         | 67 |
| Appendix 6. Simulated Tissues.....                            | 70 |
| Appendix 7. DASY4 System Details .....                        | 71 |

**Test of: MaxID Ltd  
iDL3ID**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

## **1. Customer Information**

|                      |                                                                               |
|----------------------|-------------------------------------------------------------------------------|
| <b>Company Name:</b> | MaxID Ltd                                                                     |
| <b>Address:</b>      | Hillswood Business Park<br>3000 Hillswood Drive<br>Chertsey<br>KT16 0RS<br>UK |
| <b>Contact Name:</b> | Roger Biggs                                                                   |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **2. Equipment Under Test (EUT)**

The following information (with the exception of the date of receipt) has been supplied by the customer:

### **2.1. Description of EUT**

The equipment under test is a Rugged Multifunctional Mobile Computer with HF RFID, GSM/GPRS, Wireless LAN, GPS, finger sensor and barcode/imager functionality.

### **2.2. Identification of Equipment Under Test (EUT)**

|                                         |                          |
|-----------------------------------------|--------------------------|
| <b>Description:</b>                     | Rugged Mobile Computer   |
| <b>Brand Name:</b>                      | MaxID                    |
| <b>Model Name or Number:</b>            | iDL3ID FCC test unit 1   |
| <b>Serial Number:</b>                   | 505159                   |
| <b>IMEI Number:</b>                     | 35 9811000479573         |
| <b>Hardware Version Number:</b>         | VER 1.0                  |
| <b>Software Version Number:</b>         | 03.0006.13               |
| <b>Hardware Revision of GSM Module:</b> | G24 model F6413          |
| <b>Software Revision of GSM Module:</b> | G24-G-0C-11-B2R          |
| <b>FCC ID Number:</b>                   | TFTIDL3ID01              |
| <b>Country of Manufacture:</b>          | United States of America |
| <b>Date of Receipt:</b>                 | 05 March 2008            |

### **2.3. Modifications Incorporated in the EUT**

The EUT was sent to the client during test interval. The FPC interface was configured with a connector to the Metrologic imager. The RF elements of the product were untouched and a barcode reader added.

---

**Test of:** MaxID Ltd  
iDL3ID

**To:** OET Bulletin 65 Supplement C: (2001-01)

#### **2.4. Accessories**

The following accessories were supplied with the EUT during testing:

|                                |                                    |
|--------------------------------|------------------------------------|
| <b>Description:</b>            | AC - DC Power Supply               |
| <b>Brand Name:</b>             | Netgear                            |
| <b>Model Name or Number:</b>   | DV-1280-3UK                        |
| <b>Serial Number:</b>          | 330 - 10102-01                     |
| <b>Cable Length and Type:</b>  | ~2.0m                              |
| <b>Country of Manufacture:</b> | China                              |
| <b>Connected to Port</b>       | 12v DC 5mm Port (240 V AC UK plug) |

|                                |                                     |
|--------------------------------|-------------------------------------|
| <b>Description:</b>            | Battery                             |
| <b>Brand Name:</b>             | None Stated                         |
| <b>Model Name or Number:</b>   | None Stated                         |
| <b>Serial Number:</b>          | None Stated                         |
| <b>Cable Length and Type:</b>  | Not Applicable                      |
| <b>Country of Manufacture:</b> | None Stated                         |
| <b>Connected to Port</b>       | Two Pin port unique to Manufacturer |

|                                |                           |
|--------------------------------|---------------------------|
| <b>Description:</b>            | Docking Station           |
| <b>Brand Name:</b>             | MaxID                     |
| <b>Model Name or Number:</b>   | iDL-DDN                   |
| <b>Serial Number:</b>          | CHN00002                  |
| <b>Cable Length and Type:</b>  | 2.0m Two core power cable |
| <b>Country of Manufacture:</b> | None Stated               |
| <b>Connected to Port</b>       | 12v DC 5mm Port           |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **2.5. Support Equipment**

The following support equipment was used to exercise the EUT during testing:

|                               |             |
|-------------------------------|-------------|
| <b>Description:</b>           | USB Cable   |
| <b>Brand Name:</b>            | None Stated |
| <b>Model Name or Number:</b>  | USB Type A  |
| <b>Serial Number:</b>         | None Stated |
| <b>Cable Length and Type:</b> | ~1.5m       |
| <b>Connected to Port:</b>     | USB         |

|                               |              |
|-------------------------------|--------------|
| <b>Description:</b>           | Serial Cable |
| <b>Brand Name:</b>            | None Stated  |
| <b>Model Name or Number:</b>  | RS-232       |
| <b>Serial Number:</b>         | None Stated  |
| <b>Cable Length and Type:</b> | ~2.0m        |
| <b>Connected to Port:</b>     | Serial       |

|                               |                         |
|-------------------------------|-------------------------|
| <b>Description:</b>           | USB to Serial Converter |
| <b>Brand Name:</b>            | None Stated             |
| <b>Model Name or Number:</b>  | GMUS-03                 |
| <b>Serial Number:</b>         | None Stated             |
| <b>Cable Length and Type:</b> | 0.30m                   |
| <b>Connected to Port:</b>     | Serial                  |

**Test of:** MaxID Ltd  
iDL3ID

**To:** OET Bulletin 65 Supplement C: (2001-01)

## 2.6. Additional Information Related to Testing

|                                                                 |                                              |                            |                        |
|-----------------------------------------------------------------|----------------------------------------------|----------------------------|------------------------|
| <b>Equipment Category</b>                                       | GSM/GPRS, WiFi, RFID and GPS                 |                            |                        |
| <b>Type of Unit</b>                                             | Portable battery powered device              |                            |                        |
| <b>Intended Operating Environment:</b>                          | Within GSM/GPRS, WiFi, RFID and GPS coverage |                            |                        |
| <b>Transmitter Maximum Output Power Characteristics:</b>        | WiFi                                         | 20.0 dBm                   |                        |
|                                                                 | GSM850                                       | 33.0 dBm                   |                        |
|                                                                 | PCS1900                                      | 30.0 dBm                   |                        |
|                                                                 | RFID 13.56MHz                                | 26.9 dBuA/m maximum at 3m  |                        |
| <b>Transmitter Frequency Range:</b>                             | WiFi                                         | ( 2412 to 2462 ) MHz       |                        |
|                                                                 | GSM850                                       | ( 824 to 849 ) MHz         |                        |
|                                                                 | PCS1900                                      | ( 1850 to 1910 ) MHz       |                        |
|                                                                 | RFID 13.56MHz                                | ( 13.55 to 13.57 ) MHz     |                        |
| <b>Transmitter Frequency Allocation of EUT When Under Test:</b> | <b>Channel Number</b>                        | <b>Channel Description</b> | <b>Frequency (MHz)</b> |
|                                                                 | 1                                            | Low                        | 2412                   |
|                                                                 | 6                                            | Middle                     | 2437                   |
|                                                                 | 11                                           | High                       | 2462                   |
|                                                                 | 128                                          | Low                        | 824.2                  |
|                                                                 | 189                                          | Middle                     | 836.4                  |
|                                                                 | 251                                          | High                       | 848.8                  |
|                                                                 | 512                                          | Low                        | 1850.2                 |
|                                                                 | 660                                          | Middle                     | 1879.8                 |
|                                                                 | 810                                          | High                       | 1909.8                 |
|                                                                 | 0                                            | Middle                     | 13.56                  |
| <b>Modulation(s):</b>                                           | GSM: 217Hz, WiFi: 0Hz,                       |                            |                        |
| <b>Modulation Scheme (Crest Factor):</b>                        | GSM: 8.3, GPRS: 4, WiFi: 1                   |                            |                        |
| <b>Antenna Type, Antenna Length:</b>                            | Internal, Unknown                            |                            |                        |
| <b>Number of Antenna Positions:</b>                             | 1 Fixed (Main Antenna)                       |                            |                        |
| <b>Power Supply Requirement:</b>                                | 3.7V DC                                      |                            |                        |
| <b>Battery Type(s):</b>                                         | Unknown                                      |                            |                        |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

### **3. Test Specification, Methods and Procedures**

#### **3.1. Test Specification**

|                  |                                                                                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference:       | OET Bulletin 65 Supplement C: (2001-01)                                                                                                                                                          |
| Title:           | Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.                                                                                          |
| Purpose of Test: | To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above. |

#### **3.2. Methods and Procedures Reference Documentation**

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 Mobile Portable RF Exposure v03.

KDB 648474 D01 SAR Handsets Multi Xmitter and Ant v01r02.

KDB 248227 SAR Measurement Procedures for 802.11 a/b/g Transmitters Rev.1.2.

#### **3.3. Definition of Measurement Equipment**

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

---

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

#### **4. Deviations from the Test Specification**

Test performed with USB and RS232 Serial connectors attached to device in order to acquire test mode and maximum transmit power.

Test was performed as per "447498 D01 Mobile Portable RF Exposure v03", according to the handset procedures in IEEE Std 1528-2003, OET Bulletin 65 Supplement C 01-01 and the specific FCC test procedures.

SAR measurements on 802.11g mode was not measured as maximum average output power was less than ¼ dB higher than that measured on the corresponding 802.11b channels, as per KDB 248227.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **5. Operation and Configuration of the EUT during Testing**

### **5.1. Operating Modes**

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GSM850 call allocated mode
- PCS1900 call allocated mode
- GPRS850 and GPRS1900 data allocated mode
- EGPRS850 and EGPRS1900 data allocated mode
- WiFi active

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **5.2. Configuration and Peripherals**

The EUT was tested in the following configuration(s) unless otherwise stated:

- Body-worn configuration only
- Standalone battery powered
- The EUT was configured to transmit at maximum power in the WiFi 802.11b mode, using the manufacturer Software "BGW211 eval version3".
- GPRS configured with 2 uplink, 2 downlink enabled and Code Scheme 4
- EGPRS configured with 2 uplink, 2 downlink enabled, 8PSK and Coding Scheme 9

### **Body Configuration**

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the handset was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater than 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **6. Summary of Test Results**

| Test Name                                                  | Specification Reference                 | Compliancy Status |
|------------------------------------------------------------|-----------------------------------------|-------------------|
| Specific Absorption Rate-GSM850 Body Configuration 1g      | OET Bulletin 65 Supplement C: (2001-01) | Complied          |
| Specific Absorption Rate-PCS1900 Body Configuration 1g     | OET Bulletin 65 Supplement C: (2001-01) | Complied          |
| Specific Absorption Rate-GPRS850 Body Configuration 1g     | OET Bulletin 65 Supplement C: (2001-01) | Complied          |
| Specific Absorption Rate-GPRS1900 Body Configuration 1g    | OET Bulletin 65 Supplement C: (2001-01) | Complied          |
| Specific Absorption Rate-EGPRS850 Body Configuration 1g    | OET Bulletin 65 Supplement C: (2001-01) | Complied          |
| Specific Absorption Rate-EGPRS1900 Body Configuration 1g   | OET Bulletin 65 Supplement C: (2001-01) | Complied          |
| Specific Absorption Rate-WiFi & WLAN Body Configuration 1g | OET Bulletin 65 Supplement C: (2001-01) | Complied          |

### **6.1. Location of Tests**

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ.

---

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **7. Measurements, Examinations and Derived Results**

### **7.1. General Comments**

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

## **7.2. Test Results**

### **7.2.1. Specific Absorption Rate - GSM850 Body Configuration 1g**

#### **Test Summary:**

|                       |       |
|-----------------------|-------|
| Tissue Volume:        | 1g    |
| Maximum Level (W/kg): | 0.065 |

#### **Environmental Conditions:**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 23.0 to 23.0 |
| Temperature Variation in Liquid (°C): | 23.0 to 23.0 |

#### **Results:**

| EUT Position                      | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-----------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT<br>Facing<br>Phantom | Flat (SAM)            | 189            | 0.065        | 1.600        | 1.535         | 1       | Complied |
| Rear of EUT<br>Facing<br>Phantom  | Flat (SAM)            | 189            | 0.031        | 1.600        | 1.569         | 1       | Complied |

#### **Note(s):**

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

### **7.2.2. Specific Absorption Rate - PCS1900 Body Configuration 1g**

#### **Test Summary:**

|                       |       |
|-----------------------|-------|
| Tissue Volume:        | 1g    |
| Maximum Level (W/kg): | 0.037 |

#### **Environmental Conditions:**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 23.0 to 23.0 |
| Temperature Variation in Liquid (°C): | 23.0 to 23.0 |

#### **Results:**

| EUT Position                | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-----------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT Facing Phantom | Flat (SAM)            | 660            | 0.037        | 1.600        | 1.563         | 1       | Complied |
| Rear of EUT Facing Phantom  | Flat (SAM)            | 660            | 0.015        | 1.600        | 1.586         | 1       | Complied |

#### **Note(s):**

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

### **7.2.3. Specific Absorption Rate - GPRS850 Body Configuration 1g**

#### **Test Summary:**

|                       |       |
|-----------------------|-------|
| Tissue Volume:        | 1g    |
| Maximum Level (W/kg): | 0.113 |

#### **Environmental Conditions:**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 23.0 to 23.0 |
| Temperature Variation in Liquid (°C): | 23.0 to 23.0 |

#### **Results:**

| EUT Position                      | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-----------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT<br>Facing<br>Phantom | Flat (SAM)            | 189            | 0.113        | 1.600        | 1.487         | 1       | Complied |

#### **Note(s):**

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

#### **7.2.4. Specific Absorption Rate - GPRS1900 Body Configuration 1g**

##### **Test Summary:**

|                       |       |
|-----------------------|-------|
| Tissue Volume:        | 1g    |
| Maximum Level (W/kg): | 0.090 |

##### **Environmental Conditions:**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 23.0 to 23.0 |
| Temperature Variation in Liquid (°C): | 23.0 to 23.0 |

##### **Results:**

| EUT Position                      | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-----------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT<br>Facing<br>Phantom | Flat (SAM)            | 660            | 0.090        | 1.600        | 1.510         | 1       | Complied |

##### **Note(s):**

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

### **7.2.5. Specific Absorption Rate - EGPRS850 Body Configuration 1g**

#### **Test Summary:**

|                       |       |
|-----------------------|-------|
| Tissue Volume:        | 1g    |
| Maximum Level (W/kg): | 0.020 |

#### **Environmental Conditions:**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 23.0 to 23.0 |
| Temperature Variation in Liquid (°C): | 23.0 to 23.0 |

#### **Results:**

| EUT Position                      | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-----------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT<br>Facing<br>Phantom | Flat (SAM)            | 189            | 0.020        | 1.600        | 1.580         | 1       | Complied |

#### **Note(s):**

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

#### **7.2.6. Specific Absorption Rate - EGPRS1900 Body Configuration 1g**

##### **Test Summary:**

|                       |       |
|-----------------------|-------|
| Tissue Volume:        | 1g    |
| Maximum Level (W/kg): | 0.021 |

##### **Environmental Conditions:**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 23.0 to 23.0 |
| Temperature Variation in Liquid (°C): | 23.0 to 23.0 |

##### **Results:**

| EUT Position                      | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-----------------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT<br>Facing<br>Phantom | Flat (SAM)            | 660            | 0.021        | 1.600        | 1.579         | 1       | Complied |

##### **Note(s):**

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

#### **7.2.7. Specific Absorption Rate - WiFi & WLAN Body Configuration 1g**

##### **Test Summary:**

|                       |         |
|-----------------------|---------|
| Tissue Volume:        | 1g      |
| Maximum Level (W/kg): | 0.00151 |

##### **Environmental Conditions:**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 24.0 to 23.0 |
| Temperature Variation in Liquid (°C): | 23.0 to 23.0 |

##### **Results:**

| EUT Position                | Phantom Configuration | Channel Number | Level (W/kg) | Limit (W/kg) | Margin (W/kg) | Note(s) | Result   |
|-----------------------------|-----------------------|----------------|--------------|--------------|---------------|---------|----------|
| Front of EUT Facing Phantom | Flat (SAM)            | 6              | 0.00151      | 1.600        | 1.598         | 1, 2, 3 | Complied |
| Front of EUT Facing Phantom | Flat (SAM)            | 6              | 0.00149      | 1.600        | 1.599         | 1, 2, 3 | Complied |

##### **Note(s):**

1. WiFi 802.11b enabled.
2. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
3. Power Drift exceeded 5% due to low SAR level measured near noise floor.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

#### **7.2.8. EIRP/ERP Measurement**

| Channel Number | Frequency (MHZ) | TX Power before Test (dBm) | Note |
|----------------|-----------------|----------------------------|------|
| 1              | 2412.0          | 13.9                       | EIRP |
| 6              | 2437.0          | 13.2                       | EIRP |
| 11             | 2462.0          | 10.7                       | EIRP |
| 128            | 824.2           | 20.9                       | ERP  |
| 189            | 836.4           | 21.9                       | ERP  |
| 251            | 848.8           | 21.3                       | ERP  |
| 512            | 1850.2          | 18.4                       | EIRP |
| 660            | 1879.8          | 22.6                       | EIRP |
| 810            | 1909.8          | 23.9                       | EIRP |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

### **7.2.9. Measurement Uncertainty**

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document “approximately” is interpreted as meaning “effectively” or “for most practical purposes”.

| Test Name                                                      | Confidence Level | Calculated Uncertainty (%) |
|----------------------------------------------------------------|------------------|----------------------------|
| Specific Absorption Rate-GSM850 Body Configuration 1g          | 95%              | 18.03                      |
| Specific Absorption Rate-PCS1900 Body Configuration 1g         | 95%              | 18.30                      |
| Specific Absorption Rate-GPRS/EGPRS 850 Body Configuration 1g  | 95%              | 18.03                      |
| Specific Absorption Rate-GPRS/EGPRS 1900 Body Configuration 1g | 95%              | 18.30                      |
| Specific Absorption Rate-WiFi & WLAN Body Configuration 1g     | 95%              | 19.33                      |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

---

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**Measurement Uncertainty (Continued)**

**7.3. Specific Absorption Rate Uncertainty at 850 MHz Body 1g, GSM Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528**

| Type | Source of uncertainty                                 | + Value | - Value | Probability Distribution | Divisor | C <sub>i</sub> (10 <sup>3</sup> ) | Standard Uncertainty |         | v <sub>i</sub> or v <sub>eff</sub> |
|------|-------------------------------------------------------|---------|---------|--------------------------|---------|-----------------------------------|----------------------|---------|------------------------------------|
|      |                                                       |         |         |                          |         |                                   | + u (%)              | - u (%) |                                    |
| B    | Probe calibration                                     | 11.000  | 11.000  | normal (k=2)             | 2.0000  | 1.0000                            | 5.500                | 5.500   | ∞                                  |
| B    | Axial Isotropy                                        | 0.500   | 0.500   | normal (k=2)             | 2.0000  | 1.0000                            | 0.250                | 0.250   | ∞                                  |
| B    | Hemispherical Isotropy                                | 2.600   | 2.600   | normal (k=2)             | 2.0000  | 1.0000                            | 1.300                | 1.300   | ∞                                  |
| B    | Spatial Resolution                                    | 0.500   | 0.500   | Rectangular              | 1.7321  | 1.0000                            | 0.289                | 0.289   | ∞                                  |
| B    | Boundary Effect                                       | 0.769   | 0.769   | Rectangular              | 1.7321  | 1.0000                            | 0.444                | 0.444   | ∞                                  |
| B    | Linearity                                             | 0.600   | 0.600   | Rectangular              | 1.7321  | 1.0000                            | 0.346                | 0.346   | ∞                                  |
| B    | Detection Limits                                      | 0.200   | 0.200   | Rectangular              | 1.7321  | 1.0000                            | 0.115                | 0.115   | ∞                                  |
| B    | Readout Electronics                                   | 0.560   | 0.560   | normal (k=2)             | 2.0000  | 1.0000                            | 0.280                | 0.280   | ∞                                  |
| B    | Response Time                                         | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000                            | 0.000                | 0.000   | ∞                                  |
| B    | Integration Time                                      | 1.730   | 1.730   | Rectangular              | 1.7321  | 1.0000                            | 0.999                | 0.999   | ∞                                  |
| B    | RF Ambient conditions                                 | 3.000   | 3.000   | Rectangular              | 1.7321  | 1.0000                            | 1.732                | 1.732   | ∞                                  |
| B    | Probe Positioner Mechanical Restrictions              | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Probe Positioning with regard to Phantom Shell        | 2.850   | 2.850   | Rectangular              | 1.7321  | 1.0000                            | 1.645                | 1.645   | ∞                                  |
| B    | Extrapolation and integration/ Maximum SAR evaluation | 5.080   | 5.080   | Rectangular              | 1.7321  | 1.0000                            | 2.933                | 2.933   | ∞                                  |
| A    | Test Sample Positioning                               | 0.584   | 0.584   | normal (k=1)             | 1.0000  | 1.0000                            | 0.584                | 0.584   | 10                                 |
| A    | Device Holder uncertainty                             | 0.154   | 0.154   | normal (k=1)             | 1.0000  | 1.0000                            | 0.154                | 0.154   | 10                                 |
| B    | Phantom Uncertainty                                   | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Drift of output power                                 | 5.000   | 5.000   | Rectangular              | 1.7321  | 1.0000                            | 2.887                | 2.887   | ∞                                  |
| B    | Liquid Conductivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6400                            | 1.848                | 1.848   | ∞                                  |
| A    | Liquid Conductivity (measured value)                  | 3.600   | 3.600   | normal (k=1)             | 1.0000  | 0.6400                            | 2.304                | 2.304   | 5                                  |
| B    | Liquid Permittivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6000                            | 1.732                | 1.732   | ∞                                  |
| A    | Liquid Permittivity (measured value)                  | 4.000   | 4.000   | normal (k=1)             | 1.0000  | 0.6000                            | 2.400                | 2.400   | 5                                  |
|      | Combined standard uncertainty                         |         |         | t-distribution           |         |                                   | 9.20                 | 9.20    | >500                               |
|      | Expanded uncertainty                                  |         |         | k = 1.96                 |         |                                   | 18.03                | 18.03   | >500                               |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**Measurement Uncertainty (Continued)**

**7.4. Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, PCS Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528**

| Type | Source of uncertainty                                 | + Value | - Value | Probability Distribution | Divisor | C <sub>i</sub> (10 <sup>3</sup> ) | Standard Uncertainty |         | v <sub>i</sub> or v <sub>eff</sub> |
|------|-------------------------------------------------------|---------|---------|--------------------------|---------|-----------------------------------|----------------------|---------|------------------------------------|
|      |                                                       |         |         |                          |         |                                   | + u (%)              | - u (%) |                                    |
| B    | Probe calibration                                     | 11.000  | 11.000  | normal (k=2)             | 2.0000  | 1.0000                            | 5.500                | 5.500   | ∞                                  |
| B    | Axial Isotropy                                        | 0.500   | 0.500   | normal (k=2)             | 2.0000  | 1.0000                            | 0.250                | 0.250   | ∞                                  |
| B    | Hemispherical Isotropy                                | 2.600   | 2.600   | normal (k=2)             | 2.0000  | 1.0000                            | 1.300                | 1.300   | ∞                                  |
| B    | Spatial Resolution                                    | 0.500   | 0.500   | Rectangular              | 1.7321  | 1.0000                            | 0.289                | 0.289   | ∞                                  |
| B    | Boundary Effect                                       | 0.769   | 0.769   | Rectangular              | 1.7321  | 1.0000                            | 0.444                | 0.444   | ∞                                  |
| B    | Linearity                                             | 0.600   | 0.600   | Rectangular              | 1.7321  | 1.0000                            | 0.346                | 0.346   | ∞                                  |
| B    | Detection Limits                                      | 0.200   | 0.200   | Rectangular              | 1.7321  | 1.0000                            | 0.115                | 0.115   | ∞                                  |
| B    | Readout Electronics                                   | 0.560   | 0.560   | normal (k=2)             | 2.0000  | 1.0000                            | 0.280                | 0.280   | ∞                                  |
| B    | Response Time                                         | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000                            | 0.000                | 0.000   | ∞                                  |
| B    | Integration Time                                      | 1.730   | 1.730   | Rectangular              | 1.7321  | 1.0000                            | 0.999                | 0.999   | ∞                                  |
| B    | RF Ambient conditions                                 | 3.000   | 3.000   | Rectangular              | 1.7321  | 1.0000                            | 1.732                | 1.732   | ∞                                  |
| B    | Probe Positioner Mechanical Restrictions              | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Probe Positioning with regard to Phantom Shell        | 2.850   | 2.850   | Rectangular              | 1.7321  | 1.0000                            | 1.645                | 1.645   | ∞                                  |
| B    | Extrapolation and integration/ Maximum SAR evaluation | 5.080   | 5.080   | Rectangular              | 1.7321  | 1.0000                            | 2.933                | 2.933   | ∞                                  |
| A    | Test Sample Positioning                               | 0.584   | 0.584   | normal (k=1)             | 1.0000  | 1.0000                            | 0.584                | 0.584   | 10                                 |
| A    | Device Holder uncertainty                             | 0.154   | 0.154   | normal (k=1)             | 1.0000  | 1.0000                            | 0.154                | 0.154   | 10                                 |
| B    | Phantom Uncertainty                                   | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Drift of output power                                 | 5.000   | 5.000   | Rectangular              | 1.7321  | 1.0000                            | 2.887                | 2.887   | ∞                                  |
| B    | Liquid Conductivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6400                            | 1.848                | 1.848   | ∞                                  |
| A    | Liquid Conductivity (measured value)                  | 4.170   | 4.170   | normal (k=1)             | 1.0000  | 0.6400                            | 2.669                | 2.669   | 5                                  |
| B    | Liquid Permittivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6000                            | 1.732                | 1.732   | ∞                                  |
| A    | Liquid Permittivity (measured value)                  | 4.230   | 4.230   | normal (k=1)             | 1.0000  | 0.6000                            | 2.538                | 2.538   | 5                                  |
|      | Combined standard uncertainty                         |         |         | t-distribution           |         |                                   | 9.34                 | 9.34    | >400                               |
|      | Expanded uncertainty                                  |         |         | k = 1.96                 |         |                                   | 18.30                | 18.30   | >400                               |

**Test of: MaxID Ltd**  
**iDL3ID**

**To: OET Bulletin 65 Supplement C: (2001-01)**

**Measurement Uncertainty (Continued)**

**7.5. Specific Absorption Rate Uncertainty at 850 MHz Body 1g, GPRS Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528**

| Type | Source of uncertainty                                 | + Value | - Value | Probability Distribution | Divisor | C <sub>i</sub> (10 <sup>3</sup> ) | Standard Uncertainty |         | v <sub>i</sub> or v <sub>eff</sub> |
|------|-------------------------------------------------------|---------|---------|--------------------------|---------|-----------------------------------|----------------------|---------|------------------------------------|
|      |                                                       |         |         |                          |         |                                   | + u (%)              | - u (%) |                                    |
| B    | Probe calibration                                     | 11.000  | 11.000  | normal (k=2)             | 2.0000  | 1.0000                            | 5.500                | 5.500   | ∞                                  |
| B    | Axial Isotropy                                        | 0.500   | 0.500   | normal (k=2)             | 2.0000  | 1.0000                            | 0.250                | 0.250   | ∞                                  |
| B    | Hemispherical Isotropy                                | 2.600   | 2.600   | normal (k=2)             | 2.0000  | 1.0000                            | 1.300                | 1.300   | ∞                                  |
| B    | Spatial Resolution                                    | 0.500   | 0.500   | Rectangular              | 1.7321  | 1.0000                            | 0.289                | 0.289   | ∞                                  |
| B    | Boundary Effect                                       | 0.769   | 0.769   | Rectangular              | 1.7321  | 1.0000                            | 0.444                | 0.444   | ∞                                  |
| B    | Linearity                                             | 0.600   | 0.600   | Rectangular              | 1.7321  | 1.0000                            | 0.346                | 0.346   | ∞                                  |
| B    | Detection Limits                                      | 0.200   | 0.200   | Rectangular              | 1.7321  | 1.0000                            | 0.115                | 0.115   | ∞                                  |
| B    | Readout Electronics                                   | 0.560   | 0.560   | normal (k=2)             | 2.0000  | 1.0000                            | 0.280                | 0.280   | ∞                                  |
| B    | Response Time                                         | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000                            | 0.000                | 0.000   | ∞                                  |
| B    | Integration Time                                      | 1.730   | 1.730   | Rectangular              | 1.7321  | 1.0000                            | 0.999                | 0.999   | ∞                                  |
| B    | RF Ambient conditions                                 | 3.000   | 3.000   | Rectangular              | 1.7321  | 1.0000                            | 1.732                | 1.732   | ∞                                  |
| B    | Probe Positioner Mechanical Restrictions              | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Probe Positioning with regard to Phantom Shell        | 2.850   | 2.850   | Rectangular              | 1.7321  | 1.0000                            | 1.645                | 1.645   | ∞                                  |
| B    | Extrapolation and integration/ Maximum SAR evaluation | 5.080   | 5.080   | Rectangular              | 1.7321  | 1.0000                            | 2.933                | 2.933   | ∞                                  |
| A    | Test Sample Positioning                               | 0.584   | 0.584   | normal (k=1)             | 1.0000  | 1.0000                            | 0.584                | 0.584   | 10                                 |
| A    | Device Holder uncertainty                             | 0.154   | 0.154   | normal (k=1)             | 1.0000  | 1.0000                            | 0.154                | 0.154   | 10                                 |
| B    | Phantom Uncertainty                                   | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Drift of output power                                 | 5.000   | 5.000   | Rectangular              | 1.7321  | 1.0000                            | 2.887                | 2.887   | ∞                                  |
| B    | Liquid Conductivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6400                            | 1.848                | 1.848   | ∞                                  |
| A    | Liquid Conductivity (measured value)                  | 3.600   | 3.600   | normal (k=1)             | 1.0000  | 0.6400                            | 2.304                | 2.304   | 5                                  |
| B    | Liquid Permittivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6000                            | 1.732                | 1.732   | ∞                                  |
| A    | Liquid Permittivity (measured value)                  | 4.000   | 4.000   | normal (k=1)             | 1.0000  | 0.6000                            | 2.400                | 2.400   | 5                                  |
|      | Combined standard uncertainty                         |         |         | t-distribution           |         |                                   | 9.20                 | 9.20    | >500                               |
|      | Expanded uncertainty                                  |         |         | k = 1.96                 |         |                                   | 18.03                | 18.03   | >500                               |

**Test of: MaxID Ltd**  
**iDL3ID**

**To: OET Bulletin 65 Supplement C: (2001-01)**

**Measurement Uncertainty (Continued)**

**7.6. Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, GPRS Modulation Scheme**  
**calculated in accordance with IEC 62209-1 & IEEE 1528**

| Type | Source of uncertainty                                 | + Value | - Value | Probability Distribution | Divisor | C <sub>i</sub> (10 <sup>3</sup> ) | Standard Uncertainty |         | v <sub>i</sub> or<br>v <sub>eff</sub> |
|------|-------------------------------------------------------|---------|---------|--------------------------|---------|-----------------------------------|----------------------|---------|---------------------------------------|
|      |                                                       |         |         |                          |         |                                   | + u (%)              | - u (%) |                                       |
| B    | Probe calibration                                     | 11.000  | 11.000  | normal (k=2)             | 2.0000  | 1.0000                            | 5.500                | 5.500   | ∞                                     |
| B    | Axial Isotropy                                        | 0.500   | 0.500   | normal (k=2)             | 2.0000  | 1.0000                            | 0.250                | 0.250   | ∞                                     |
| B    | Hemispherical Isotropy                                | 2.600   | 2.600   | normal (k=2)             | 2.0000  | 1.0000                            | 1.300                | 1.300   | ∞                                     |
| B    | Spatial Resolution                                    | 0.500   | 0.500   | Rectangular              | 1.7321  | 1.0000                            | 0.289                | 0.289   | ∞                                     |
| B    | Boundary Effect                                       | 0.769   | 0.769   | Rectangular              | 1.7321  | 1.0000                            | 0.444                | 0.444   | ∞                                     |
| B    | Linearity                                             | 0.600   | 0.600   | Rectangular              | 1.7321  | 1.0000                            | 0.346                | 0.346   | ∞                                     |
| B    | Detection Limits                                      | 0.200   | 0.200   | Rectangular              | 1.7321  | 1.0000                            | 0.115                | 0.115   | ∞                                     |
| B    | Readout Electronics                                   | 0.560   | 0.560   | normal (k=2)             | 2.0000  | 1.0000                            | 0.280                | 0.280   | ∞                                     |
| B    | Response Time                                         | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000                            | 0.000                | 0.000   | ∞                                     |
| B    | Integration Time                                      | 1.730   | 1.730   | Rectangular              | 1.7321  | 1.0000                            | 0.999                | 0.999   | ∞                                     |
| B    | RF Ambient conditions                                 | 3.000   | 3.000   | Rectangular              | 1.7321  | 1.0000                            | 1.732                | 1.732   | ∞                                     |
| B    | Probe Positioner Mechanical Restrictions              | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                     |
| B    | Probe Positioning with regard to Phantom Shell        | 2.850   | 2.850   | Rectangular              | 1.7321  | 1.0000                            | 1.645                | 1.645   | ∞                                     |
| B    | Extrapolation and integration/ Maximum SAR evaluation | 5.080   | 5.080   | Rectangular              | 1.7321  | 1.0000                            | 2.933                | 2.933   | ∞                                     |
| A    | Test Sample Positioning                               | 0.584   | 0.584   | normal (k=1)             | 1.0000  | 1.0000                            | 0.584                | 0.584   | 10                                    |
| A    | Device Holder uncertainty                             | 0.154   | 0.154   | normal (k=1)             | 1.0000  | 1.0000                            | 0.154                | 0.154   | 10                                    |
| B    | Phantom Uncertainty                                   | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                     |
| B    | Drift of output power                                 | 5.000   | 5.000   | Rectangular              | 1.7321  | 1.0000                            | 2.887                | 2.887   | ∞                                     |
| B    | Liquid Conductivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6400                            | 1.848                | 1.848   | ∞                                     |
| A    | Liquid Conductivity (measured value)                  | 4.170   | 4.170   | normal (k=1)             | 1.0000  | 0.6400                            | 2.669                | 2.669   | 5                                     |
| B    | Liquid Permittivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6000                            | 1.732                | 1.732   | ∞                                     |
| A    | Liquid Permittivity (measured value)                  | 4.230   | 4.230   | normal (k=1)             | 1.0000  | 0.6000                            | 2.538                | 2.538   | 5                                     |
|      | Combined standard uncertainty                         |         |         | t-distribution           |         |                                   | 9.34                 | 9.34    | >400                                  |
|      | Expanded uncertainty                                  |         |         | k = 1.96                 |         |                                   | 18.30                | 18.30   | >400                                  |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**Measurement Uncertainty (Continued)**

**7.7. Specific Absorption Rate Uncertainty at 2450 MHz Body 1g, WiFi Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528**

| Type | Source of uncertainty                                 | + Value | - Value | Probability Distribution | Divisor | C <sub>i</sub> (10 <sup>3</sup> ) | Standard Uncertainty |         | v <sub>i</sub> or v <sub>eff</sub> |
|------|-------------------------------------------------------|---------|---------|--------------------------|---------|-----------------------------------|----------------------|---------|------------------------------------|
|      |                                                       |         |         |                          |         |                                   | + u (%)              | - u (%) |                                    |
| B    | Probe calibration                                     | 11.800  | 11.800  | normal (k=2)             | 2.0000  | 1.0000                            | 5.900                | 5.900   | ∞                                  |
| B    | Axial Isotropy                                        | 0.500   | 0.500   | normal (k=2)             | 2.0000  | 1.0000                            | 0.250                | 0.250   | ∞                                  |
| B    | Hemispherical Isotropy                                | 2.600   | 2.600   | normal (k=2)             | 2.0000  | 1.0000                            | 1.300                | 1.300   | ∞                                  |
| B    | Spatial Resolution                                    | 0.500   | 0.500   | Rectangular              | 1.7321  | 1.0000                            | 0.289                | 0.289   | ∞                                  |
| B    | Boundary Effect                                       | 0.769   | 0.769   | Rectangular              | 1.7321  | 1.0000                            | 0.444                | 0.444   | ∞                                  |
| B    | Linearity                                             | 0.600   | 0.600   | Rectangular              | 1.7321  | 1.0000                            | 0.346                | 0.346   | ∞                                  |
| B    | Detection Limits                                      | 0.200   | 0.200   | Rectangular              | 1.7321  | 1.0000                            | 0.115                | 0.115   | ∞                                  |
| B    | Readout Electronics                                   | 0.560   | 0.560   | normal (k=2)             | 2.0000  | 1.0000                            | 0.280                | 0.280   | ∞                                  |
| B    | Response Time                                         | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000                            | 0.000                | 0.000   | ∞                                  |
| B    | Integration Time                                      | 0.000   | 0.000   | Rectangular              | 1.7321  | 1.0000                            | 0.000                | 0.000   | ∞                                  |
| B    | RF Ambient conditions                                 | 3.000   | 3.000   | Rectangular              | 1.7321  | 1.0000                            | 1.732                | 1.732   | ∞                                  |
| B    | Probe Positioner Mechanical Restrictions              | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Probe Positioning with regard to Phantom Shell        | 2.850   | 2.850   | Rectangular              | 1.7321  | 1.0000                            | 1.645                | 1.645   | ∞                                  |
| B    | Extrapolation and integration/ Maximum SAR evaluation | 5.080   | 5.080   | Rectangular              | 1.7321  | 1.0000                            | 2.933                | 2.933   | ∞                                  |
| A    | Test Sample Positioning                               | 2.920   | 2.920   | normal (k=1)             | 1.0000  | 1.0000                            | 2.920                | 2.920   | 10                                 |
| A    | Device Holder uncertainty                             | 0.154   | 0.154   | normal (k=1)             | 1.0000  | 1.0000                            | 0.154                | 0.154   | 10                                 |
| B    | Phantom Uncertainty                                   | 4.000   | 4.000   | Rectangular              | 1.7321  | 1.0000                            | 2.309                | 2.309   | ∞                                  |
| B    | Drift of output power                                 | 5.000   | 5.000   | Rectangular              | 1.7321  | 1.0000                            | 2.887                | 2.887   | ∞                                  |
| B    | Liquid Conductivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6400                            | 1.848                | 1.848   | ∞                                  |
| A    | Liquid Conductivity (measured value)                  | 3.930   | 3.930   | normal (k=1)             | 1.0000  | 0.6400                            | 2.515                | 2.515   | 5                                  |
| B    | Liquid Permittivity (target value)                    | 5.000   | 5.000   | Rectangular              | 1.7321  | 0.6000                            | 1.732                | 1.732   | ∞                                  |
| A    | Liquid Permittivity (measured value)                  | 3.940   | 3.940   | normal (k=1)             | 1.0000  | 0.6000                            | 2.364                | 2.364   | 5                                  |
|      | Combined standard uncertainty                         |         |         | t-distribution           |         |                                   | 9.86                 | 9.86    | >400                               |
|      | Expanded uncertainty                                  |         |         | k = 1.96                 |         |                                   | 19.33                | 19.33   | >400                               |

**Test of: MaxID Ltd**  
**iDL3ID**

**To: OET Bulletin 65 Supplement C: (2001-01)**

### Appendix 1. Test Equipment Used

| RFI No. | Instrument                   | Manufacturer                    | Type No.      | Serial No.    | Date Last Calibrated                                   | Cal. Interval (Months) |
|---------|------------------------------|---------------------------------|---------------|---------------|--------------------------------------------------------|------------------------|
| A034    | Narda 20W Termination        | Narda                           | 374BNM        | 8706          | Calibrated as part of system                           | -                      |
| A1094   | Digital Camera               | Sony                            | MVC - FD81    | 125805        | -                                                      | -                      |
| A1097   | SMA Directional Coupler      | MiDISCO                         | MDC6223-30    | None          | Calibrated as part of system                           | -                      |
| A1137   | 3dB Attenuator               | Narda                           | 779           | 04690         | Calibrated as part of system                           | -                      |
| A1174   | Dielectric Probe Kit         | Agilent Technologies            | 85070C        | Us9936007 2   | Calibrated before use                                  | -                      |
| A1328   | Handset Positioner           | Schmid & Partners               | Modification  | SD 000 H01 DA | -                                                      | -                      |
| A1182   | Handset Positioner           | Schmid & Partners               | V3.0          | None          | -                                                      | -                      |
| A1184   | Data Acquisition Electronics | Schmid & Partner                | DAE3          | 394           | 25 May 2007                                            | 12                     |
| A1185   | Probe                        | Schmid & Partner                | ET3 DV6       | 1528          | 06 July 2007                                           | 12                     |
| A1378   | Probe                        | Schmid & Partner                | EX3 DV3       | 3508          | 20 April 2007, verified on 25 <sup>th</sup> March 2008 | 13                     |
| A1238   | SAM Phantom                  | Schmid & Partners               | SAM b         | 001           | Calibrated before use                                  | -                      |
| A1566   | SAM Phantom                  | Schmid & Partners               | SAM a         | 002           | Calibrated before use                                  | -                      |
| A1322   | 2450 MHz Dipole Kit          | Schmid & Partner Engineering AG | D2450V2       | 725           | 17 January 2007                                        | 24                     |
| A1237   | 1900 MHz Dipole Kit          | Schmid & Partner Engineering AG | D1900V2       | 540           | 11 June 2007                                           | 24                     |
| A1329   | 900 MHz Dipole Kit           | Schmid & Partner Engineering AG | D900V2        | 185           | 18 May 2007                                            | 24                     |
| A1497   | Amplifier                    | Mini-Circuits                   | zhl-42w (sma) | e020105       | Calibrated as part of system                           | -                      |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**Equipment Used (Continued)**

| RFI No. | Instrument                 | Manufacturer           | Type No.          | Serial No.      | Date Last Calibrated                   | Cal. Interval (Months) |
|---------|----------------------------|------------------------|-------------------|-----------------|----------------------------------------|------------------------|
| A215    | 20 dB Attenuator           | Narda                  | 766-20            | 9402            | Calibrated as part of system           | -                      |
| C1144   | Cable                      | Rosenberger MICRO-COAX | FA147AF00150 3030 | 41842-1         | Calibrated as part of system           | -                      |
| C1145   | Cable                      | Rosenberger MICRO-COAX | FA147AF00300 3030 | 41843-1         | Calibrated as part of system           | -                      |
| C1146   | Cable                      | Rosenberger MICRO-COAX | FA147AF03000 3030 | 41752-1         | Calibrated as part of system           | -                      |
| G051    | Signal Generator           | Gigatronics            | 7100/.01-20       | 749472          | Calibrated before use                  | -                      |
| G0528   | Robot Power Supply         | Schmid & Partner       | DASY              | None            | Calibrated before use                  | -                      |
| G087    | PSU                        | Thurlby Thandar        | CPX200            | 100701          | Calibrated before use                  | -                      |
| M010    | NRV Power Meter            | Rohde & Schwarz        | NRV               | 882 317/065     | 06 July 2007                           | 12                     |
| M053    | HP 8594A Spectrum Analyser | HP                     | 8594A             | 3108U00205      | 23 February 2006 (Monitoring use only) | -                      |
| M1015   | Network Analyser           | Agilent Technologies   | 8753ES            | US39172406      | 24 September 2007                      | 12                     |
| M1047   | Robot Arm                  | Staubli                | RX908 L           | F00/SD89A1/A/01 | Calibrated before use                  | -                      |
| M1069   | Diode Power Sensor         | Rohde & Schwarz        | NRV-Z2            | 838824/010      | 12 June 2007                           | 12                     |
| M1129   | Power Sensor               | Rohde & Schwarz        | URY-Z2            | 890242/16       | 12 June 2007                           | 12                     |

**Test of:** MaxID Ltd  
iDL3ID

**To:** OET Bulletin 65 Supplement C: (2001-01)

---

**Equipment Used (Continued)**

| RFI No. | Instrument                           | Manufacturer    | Type No. | Serial No.  | Date Last Calibrated               | Cal. Interval (Months) |
|---------|--------------------------------------|-----------------|----------|-------------|------------------------------------|------------------------|
| M136    | Temperature/Humidit y/Pressure Meter | RS Components   | None     | None        | Internal Calibration               | -                      |
| M199    | Power Meter                          | Rohde & Schwarz | NRVS     | 827023/075  | 24 April 2008                      | 12                     |
| M1267   | Thermal Power Sensor                 | Rohde & Schwarz | NRV-Z52  | 100155      | 24 April 2008                      | 12                     |
| M509    | Thermometer                          | Testo           | 110      | 40378800433 | 20 April 2007                      | 13                     |
| M1140   | Radio Communication Analyser         | Anritsu         | MT8820A  | 6K0000047   | -                                  | -                      |
| A512    | Double ridged Horn                   | EMCO            | 3115     | 3993        | 17 Sept 2004 (Monitoring use only) | -                      |
| M1093   | Communications Test Set              | Will tek        | 4202S    | 0513018     | -                                  | -                      |
| A1531   | Antenna                              | AARONIA AG      | 7025     | 02458       | -                                  | -                      |
| S256    | Site 56                              | RFI             | N/A      | N/A         | Calibrated before use              | -                      |

**NB** In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

---

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

**A.1.1. Calibration Certificates**

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

A1185  
12/07/07  
NM

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**C** Servizio svizzero di taratura  
**S** Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client

RFI

Certificate No. **ET3-1528\_Jul07**

## CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1528**

Calibration procedure(s) **QA CAL-01.v6  
Calibration procedure for dosimetric E-field probes**

Calibration date: **July 6, 2007**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature ( $22 \pm 3$ )°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID #            | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|----------------------------|-----------------|-------------------------------------------|-----------------------|
| Power meter E4419B         | GB41293874      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                |
| Power sensor E4412A        | MY41495277      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                |
| Power sensor E4412A        | MY41498087      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 10-Aug-06 (METAS, No. 217-00592)          | Aug-07                |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-07 (METAS, No. 217-00671)          | Mar-08                |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 10-Aug-06 (METAS, No. 217-00593)          | Aug-07                |
| Reference Probe ES3DV2     | SN: 3013        | 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)      | Jan-08                |
| DAE4                       | SN: 654         | 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)     | Apr-08                |

| Secondary Standards       | ID #         | Check Date (in house)                    | Scheduled Check        |
|---------------------------|--------------|------------------------------------------|------------------------|
| RF generator HP 8648C     | US3642U01700 | 4-Aug-99 (SPEAG, in house check Nov-05)  | In house check: Nov-07 |
| Network Analyzer HP 8753E | US37390585   | 18-Oct-01 (SPEAG, in house check Oct-06) | In house check: Oct-07 |

| Calibrated by: | Name          | Function          | Signature |
|----------------|---------------|-------------------|-----------|
|                | Katja Pokovic | Technical Manager |           |
| Approved by:   | Niels Kuster  | Quality Manager   |           |

Issued: July 6, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Federal Office of Metrology and Accreditation  
 The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

### Glossary:

|                          |                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSL                      | tissue simulating liquid                                                                                                                             |
| NORM $x,y,z$             | sensitivity in free space                                                                                                                            |
| ConvF                    | sensitivity in TSL / NORM $x,y,z$                                                                                                                    |
| DCP                      | diode compression point                                                                                                                              |
| Polarization $\varphi$   | $\varphi$ rotation around probe axis                                                                                                                 |
| Polarization $\vartheta$ | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |

### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

### Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$ : Assessed for E-field polarization  $\vartheta = 0$  ( $f \leq 900$  MHz in TEM-cell;  $f > 1800$  MHz: R22 waveguide).  $NORMx,y,z$  are only intermediate values, i.e., the uncertainties of  $NORMx,y,z$  does not effect the  $E^2$ -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency\_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$ : DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \leq 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for  $f > 800$  MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to  $NORMx,y,z * ConvF$  whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# Probe ET3DV6

SN:1528

|                  |                |
|------------------|----------------|
| Manufactured:    | March 21, 2000 |
| Last calibrated: | July 12, 2006  |
| Recalibrated:    | July 6, 2007   |

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

**DASY - Parameters of Probe: ET3DV6 SN:1528**

| Sensitivity in Free Space <sup>A</sup> |                         |                                     | Diode Compression <sup>B</sup> |              |  |
|----------------------------------------|-------------------------|-------------------------------------|--------------------------------|--------------|--|
| NormX                                  | <b>1.52</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP X                          | <b>96</b> mV |  |
| NormY                                  | <b>1.83</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Y                          | <b>94</b> mV |  |
| NormZ                                  | <b>1.57</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Z                          | <b>96</b> mV |  |

## Sensitivity in Tissue Simulating Liquid (Conversion Factors)

**Please see Page 8.**

## Boundary Effect

**TSL**      **900 MHz**      **Typical SAR gradient: 5 % per mm**

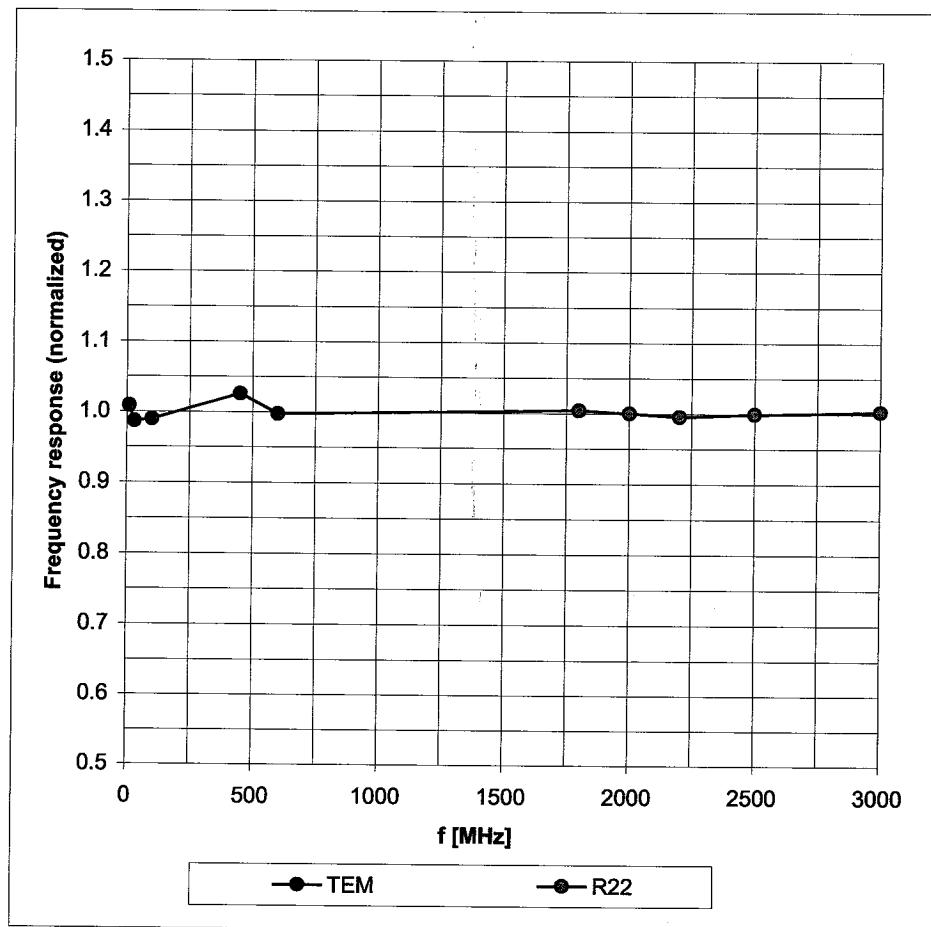
| Sensor Center to Phantom Surface Distance |                              | 3.7 mm | 4.7 mm |
|-------------------------------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%]                     | Without Correction Algorithm | 8.9    | 4.7    |
| SAR <sub>be</sub> [%]                     | With Correction Algorithm    | 0.1    | 0.2    |

**TSL**      **1750 MHz**      **Typical SAR gradient: 10 % per mm**

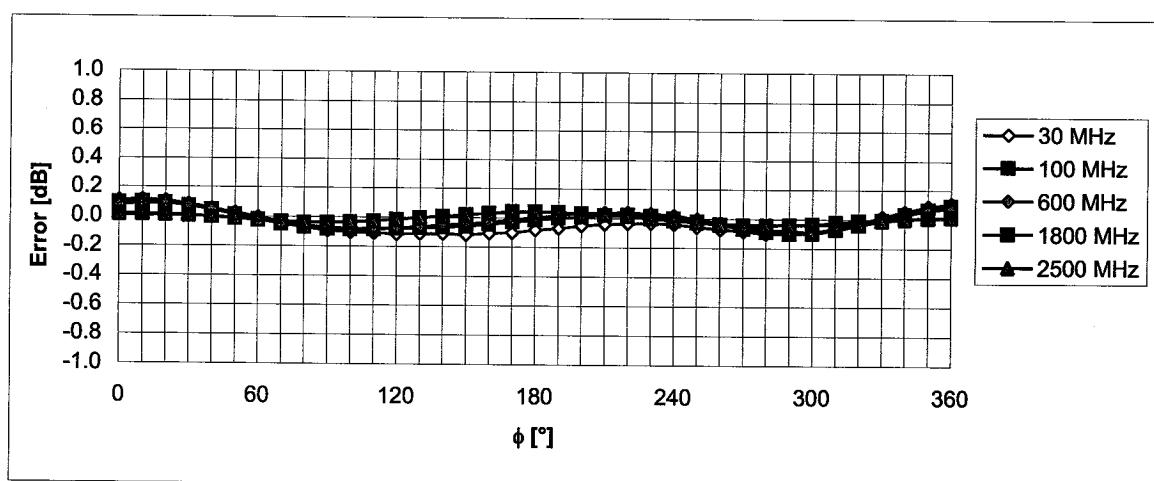
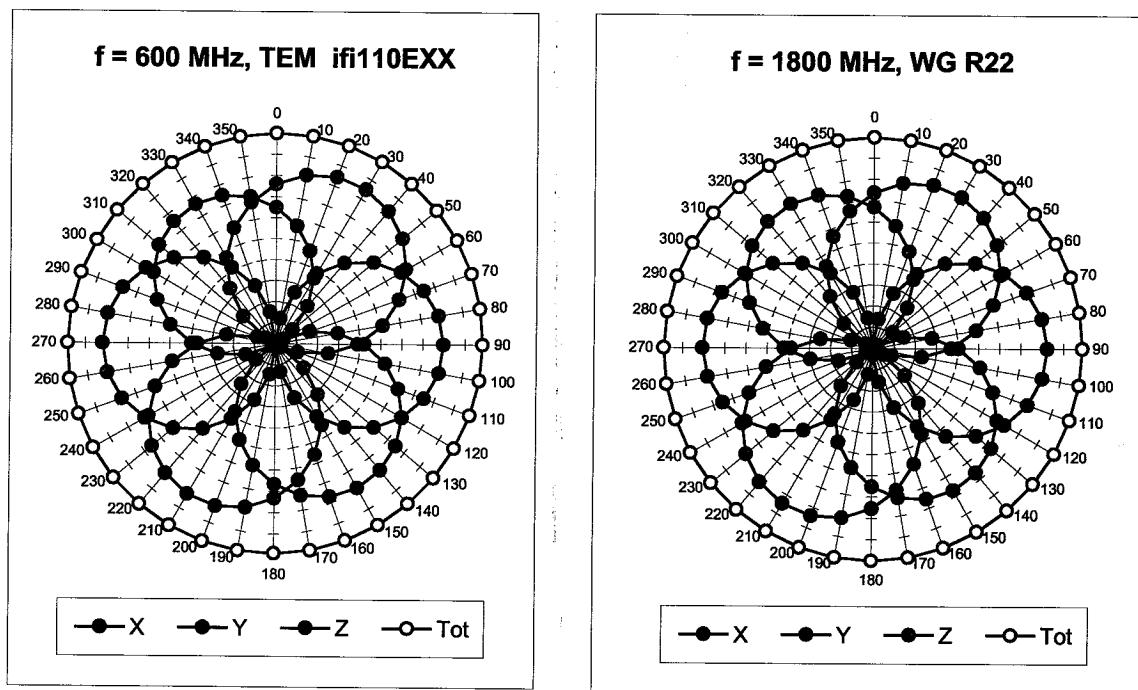
| Sensor Center to Phantom Surface Distance |                              | 3.7 mm | 4.7 mm |
|-------------------------------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%]                     | Without Correction Algorithm | 10.1   | 5.9    |
| SAR <sub>be</sub> [%]                     | With Correction Algorithm    | 0.3    | 0.6    |

## Sensor Offset

Probe Tip to Sensor Center **2.7 mm**


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor  $k=2$ , which for a normal distribution corresponds to a coverage probability of approximately 95%.

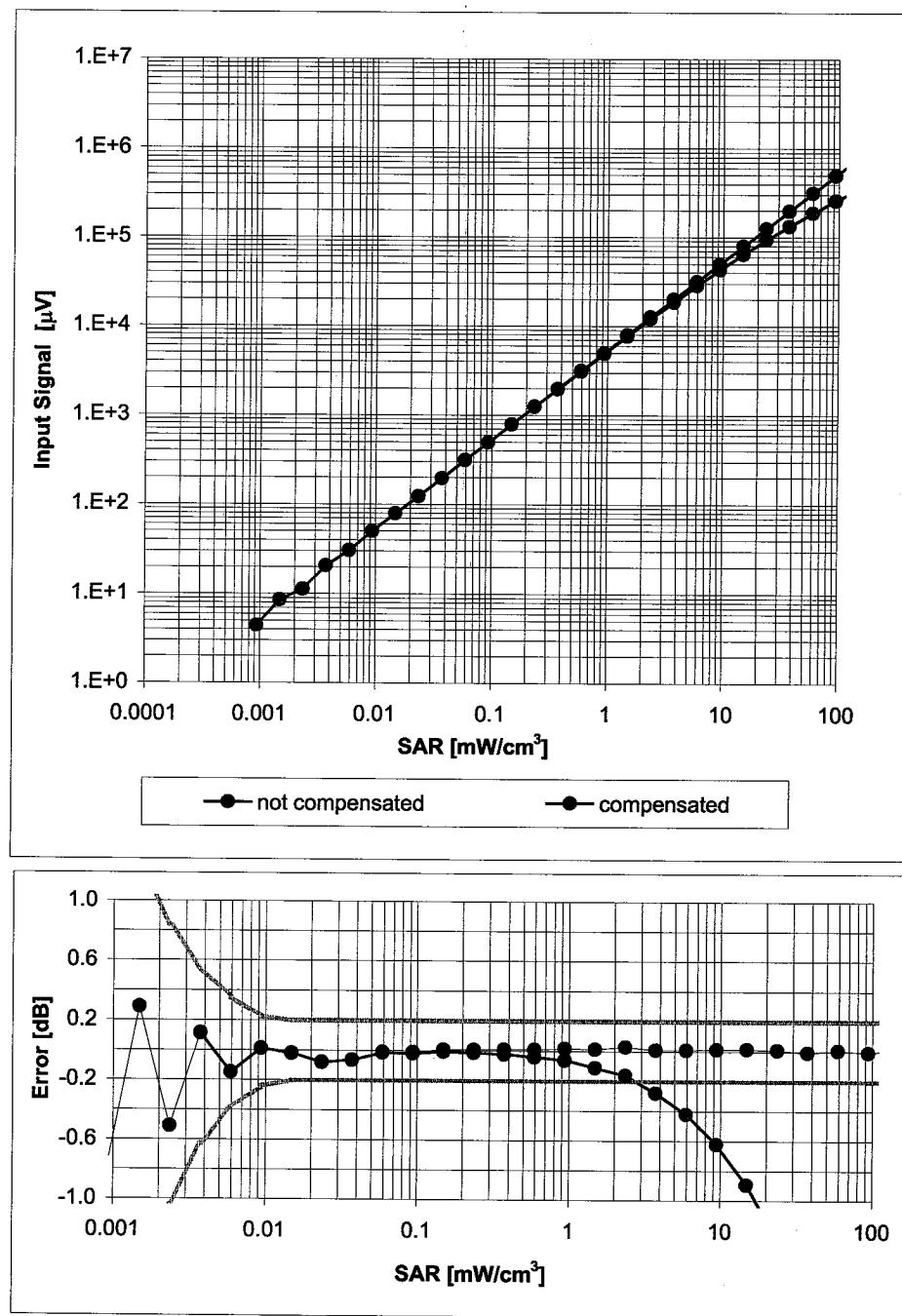
<sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 8).



#### **B Numerical linearization parameter: uncertainty not required**

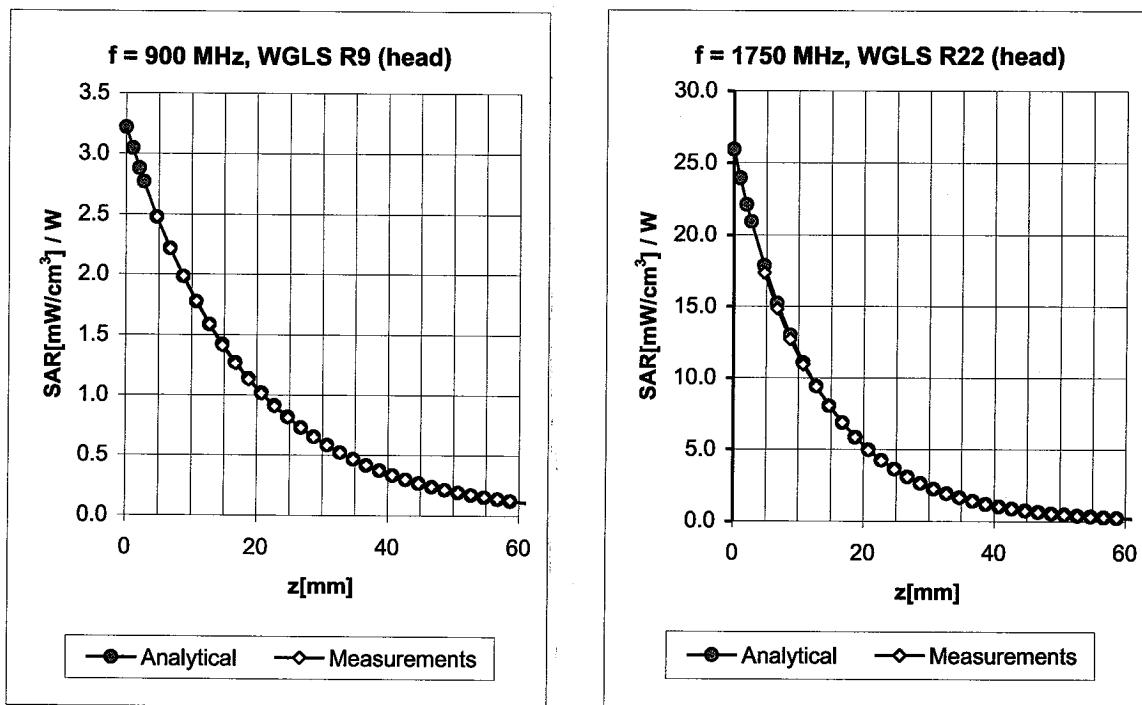
## Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field:  $\pm 6.3\%$  ( $k=2$ )

Receiving Pattern ( $\phi$ ),  $\theta = 0^\circ$ 


Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  (k=2)

## Dynamic Range f(SAR<sub>head</sub>)

(Waveguide R22, f = 1800 MHz)



## Conversion Factor Assessment




| f [MHz] | Validity [MHz] <sup>c</sup> | TSL  | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------|
| 835     | ± 50 / ± 99                 | Head | 41.5 ± 5%    | 0.90 ± 5%    | 0.32  | 2.62  | 6.39 ± 11.0% (k=2) |
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%    | 0.97 ± 5%    | 0.37  | 2.41  | 6.30 ± 11.0% (k=2) |
| 1750    | ± 50 / ± 100                | Head | 40.1 ± 5%    | 1.37 ± 5%    | 0.51  | 2.72  | 5.12 ± 11.0% (k=2) |
| 1900    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.58  | 2.53  | 4.98 ± 11.0% (k=2) |

|      |              |      |           |           |      |      |                    |
|------|--------------|------|-----------|-----------|------|------|--------------------|
| 835  | ± 50 / ± 100 | Body | 55.2 ± 5% | 0.97 ± 5% | 0.31 | 2.80 | 6.19 ± 11.0% (k=2) |
| 900  | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.32 | 2.89 | 5.90 ± 11.0% (k=2) |
| 1750 | ± 50 / ± 100 | Body | 53.4 ± 5% | 1.49 ± 5% | 0.67 | 2.32 | 4.78 ± 11.0% (k=2) |
| 1900 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.75 | 2.22 | 4.57 ± 11.0% (k=2) |

<sup>c</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

## Deviation from Isotropy in HSL

Error ( $\phi, \theta$ ),  $f = 900$  MHz



Uncertainty of Spherical Isotropy Assessment:  $\pm 2.6\%$  ( $k=2$ )

A1378

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
C Service suisse d'étalonnage  
S Servizio svizzero di taratura  
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: EX3-3508\_Nov06

## CALIBRATION CERTIFICATE

Object EX3DV3 - SN.3508

Calibration procedure(s)  
QA CAL-01 v5  
Calibration procedure for dosimetric E-field probes

Calibration date: November 16, 2006

Condition of the calibrated item In Tolerance

CAL DUE  
16/11/07

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID #            | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration  |
|----------------------------|-----------------|-------------------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 5-Apr-06 (METAS, No. 251-00557)           | Apr-07                 |
| Power sensor E4412A        | MY41495277      | 5-Apr-06 (METAS, No. 251-00557)           | Apr-07                 |
| Power sensor E4412A        | MY41498087      | 5-Apr-06 (METAS, No. 251-00557)           | Apr-07                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 10-Aug-06 (METAS, No. 217-00592)          | Aug-07                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 4-Apr-06 (METAS, No. 251-00558)           | Apr-07                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 10-Aug-06 (METAS, No. 217-00593)          | Aug-07                 |
| Reference Probe ES3DV2     | SN: 3013        | 2-Jan-06 (SPEAG, No. ES3-3013_Jan06)      | Jan-07                 |
| DAE4                       | SN: 654         | 21-Jun-06 (SPEAG, No. DAE4-654_Jun06)     | Jun-07                 |
| Secondary Standards        | ID #            | Check Date (in house)                     | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (SPEAG, in house check Nov-05)   | In house check: Nov-07 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (SPEAG, in house check Oct-06)  | In house check: Oct-07 |

| Calibrated by: | Name          | Function          | Signature |
|----------------|---------------|-------------------|-----------|
|                | Katja Pokovic | Technical Manager |           |
| Approved by:   | Niels Kuster  | Quality Manager   |           |

Issued: November 17, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Federal Office of Metrology and Accreditation  
 The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

**Glossary:**

|                          |                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| TS                       | tissue simulating liquid                                                                                                                             |
| NORM $x,y,z$             | sensitivity in free space                                                                                                                            |
| ConF                     | sensitivity in TS / NORM $x,y,z$                                                                                                                     |
| DCP                      | diode compression point                                                                                                                              |
| Polarization $\varphi$   | $\varphi$ rotation around probe axis                                                                                                                 |
| Polarization $\vartheta$ | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |

**Calibration is Performed According to the Following Standards:**

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001

**Methods Applied and Interpretation of Parameters:**

- $NORMx,y,z$ : Assessed for E-field polarization  $\vartheta = 0$  ( $f \leq 900$  MHz in TEM-cell;  $f > 1800$  MHz: R22 waveguide).  $NORMx,y,z$  are only intermediate values, i.e., the uncertainties of  $NORMx,y,z$  does not effect the  $E^2$ -field uncertainty inside TS (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency\_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$ : DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \leq 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for  $f > 800$  MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TS corresponds to  $NORMx,y,z * ConvF$  whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# **Probe EX3DV3**

## **SN:3508**

|                         |                          |
|-------------------------|--------------------------|
| <b>Manufactured:</b>    | <b>December 19, 2003</b> |
| <b>Last calibrated:</b> | <b>March 18, 2006</b>    |
| <b>Recalibrated:</b>    | <b>November 16, 2006</b> |

**Calibrated for DASY Systems**

**(Note: non-compatible with DASY2 system!)**

## DASY - Parameters of Probe: EX3DV3 SN:3508

| Sensitivity in Free Space <sup>A</sup> |                          |                                     | Diode Compression <sup>B</sup> |       |
|----------------------------------------|--------------------------|-------------------------------------|--------------------------------|-------|
| NormX                                  | <b>0.780</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP X                          | 95 mV |
| NormY                                  | <b>0.640</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Y                          | 96 mV |
| NormZ                                  | <b>0.610</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Z                          | 97 mV |

### Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

### Boundary Effect

TSL                    2450 MHz                    Typical SAR gradient: 10 % per mm

| Sensor Center to Phantom Surface Distance |                              | 2.0 mm | 3.0 mm |
|-------------------------------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%]                     | Without Correction Algorithm | 2.6    | 1.0    |
| SAR <sub>be</sub> [%]                     | With Correction Algorithm    | 0.2    | 0.4    |

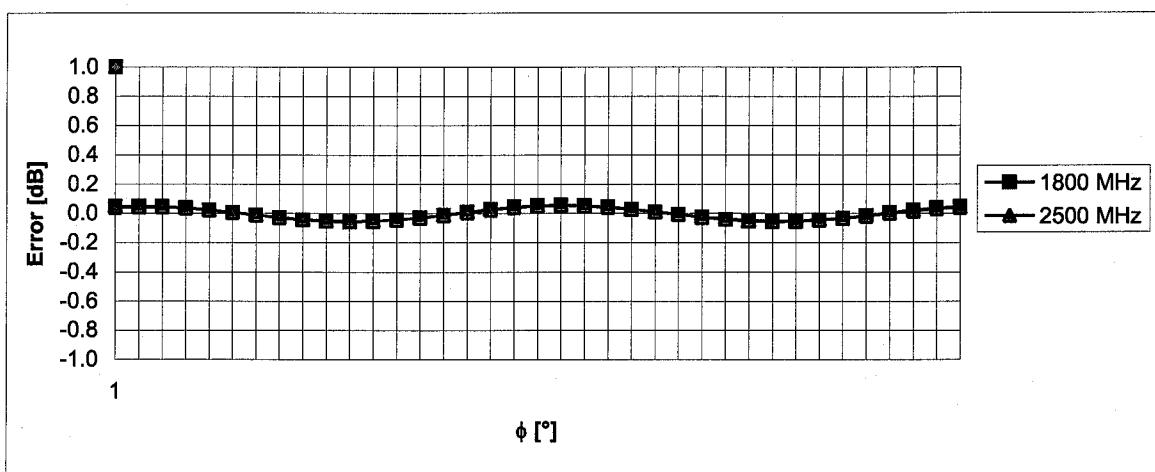
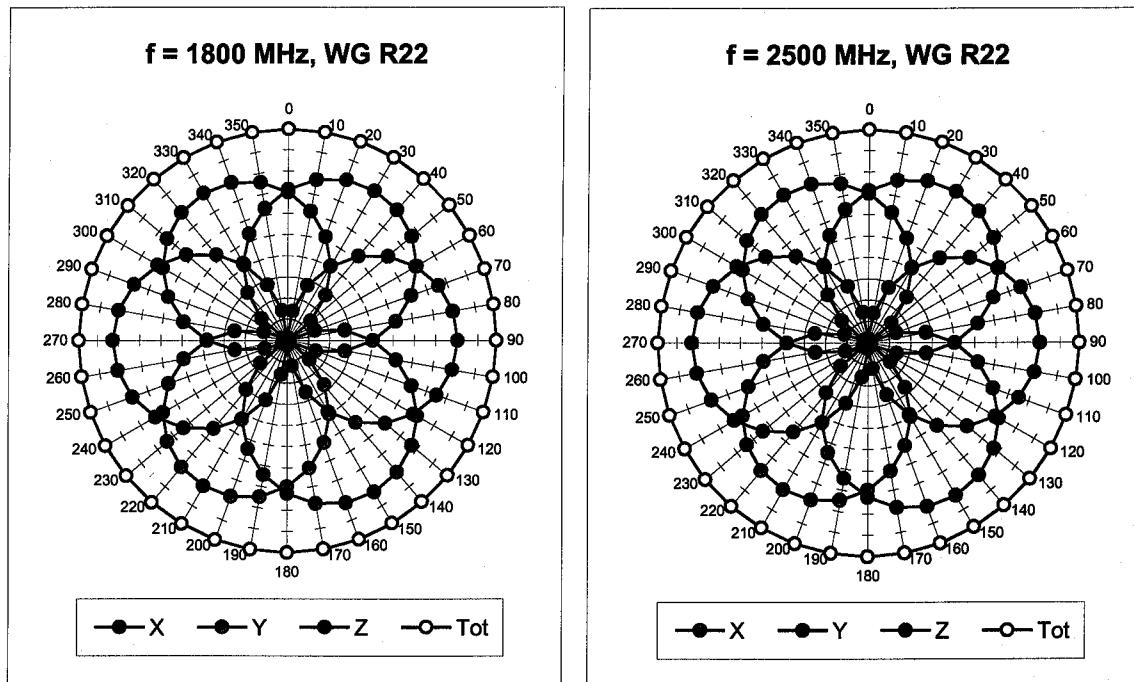
### Sensor Offset

Probe Tip to Sensor Center                    1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor  $k=2$ , which for a normal distribution corresponds to a coverage probability of approximately 95%.

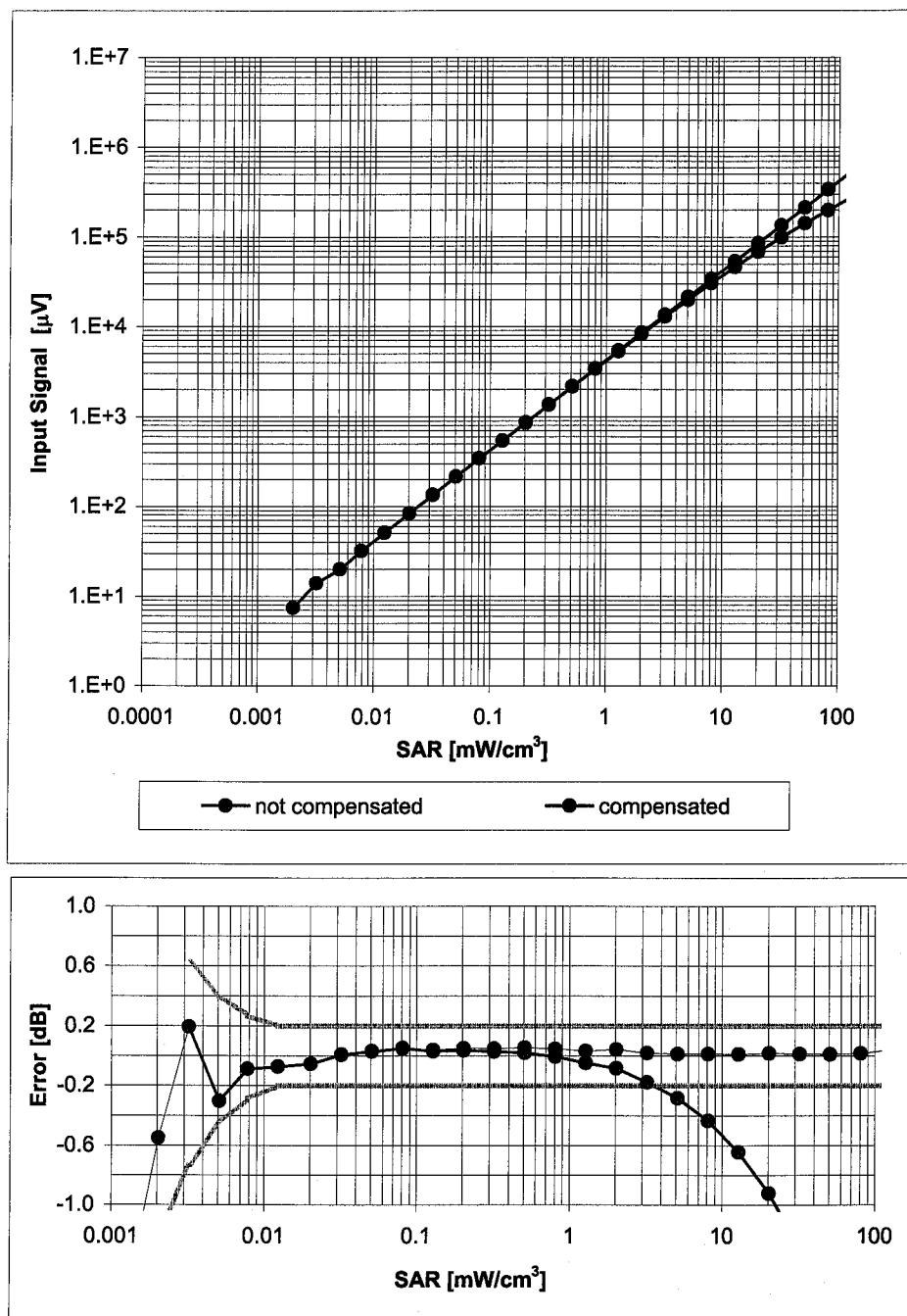
<sup>A</sup> The uncertainties of NormX,Y,Z do not affect the  $E^2$ -field uncertainty inside TSL (see Page 8).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.



## Frequency Response of E-Field

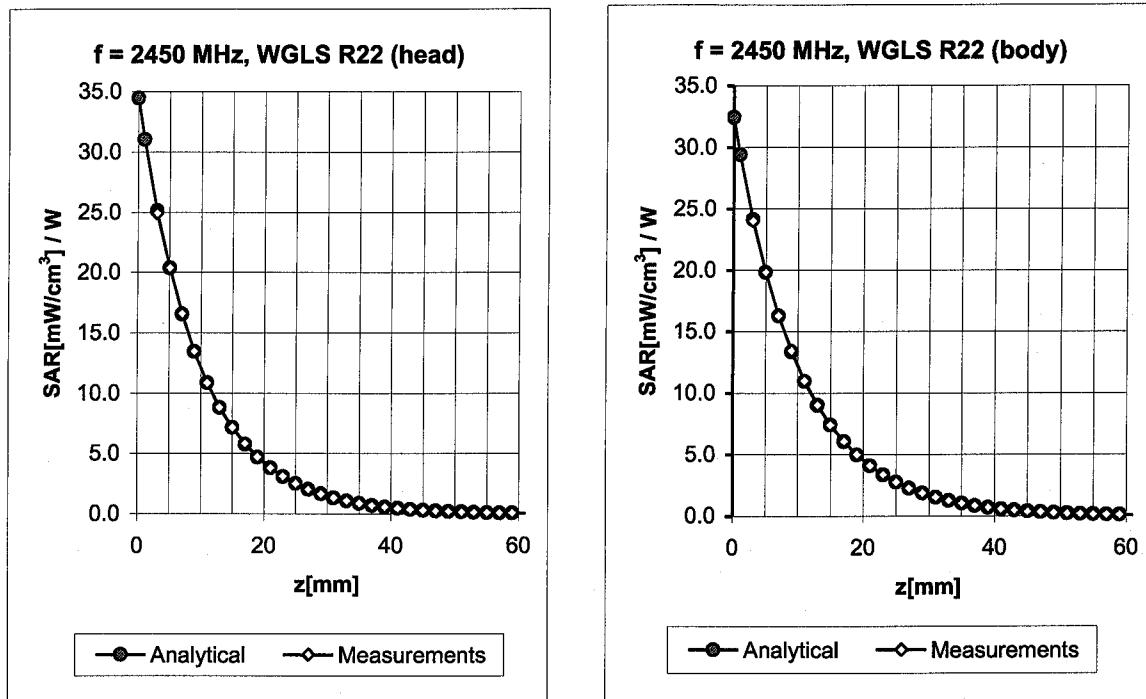
(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field:  $\pm 6.3\%$  ( $k=2$ )

## Receiving Pattern ( $\phi$ ), $\vartheta = 0^\circ$



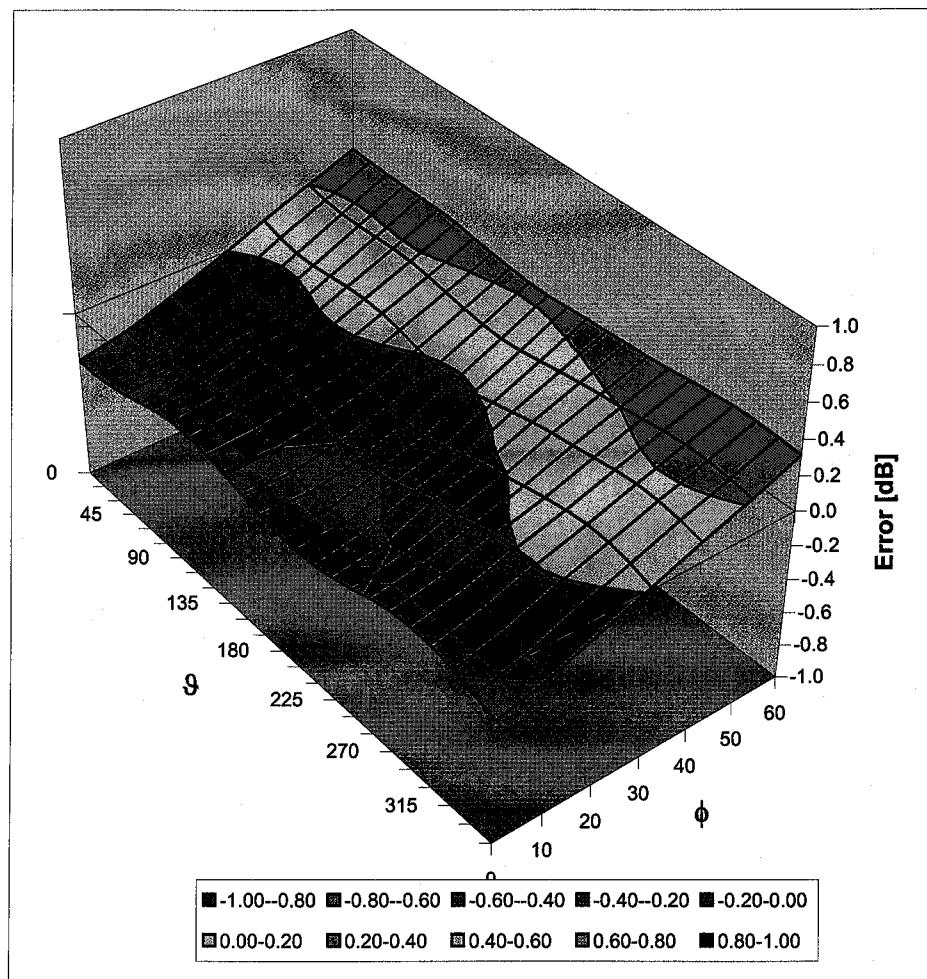

Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  (k=2)

**Dynamic Range f(SAR<sub>head</sub>)**  
(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment:  $\pm 0.6\%$  (k=2)

## Conversion Factor Assessment




| $f$ [MHz] | Validity [MHz] <sup>c</sup> | TSL  | Permittivity   | Conductivity   | Alpha | Depth | ConvF | Uncertainty                |
|-----------|-----------------------------|------|----------------|----------------|-------|-------|-------|----------------------------|
| 2450      | $\pm 50 / \pm 100$          | Head | $39.2 \pm 5\%$ | $1.80 \pm 5\%$ | 0.33  | 1.00  | 8.00  | $\pm 11.8\% \text{ (k=2)}$ |
| 2450      | $\pm 50 / \pm 100$          | Body | $52.7 \pm 5\%$ | $1.95 \pm 5\%$ | 0.33  | 1.00  | 7.89  | $\pm 11.8\% \text{ (k=2)}$ |
| 2600      | $\pm 50 / \pm 100$          | Body | $52.5 \pm 5\%$ | $2.16 \pm 5\%$ | 0.29  | 1.00  | 7.76  | $\pm 11.8\% \text{ (k=2)}$ |

<sup>c</sup> The validity of  $\pm 100$  MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

## Deviation from Isotropy in HSL

Error ( $\phi, \theta$ ),  $f = 900$  MHz



Uncertainty of Spherical Isotropy Assessment:  $\pm 2.6\%$  (k=2)

A1378

27/04/07 NM

**Calibration Laboratory of**  
**Schmid & Partner**  
**Engineering AG**  
**Zeughausstrasse 43, 8004 Zurich, Switzerland**



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**C** Servizio svizzero di taratura  
**S** Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation  
**The Swiss Accreditation Service is one of the signatories to the EA**  
**Multilateral Agreement for the recognition of calibration certificates**

Accreditation No.: **SCS 108**

Client

**RFI**Certificate No: **EX3-3508\_Apr07**

## **CALIBRATION CERTIFICATE**

Object **EX3DV3 - SN:3508**

Calibration procedure(s) **QA CAL-01 v5 and QA CAL-14 v3**  
**Calibration procedure for dosimetric E-field probes**

Calibration date: **April 20, 2007**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).  
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature ( $22 \pm 3$ )°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID #            | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|----------------------------|-----------------|-------------------------------------------|-----------------------|
| Power meter E4419B         | GB41293874      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                |
| Power sensor E4412A        | MY41495277      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                |
| Power sensor E4412A        | MY41498087      | 29-Mar-07 (METAS, No. 217-00670)          | Mar-08                |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 10-Aug-06 (METAS, No. 217-00592)          | Aug-07                |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-07 (METAS, No. 217-00671)          | Mar-08                |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 10-Aug-06 (METAS, No. 217-00593)          | Aug-07                |
| Reference Probe ES3DV2     | SN: 3013        | 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)      | Jan-08                |
| DAE4                       | SN: 654         | 21-Jun-06 (SPEAG, No. DAE4-654_Jun06)     | Jun-07                |

| Secondary Standards       | ID #         | Check Date (in house)                    | Scheduled Check        |
|---------------------------|--------------|------------------------------------------|------------------------|
| RF generator HP 8648C     | US3642U01700 | 4-Aug-99 (SPEAG, in house check Nov-05)  | In house check: Nov-07 |
| Network Analyzer HP 8753E | US37390585   | 18-Oct-01 (SPEAG, in house check Oct-06) | In house check: Oct-07 |

| Calibrated by: | Name          | Function          | Signature |
|----------------|---------------|-------------------|-----------|
|                | Katja Pokovic | Technical Manager |           |

| Approved by: | Name         | Function        | Signature |
|--------------|--------------|-----------------|-----------|
|              | Niels Kuster | Quality Manager |           |

Issued: April 21, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

**Calibration Laboratory of**  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**S** Servizio svizzero di taratura  
**SCS** Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

### **Glossary:**

|                       |                                                                                                                                                |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| TSL                   | tissue simulating liquid                                                                                                                       |
| NORM $x,y,z$          | sensitivity in free space                                                                                                                      |
| ConvF                 | sensitivity in TSL / NORM $x,y,z$                                                                                                              |
| DCP                   | diode compression point                                                                                                                        |
| Polarization $\phi$   | $\phi$ rotation around probe axis                                                                                                              |
| Polarization $\theta$ | $\theta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis |

### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

### **Methods Applied and Interpretation of Parameters:**

- **NORM $x,y,z$** : Assessed for E-field polarization  $\theta = 0$  ( $f \leq 900$  MHz in TEM-cell;  $f > 1800$  MHz: R22 waveguide). NORM $x,y,z$  are only intermediate values, i.e., the uncertainties of NORM $x,y,z$  does not effect the E<sup>2</sup>-field uncertainty inside TSL (see below *ConvF*).
- **NORM( $f$ ) $x,y,z$  = NORM $x,y,z$  \* frequency\_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- **DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- **ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \leq 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for  $f > 800$  MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM $x,y,z$  \* *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- **Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- **Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

**EX3DV3 SN:3508**

**April 20, 2007**

**Probe EX3DV3**

**SN:3508**

|                  |                   |
|------------------|-------------------|
| Manufactured:    | December 19, 2003 |
| Last calibrated: | November 16, 2006 |
| Recalibrated:    | April 20, 2007    |

**Calibrated for DASY Systems**

(Note: non-compatible with DASY2 system!)

## DASY - Parameters of Probe: EX3DV3 SN:3508

| Sensitivity in Free Space <sup>A</sup> |                          |                                     | Diode Compression <sup>B</sup> |              |  |
|----------------------------------------|--------------------------|-------------------------------------|--------------------------------|--------------|--|
| NormX                                  | <b>0.780</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP X                          | <b>95</b> mV |  |
| NormY                                  | <b>0.650</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Y                          | <b>96</b> mV |  |
| NormZ                                  | <b>0.610</b> $\pm$ 10.1% | $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Z                          | <b>97</b> mV |  |

### Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

### Boundary Effect

TSL                   **900 MHz**           Typical SAR gradient: 5 % per mm

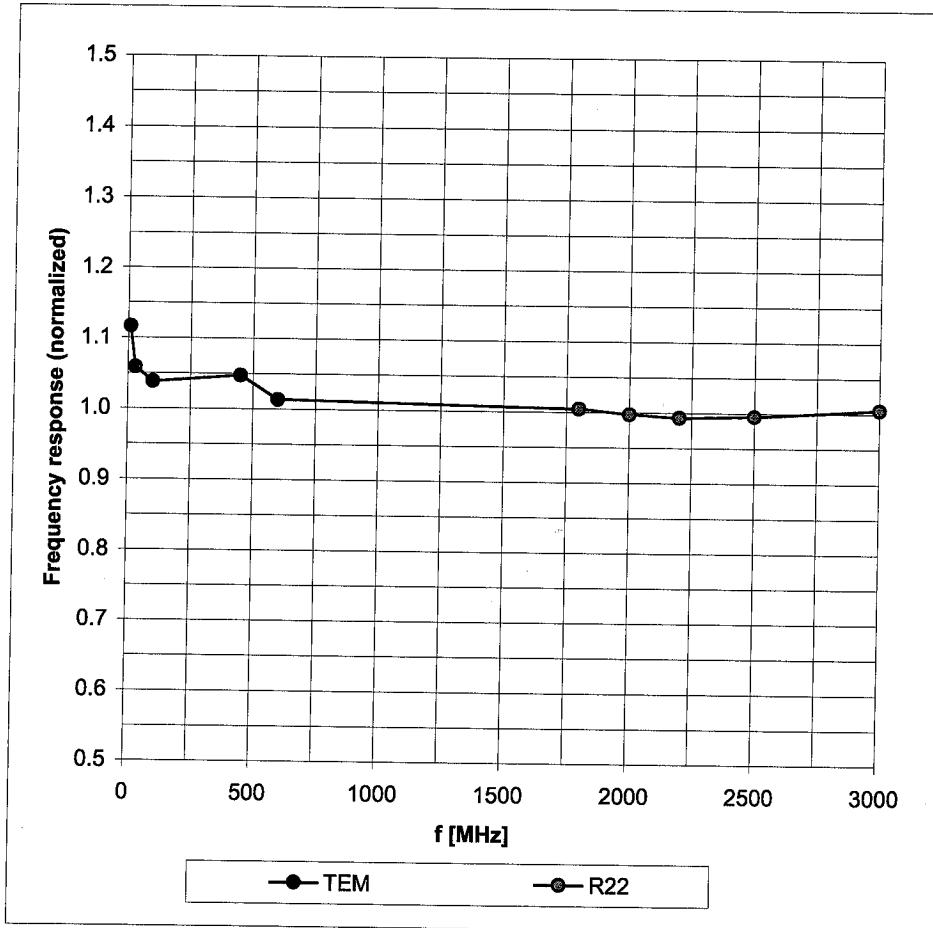
|                                                          |               |               |
|----------------------------------------------------------|---------------|---------------|
| Sensor Center to Phantom Surface Distance                | <b>2.0 mm</b> | <b>3.0 mm</b> |
| SAR <sub>be</sub> [%]       Without Correction Algorithm | 3.3           | 1.2           |
| SAR <sub>be</sub> [%]       With Correction Algorithm    | 0.0           | 0.0           |

TSL                   **1810 MHz**           Typical SAR gradient: 10 % per mm

|                                                          |               |               |
|----------------------------------------------------------|---------------|---------------|
| Sensor Center to Phantom Surface Distance                | <b>2.0 mm</b> | <b>3.0 mm</b> |
| SAR <sub>be</sub> [%]       Without Correction Algorithm | 4.2           | 2.3           |
| SAR <sub>be</sub> [%]       With Correction Algorithm    | 0.8           | 0.8           |

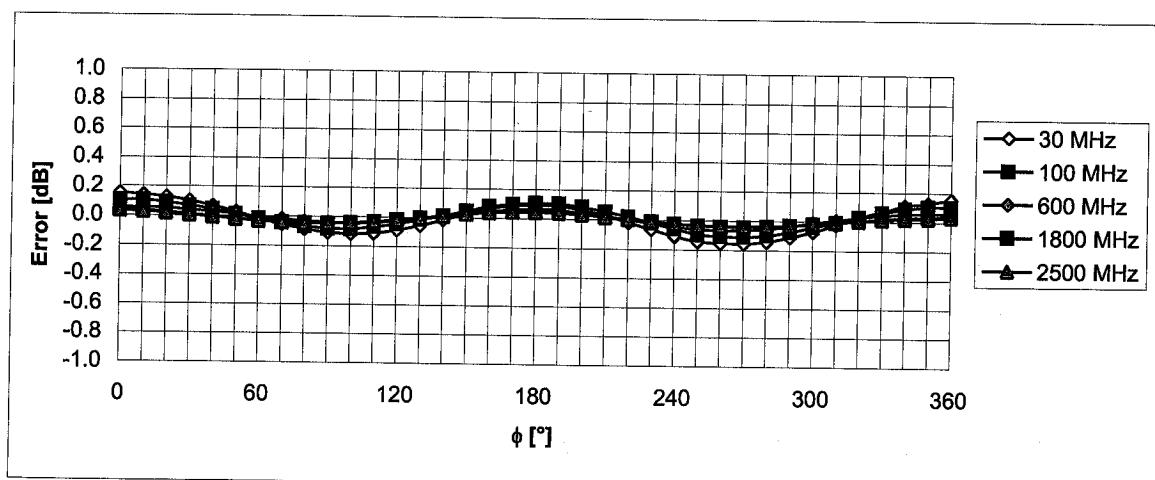
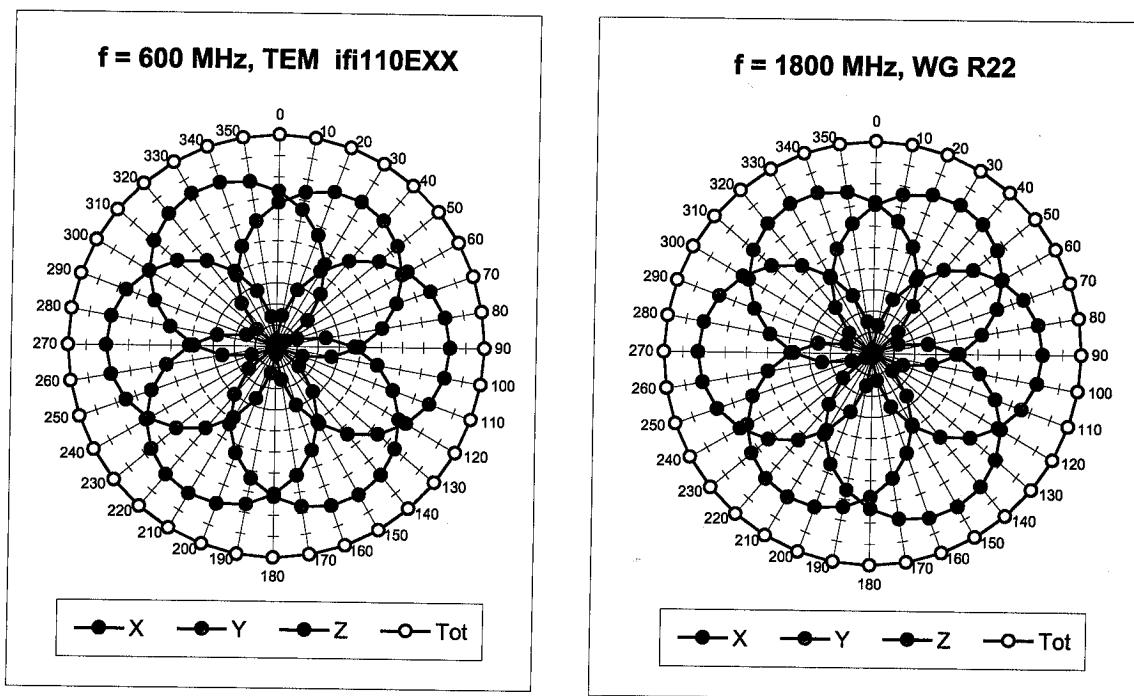
### Sensor Offset

Probe Tip to Sensor Center                   **1.0 mm**


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor  $k=2$ , which for a normal distribution corresponds to a coverage probability of approximately 95%.

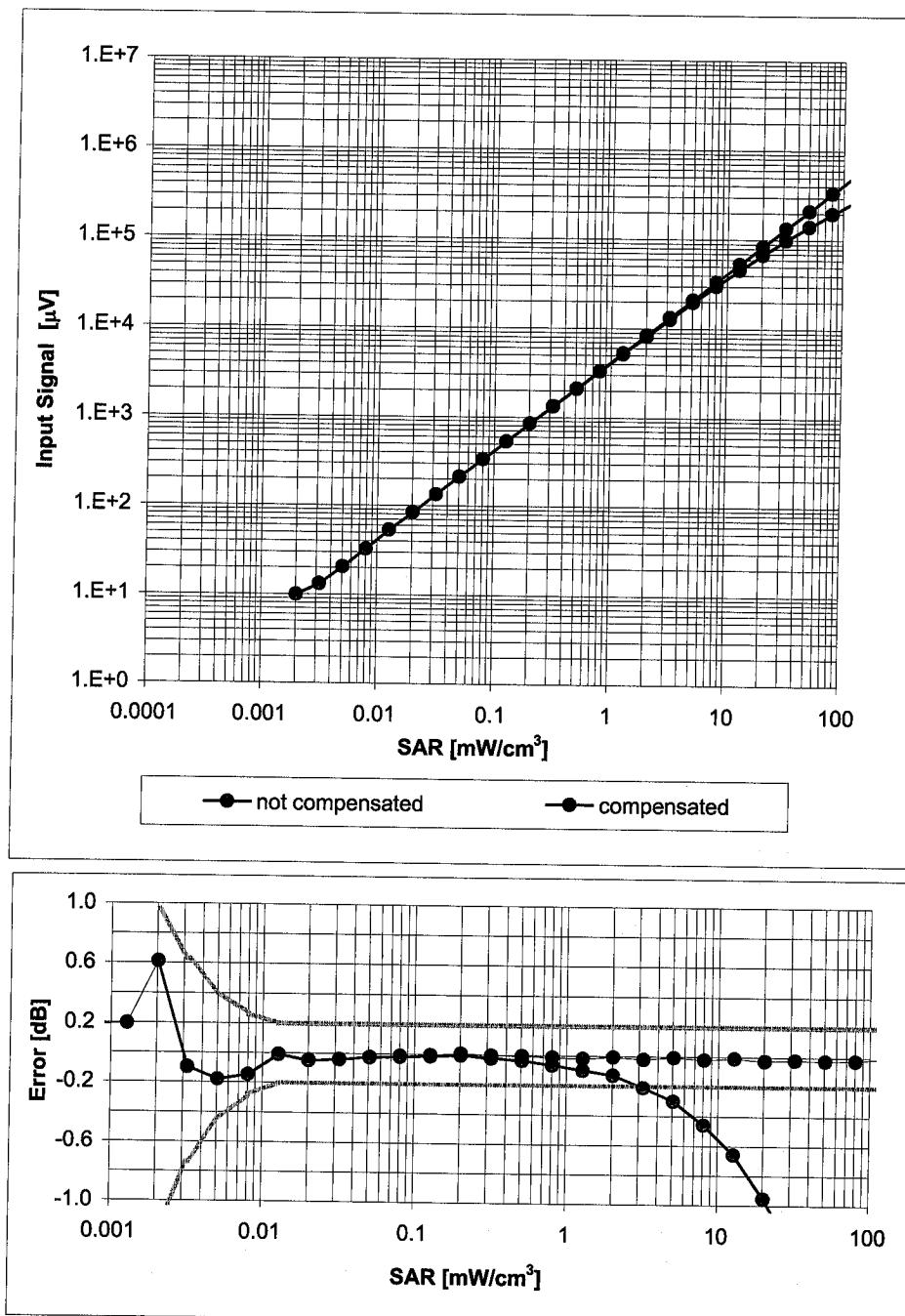
<sup>A</sup> The uncertainties of NormX,Y,Z do not affect the  $E^2$ -field uncertainty inside TSL (see Page 8).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.



## Frequency Response of E-Field

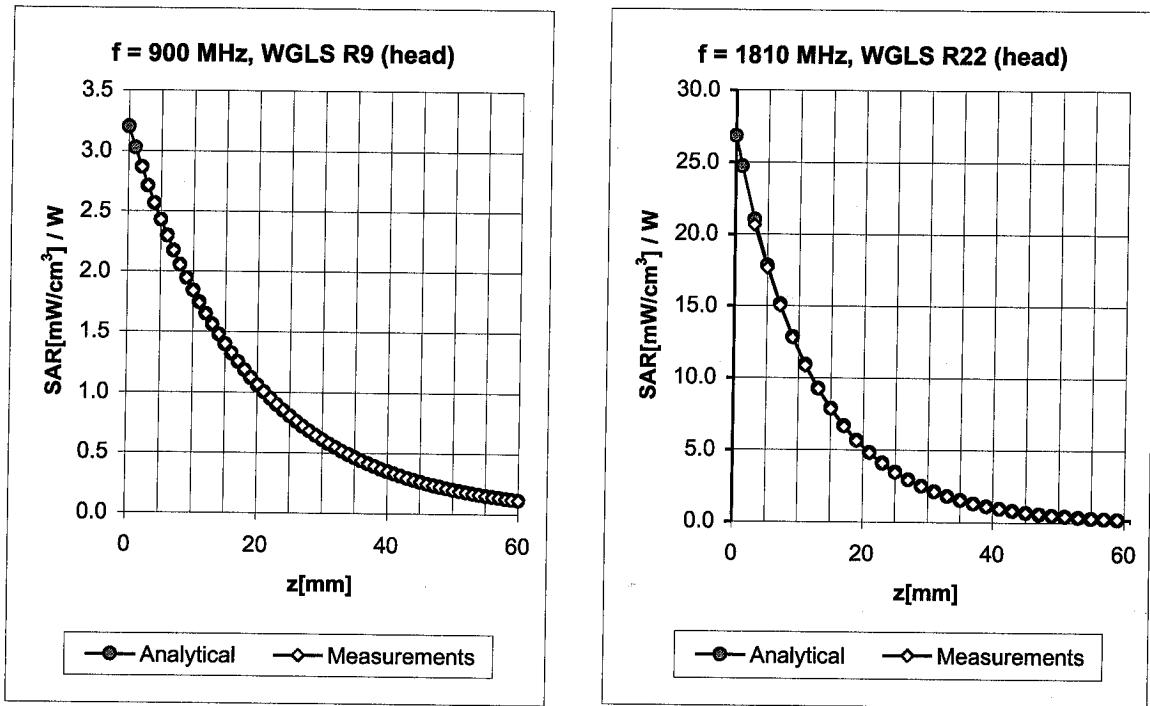
(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field:  $\pm 6.3\%$  ( $k=2$ )

## Receiving Pattern ( $\phi$ ), $\theta = 0^\circ$




Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  ( $k=2$ )

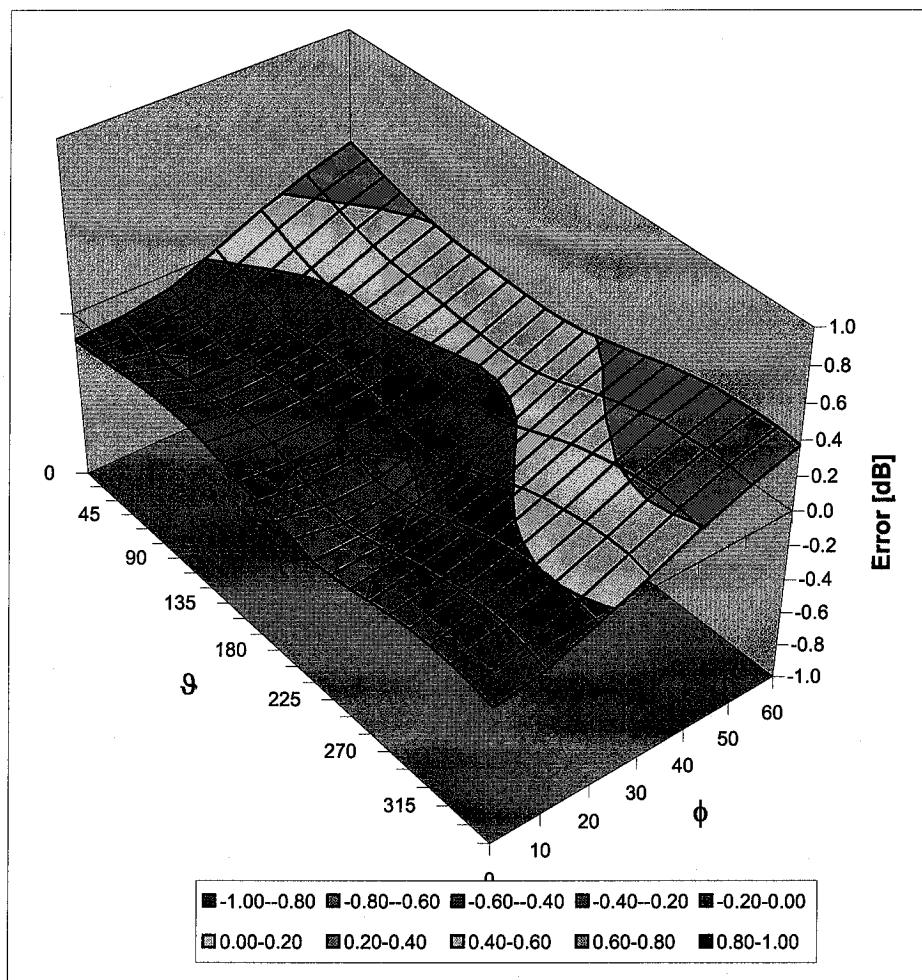
## Dynamic Range $f(\text{SAR}_{\text{head}})$ (Waveguide R22, $f = 1800$ MHz)



Uncertainty of Linearity Assessment:  $\pm 0.6\%$  ( $k=2$ )

## Conversion Factor Assessment




| $f$ [MHz] | Validity [MHz] <sup>c</sup> | TSL  | Permittivity   | Conductivity   | Alpha | Depth | ConvF | Uncertainty                |
|-----------|-----------------------------|------|----------------|----------------|-------|-------|-------|----------------------------|
| 900       | $\pm 50 / \pm 100$          | Head | $41.5 \pm 5\%$ | $0.97 \pm 5\%$ | 0.53  | 0.80  | 9.64  | $\pm 11.0\% \text{ (k=2)}$ |
| 1810      | $\pm 50 / \pm 100$          | Head | $40.0 \pm 5\%$ | $1.40 \pm 5\%$ | 0.16  | 1.29  | 8.69  | $\pm 11.0\% \text{ (k=2)}$ |
| 5200      | $\pm 50 / \pm 100$          | Head | $36.0 \pm 5\%$ | $4.66 \pm 5\%$ | 0.40  | 1.70  | 5.38  | $\pm 13.1\% \text{ (k=2)}$ |
| 5500      | $\pm 50 / \pm 100$          | Head | $35.6 \pm 5\%$ | $4.96 \pm 5\%$ | 0.40  | 1.70  | 4.77  | $\pm 13.1\% \text{ (k=2)}$ |
| 5800      | $\pm 50 / \pm 100$          | Head | $35.3 \pm 5\%$ | $5.27 \pm 5\%$ | 0.40  | 1.70  | 4.64  | $\pm 13.1\% \text{ (k=2)}$ |

|      |                    |      |                |                |      |      |      |                            |
|------|--------------------|------|----------------|----------------|------|------|------|----------------------------|
| 5200 | $\pm 50 / \pm 100$ | Body | $49.0 \pm 5\%$ | $5.30 \pm 5\%$ | 0.32 | 1.75 | 4.71 | $\pm 13.1\% \text{ (k=2)}$ |
| 5500 | $\pm 50 / \pm 100$ | Body | $48.6 \pm 5\%$ | $5.65 \pm 5\%$ | 0.28 | 1.75 | 4.38 | $\pm 13.1\% \text{ (k=2)}$ |
| 5800 | $\pm 50 / \pm 100$ | Body | $48.2 \pm 5\%$ | $6.00 \pm 5\%$ | 0.38 | 1.75 | 4.19 | $\pm 13.1\% \text{ (k=2)}$ |

<sup>c</sup> The validity of  $\pm 100$  MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

## Deviation from Isotropy in HSL

Error ( $\phi, \theta$ ),  $f = 900$  MHz



Uncertainty of Spherical Isotropy Assessment:  $\pm 2.6\%$  ( $k=2$ )

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **Appendix 2. Measurement Methods**

### **A.2.1. Evaluation Procedure**

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.  
(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. For bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

### **A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)**

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, against appropriate limits for each measurement position in accordance with the standard.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of  $\pm 2.0^{\circ}\text{C}$

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 343 points (5 mm spacing in each axis  $\approx 27\text{g}$ ) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

---

Test of: MaxID Ltd  
iDL3ID

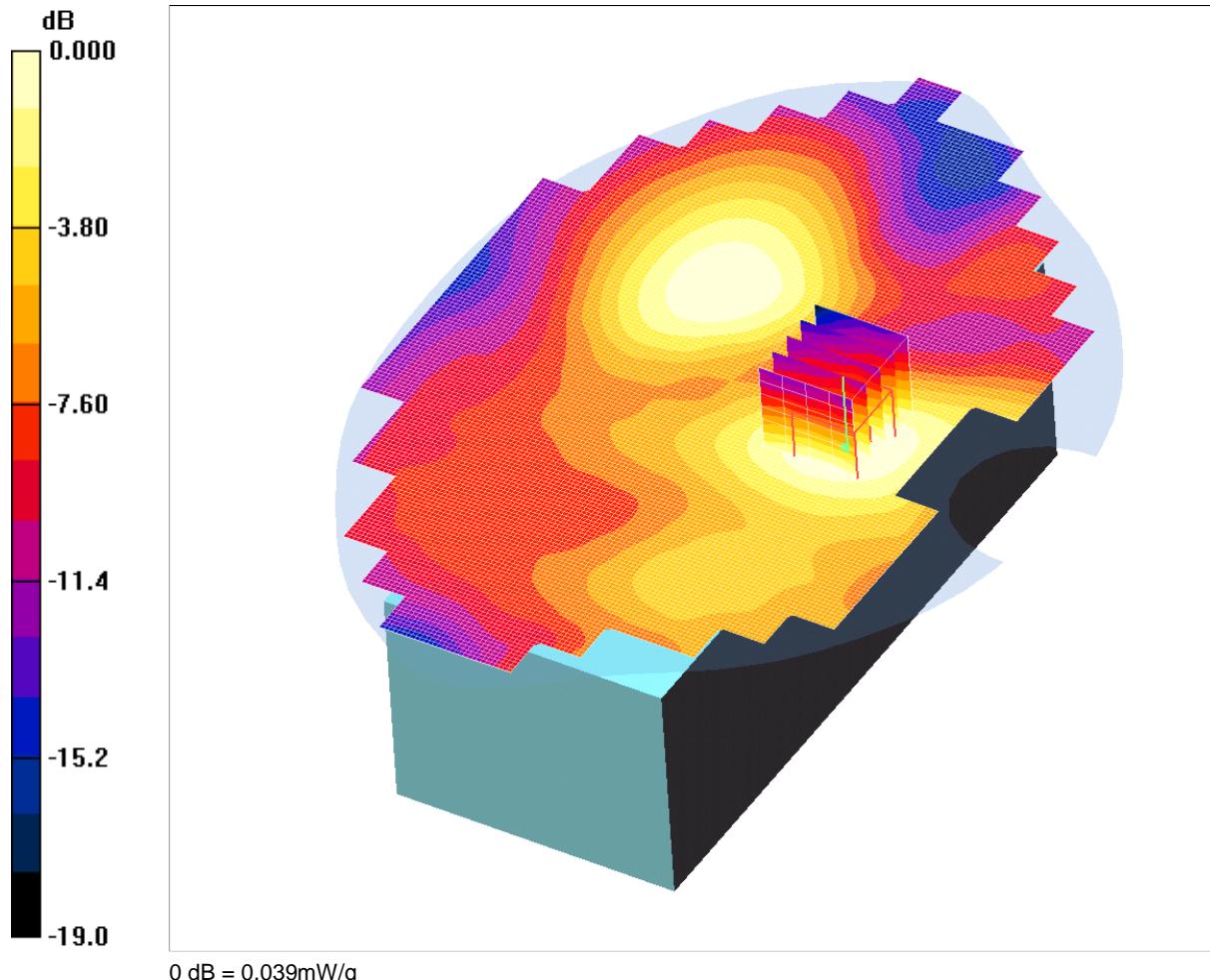
To: OET Bulletin 65 Supplement C: (2001-01)

---

### **Appendix 3. SAR Distribution Scans**

This appendix contains SAR distribution scans which are not included in the total number of pages for this report.

| Scan Reference Number | Title                                          |
|-----------------------|------------------------------------------------|
| SCN/73402JD03/001     | Front Of EUT Facing Phantom PCS CH660          |
| SCN/73402JD03/002     | Rear Of EUT Facing Phantom PCS CH660           |
| SCN/73402JD03/003     | Front Of EUT Facing Phantom GPRS CH660         |
| SCN/73402JD03/004     | Front Of EUT Facing Phantom GSM CH189          |
| SCN/73402JD03/005     | Rear Of EUT Facing Phantom GSM CH189           |
| SCN/73402JD03/006     | Front Of EUT Facing Phantom GPRS CH189         |
| SCN/73402JD03/007     | Front Of EUT Facing Phantom EGPRS CH189        |
| SCN/73402JD03/008     | Front Of EUT Facing Phantom EGPRS CH660        |
| SCN/73402JD03/009     | Front Of EUT Facing Phantom WiFi CH6 802_11b   |
| SCN/73402JD03/010     | Rear Of EUT Facing Phantom WiFi CH6 802_11b    |
| SCN/73402JD03/011     | System Performance Check 1900MHz Body 27 03 08 |
| SCN/73402JD03/012     | System Performance Check 900MHz Body 27 03 08  |
| SCN/73402JD03/013     | System Performance Check 1900MHz Body 28 03 08 |
| SCN/73402JD03/014     | System Performance Check 900MHz Body 28 03 08  |
| SCN/73402JD03/015     | System Performance Check 2450MHz Body 09 05 08 |


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/001: Front Of EUT Facing Phantom PCS CH660**

Date: 27/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz MSL Medium parameters used (interpolated):  $f = 1879.8$  MHz;  $\sigma = 1.57$  mho/m;  $\epsilon_r = 51.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.57, 4.57, 4.57); Calibrated: 06/07/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 24/05/2007

- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle/Area Scan (121x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.041 mW/g

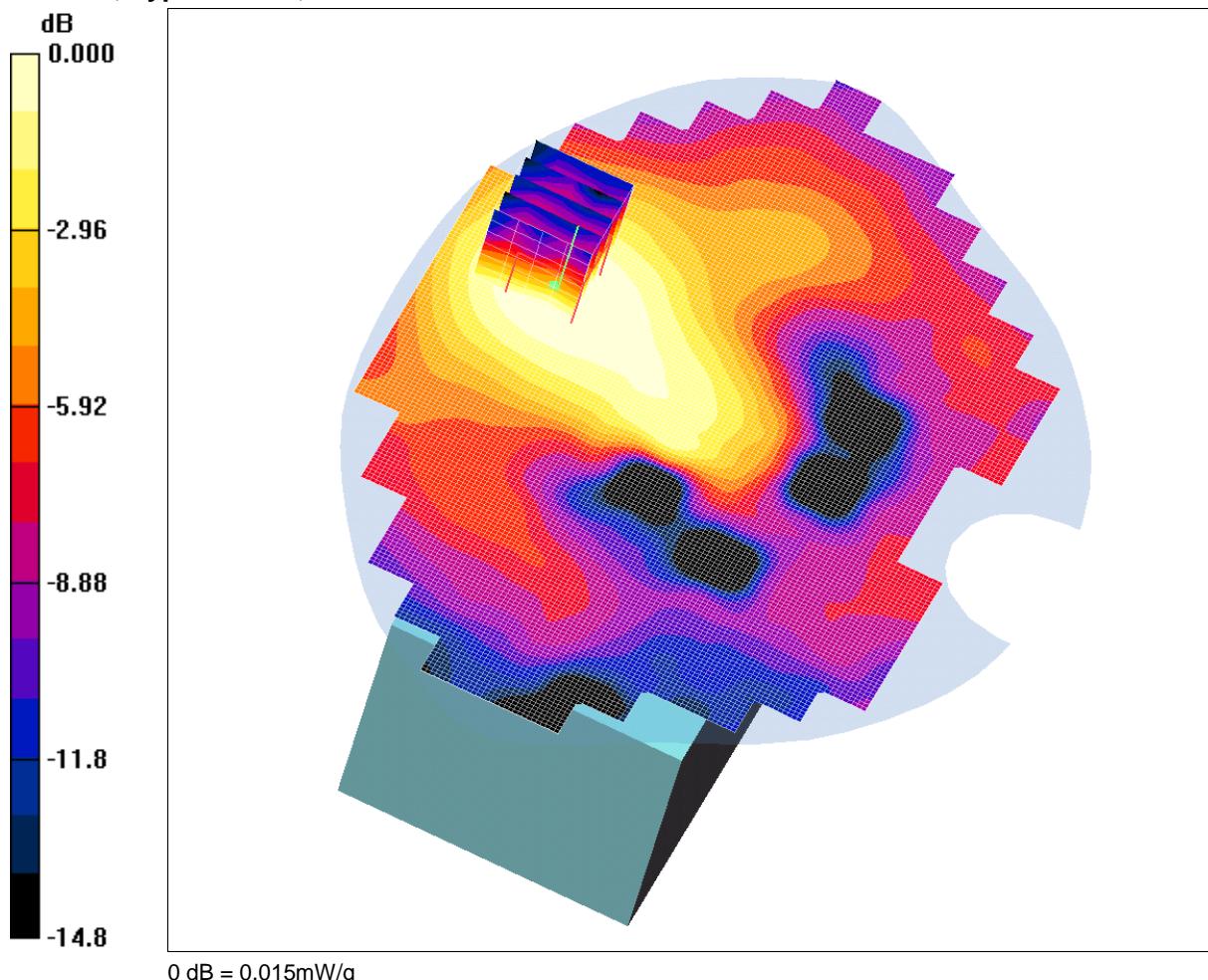
**Front Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.66 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 0.058 W/kg

**SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.023 mW/g**

Maximum value of SAR (measured) = 0.039 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/002: Rear Of EUT Facing Phantom PCS CH660**

Date: 27/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz MSL Medium parameters used (interpolated):  $f = 1879.8$  MHz;  $\sigma = 1.57$  mho/m;  $\epsilon_r = 51.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.57, 4.57, 4.57); Calibrated: 06/07/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 24/05/2007

- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Rear Of EUT Facing Phantom With - Middle/Area Scan (121x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.015 mW/g

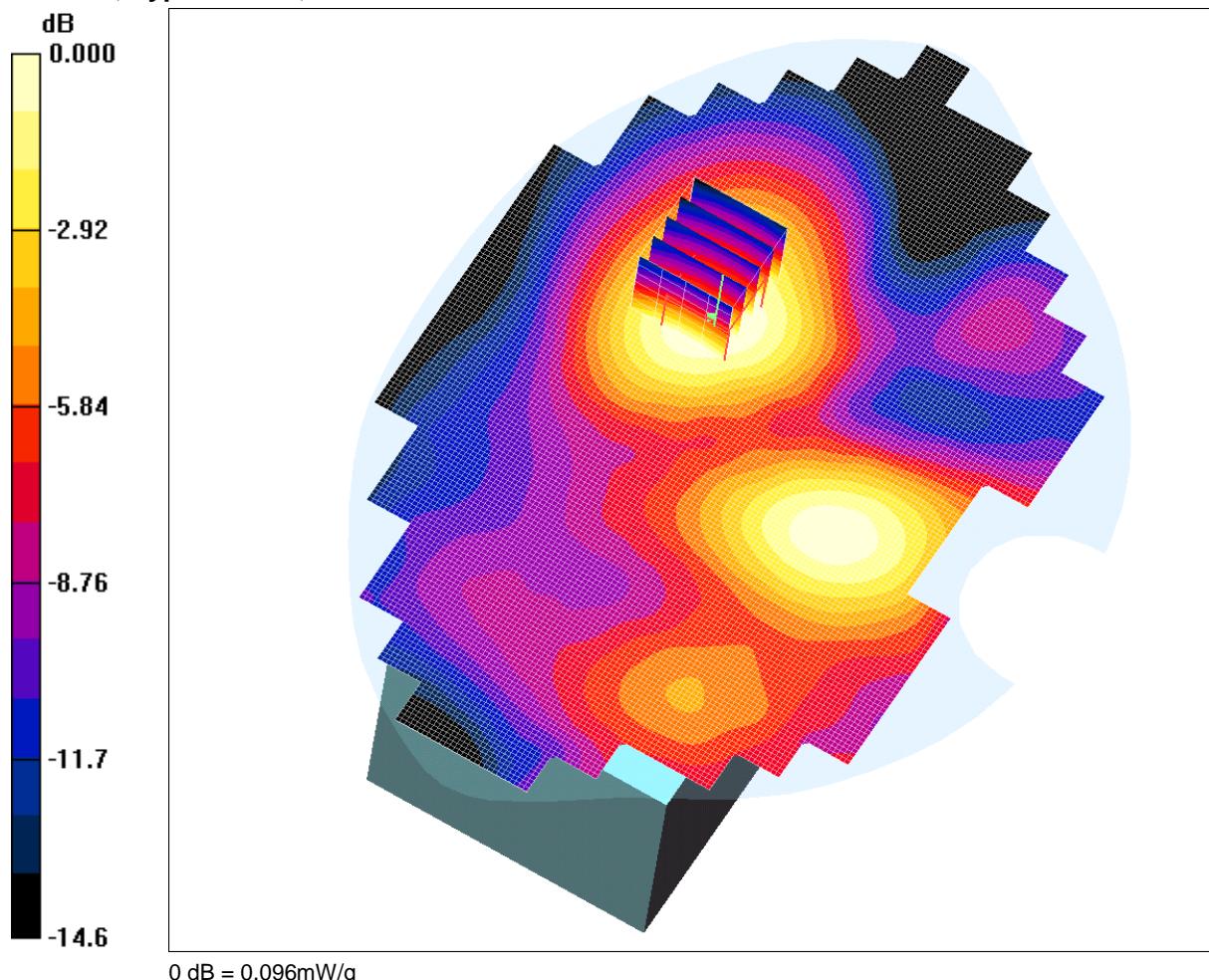
**Rear Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.54 V/m; Power Drift = -0.167 dB

Peak SAR (extrapolated) = 0.021 W/kg

**SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.00941 mW/g**

Maximum value of SAR (measured) = 0.015 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/003: Front Of EUT Facing Phantom GPRS CH660**

Date: 27/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz MSL Medium parameters used (interpolated):  $f = 1879.8$  MHz;  $\sigma = 1.57$  mho/m;  $\epsilon_r = 51.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.57, 4.57, 4.57); Calibrated: 06/07/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 24/05/2007

- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle/Area Scan (121x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.097 mW/g

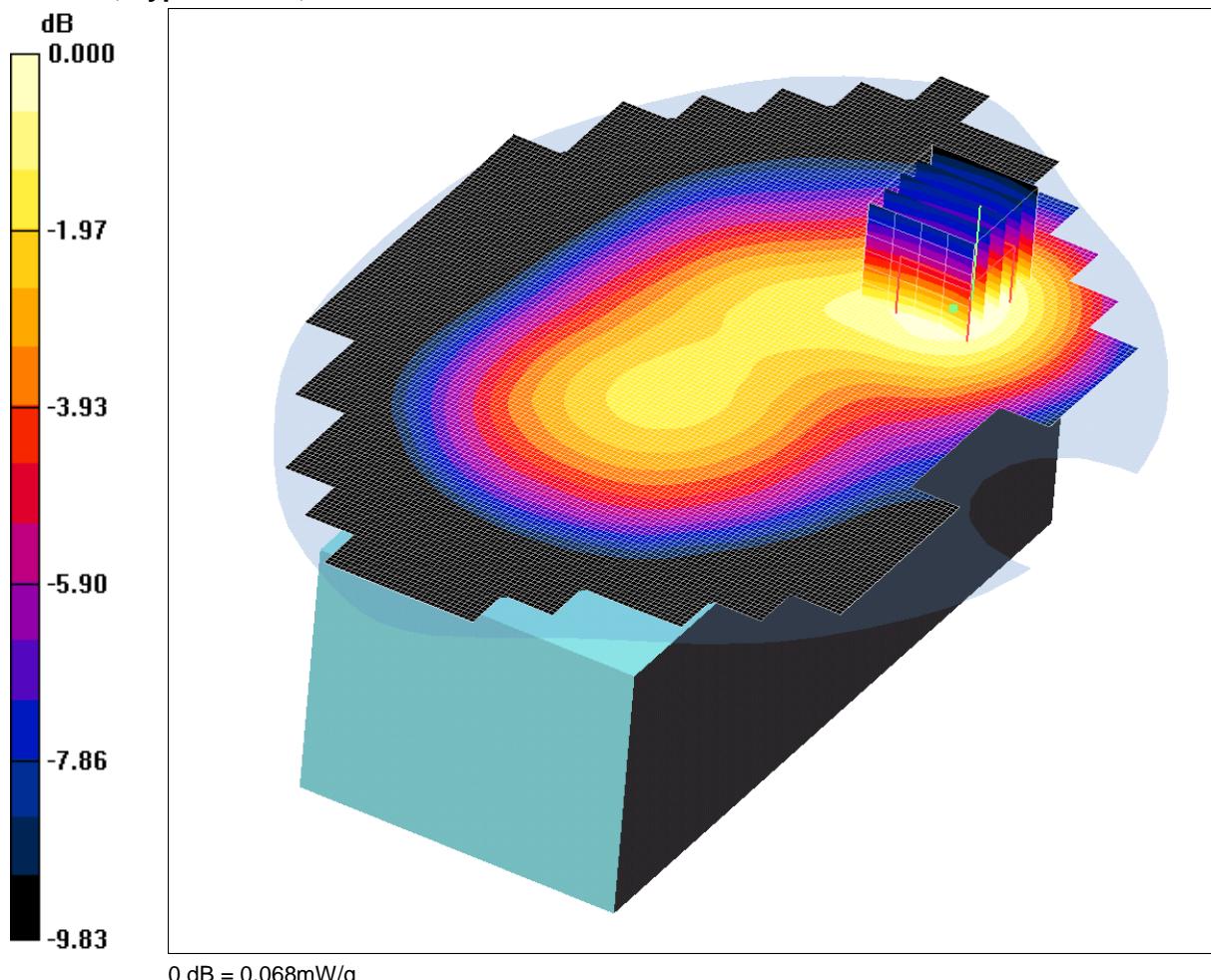
**Front Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.90 V/m; Power Drift = -0.086 dB

Peak SAR (extrapolated) = 0.136 W/kg

**SAR(1 g) = 0.090 mW/g; SAR(10 g) = 0.058 mW/g**

Maximum value of SAR (measured) = 0.096 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/004: Front Of EUT Facing Phantom GSM CH189**

Date: 27/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz MSL Medium parameters used (interpolated):  $f = 836.4$  MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(6.19, 6.19, 6.19); Calibrated: 06/07/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 24/05/2007

- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle/Area Scan (121x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.070 mW/g

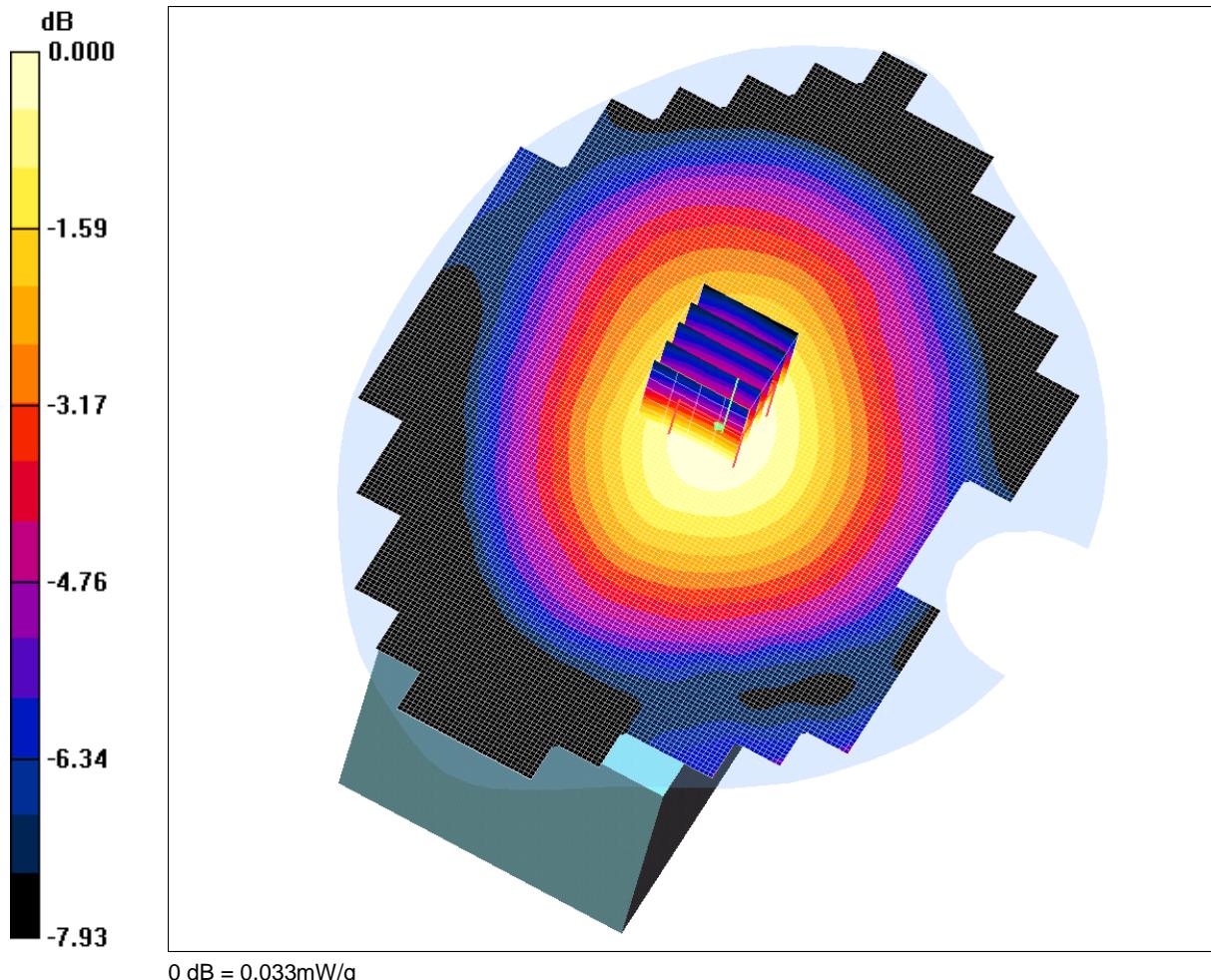
**Front Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.03 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.091 W/kg

**SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.045 mW/g**

Maximum value of SAR (measured) = 0.068 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/005: Rear Of EUT Facing Phantom GSM CH189**

Date: 27/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz MSL Medium parameters used (interpolated):  $f = 836.4$  MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(6.19, 6.19, 6.19); Calibrated: 06/07/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 24/05/2007

- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Rear Of EUT Facing Phantom With - Middle/Area Scan (121x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.033 mW/g

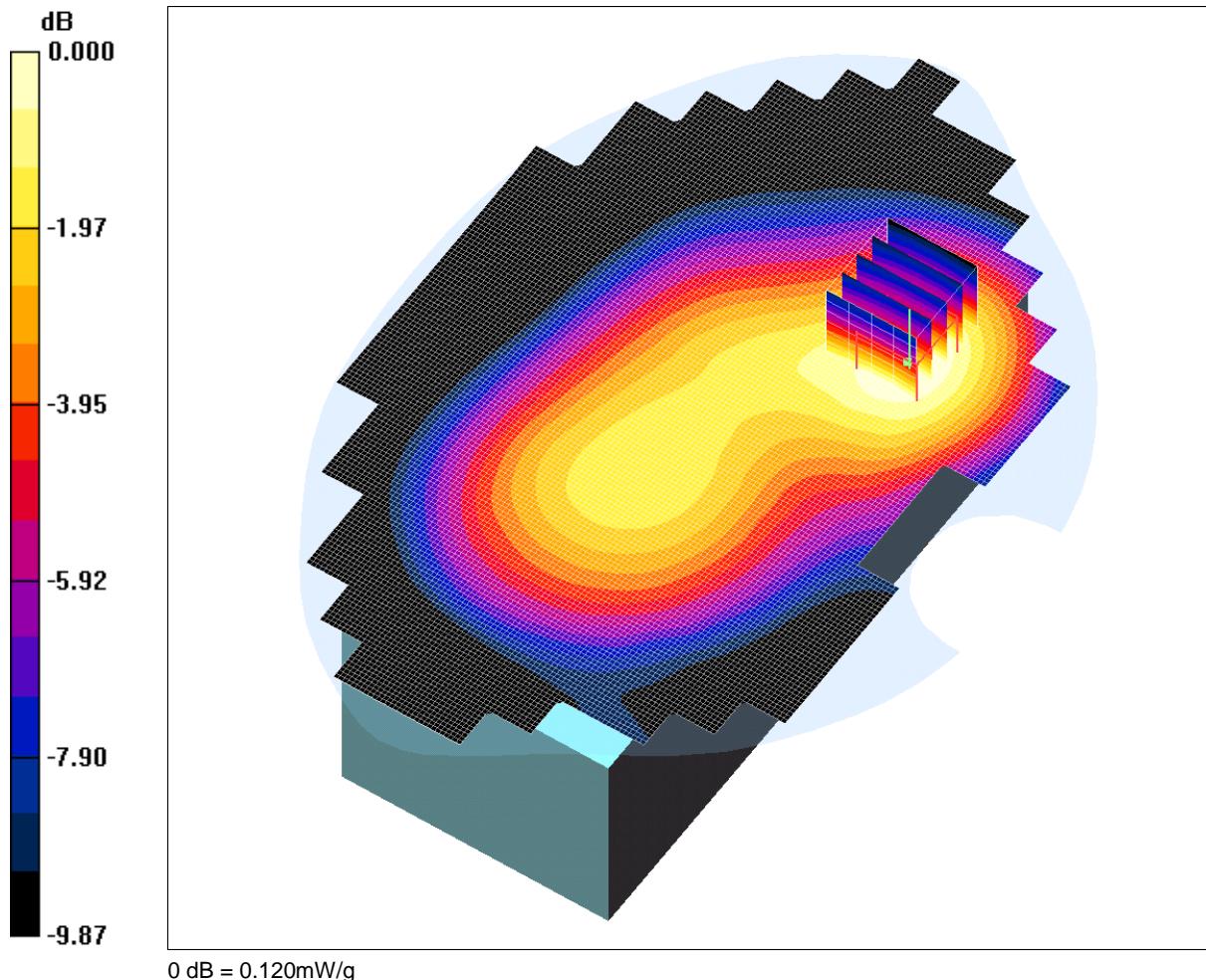
**Rear Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.05 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.040 W/kg

**SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.023 mW/g**

Maximum value of SAR (measured) = 0.033 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/006: Front Of EUT Facing Phantom GPRS CH189**

Date: 27/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: GPRS 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: 900 MHz MSL Medium parameters used (interpolated):  $f = 836.4$  MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(6.19, 6.19, 6.19); Calibrated: 06/07/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 24/05/2007

- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle/Area Scan (121x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.122 mW/g

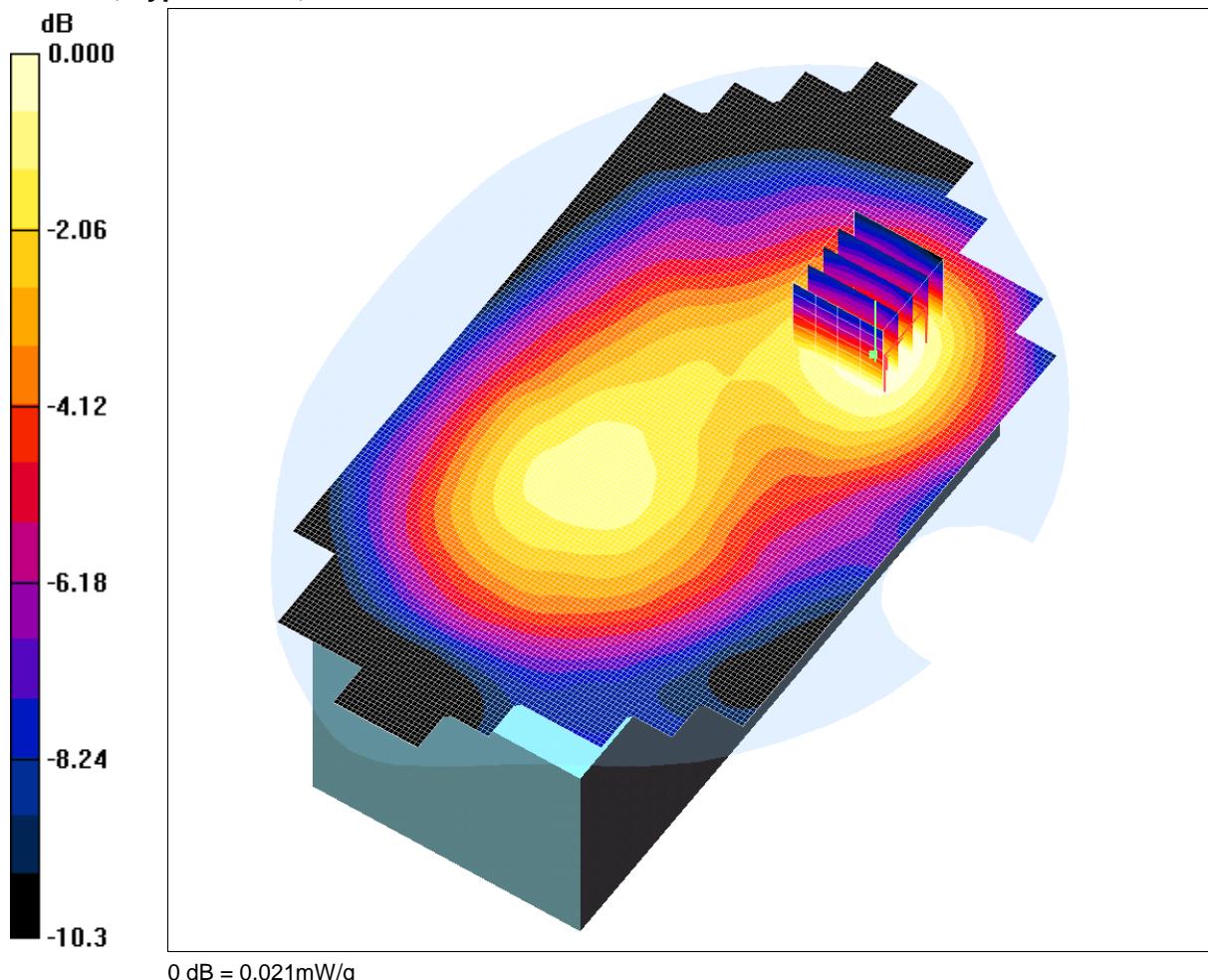
**Front Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.49 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 0.155 W/kg

**SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.079 mW/g**

Maximum value of SAR (measured) = 0.120 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/007: Front Of EUT Facing Phantom EGPRS CH189**

Date: 28/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: EGPRS 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: 900 MHz MSL Medium parameters used (interpolated):  $f = 836.4$  MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(6.19, 6.19, 6.19); Calibrated: 06/07/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle 2/Area Scan (101x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.021 mW/g

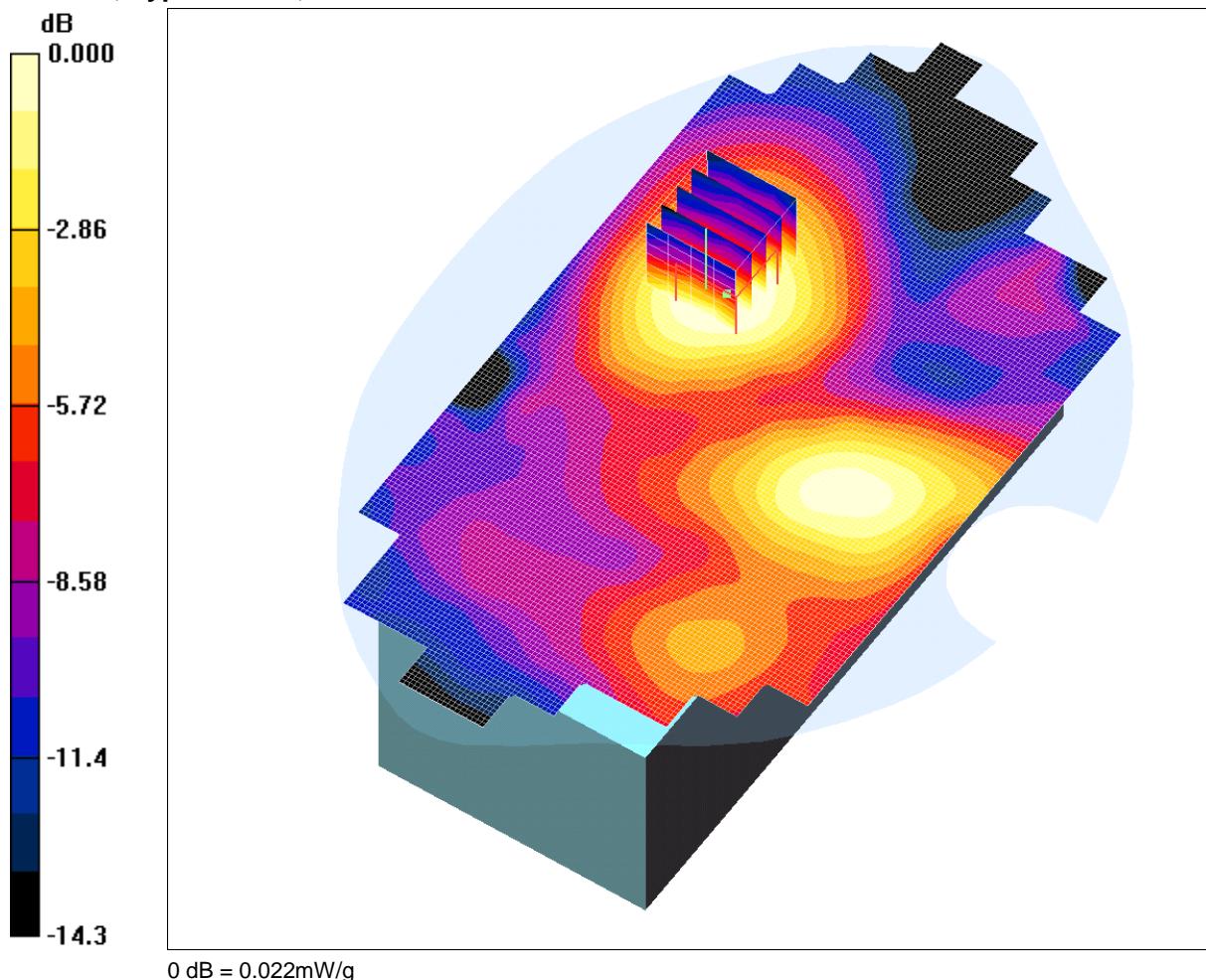
**Front Of EUT Facing Phantom With - Middle 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.87 V/m; Power Drift = 0.287 dB

Peak SAR (extrapolated) = 0.029 W/kg

**SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.014 mW/g**

Maximum value of SAR (measured) = 0.021 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/008: Front Of EUT Facing Phantom EGPRS CH660**

Date: 28/03/2008

**DUT: MaxID; Type: iDI3ID ; Serial: 505159**



Communication System: EGPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz MSL Medium parameters used (interpolated):  $f = 1879.8$  MHz;  $\sigma = 1.55$  mho/m;  $\epsilon_r = 52.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.57, 4.57, 4.57); Calibrated: 06/07/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle 2/Area Scan (101x191x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.023 mW/g

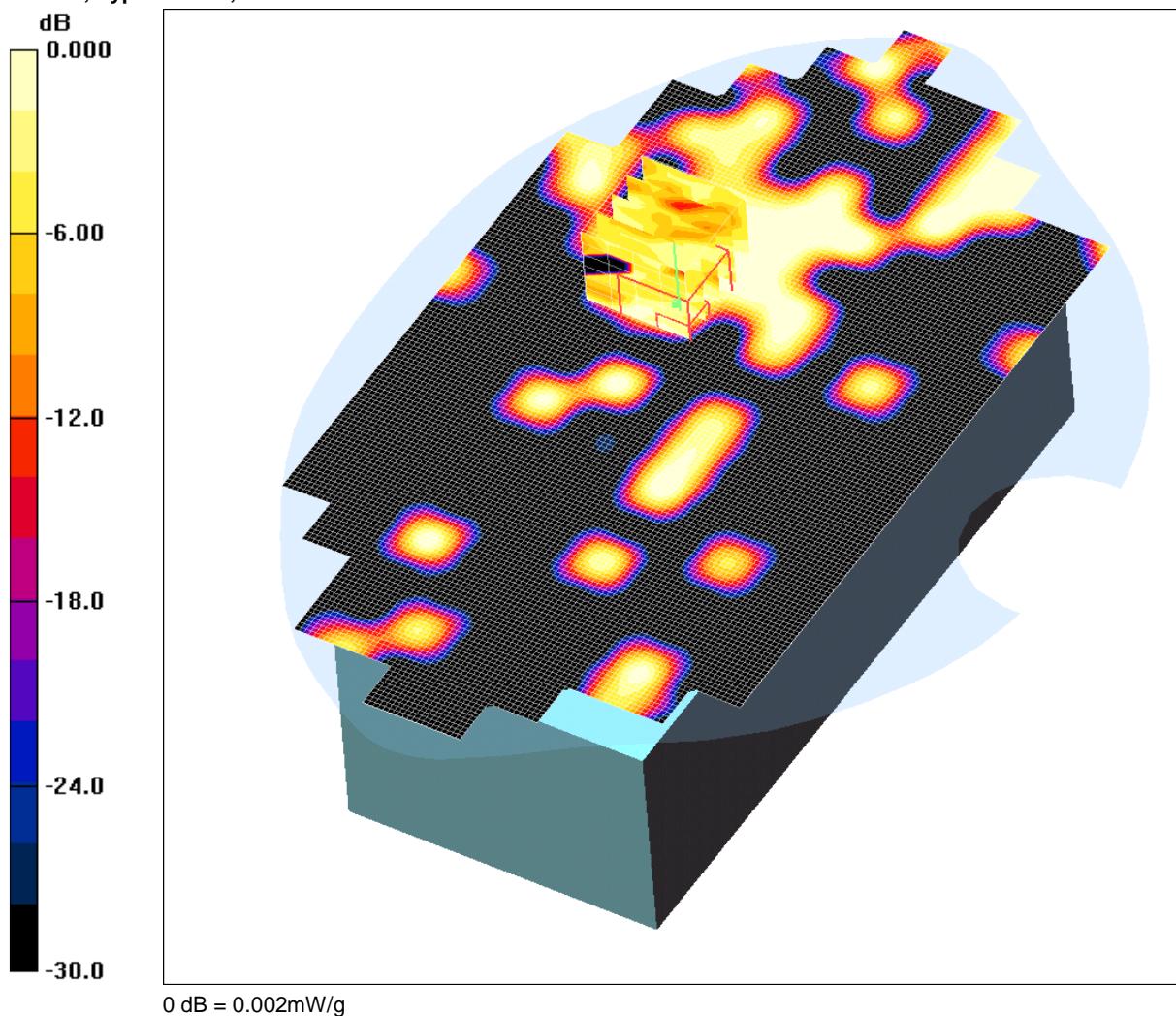
**Front Of EUT Facing Phantom With - Middle 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.81 V/m; Power Drift = -0.218 dB

Peak SAR (extrapolated) = 0.033 W/kg

**SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.013 mW/g**

Maximum value of SAR (measured) = 0.022 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/009: Front Of EUT Facing Phantom WiFi CH6**

Date: 09/05/2008

DUT: MaxID; Type: iDL3ID ; Serial: 505159



Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 1.91$  mho/m;  $\epsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3508add; ConvF(7.89, 7.89, 7.89); Calibrated: 16/11/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 24/05/2007

- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle/Area Scan (101x191x1):** Measurement grid: dx=15mm, dy=15mm

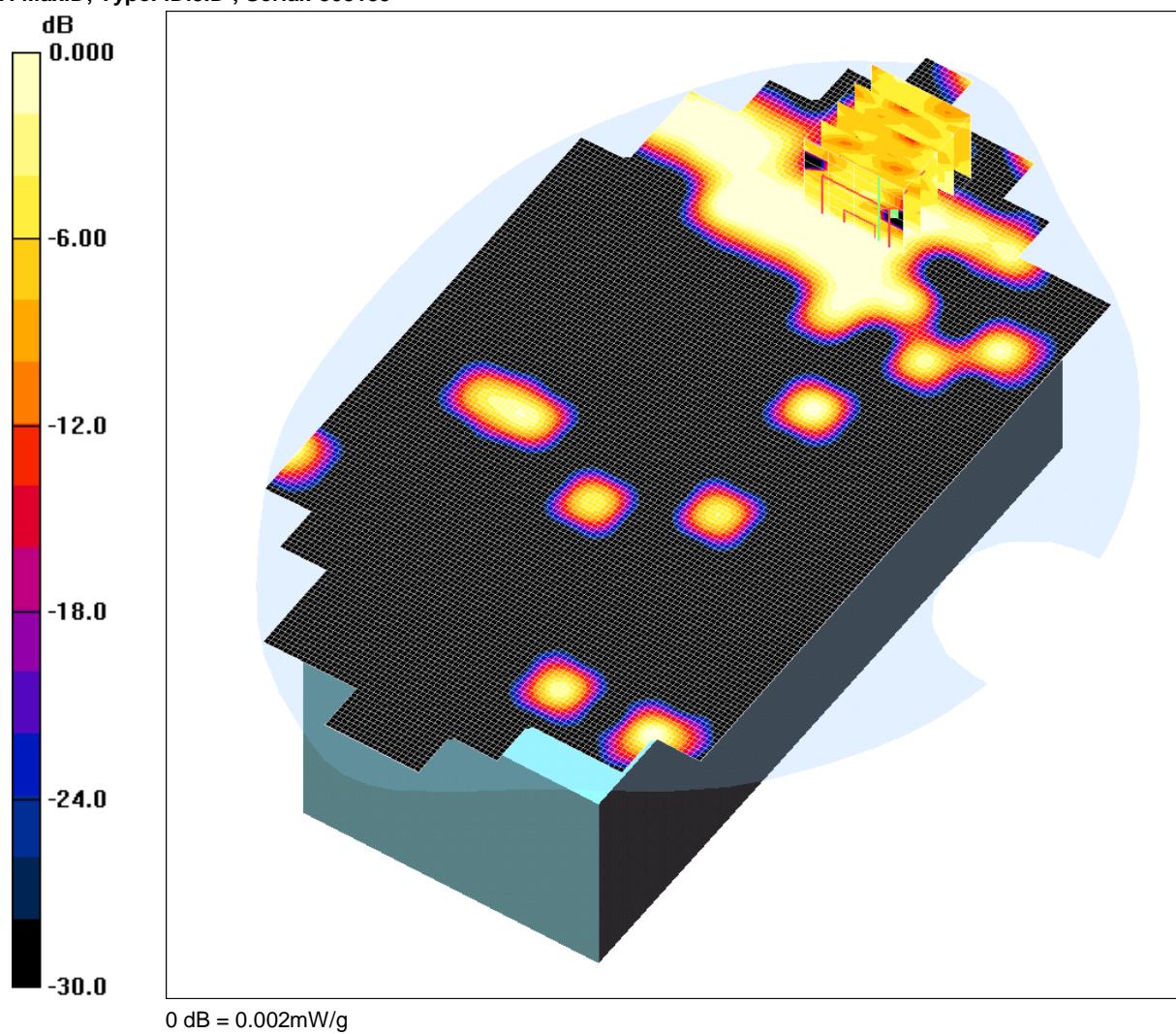
Maximum value of SAR (interpolated) = 0.004 mW/g

**Front Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.475 V/m; Power Drift = 0.673 dB; Peak SAR (extrapolated) = 0.007 W/kg

**SAR(1 g) = 0.00151 mW/g; SAR(10 g) = 0.000517 mW/g:**

Maximum value of SAR (measured) = 0.002 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/010: Rear Of EUT Facing Phantom WiFi CH6**

Date: 09/05/2008

DUT: MaxID; Type: iDL3ID ; Serial: 505159



Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 1.91$  mho/m;  $\epsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3508add; ConvF(7.89, 7.89, 7.89); Calibrated: 16/11/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Front Of EUT Facing Phantom With - Middle/Area Scan (101x191x1):** Measurement grid: dx=15mm, dy=15mm

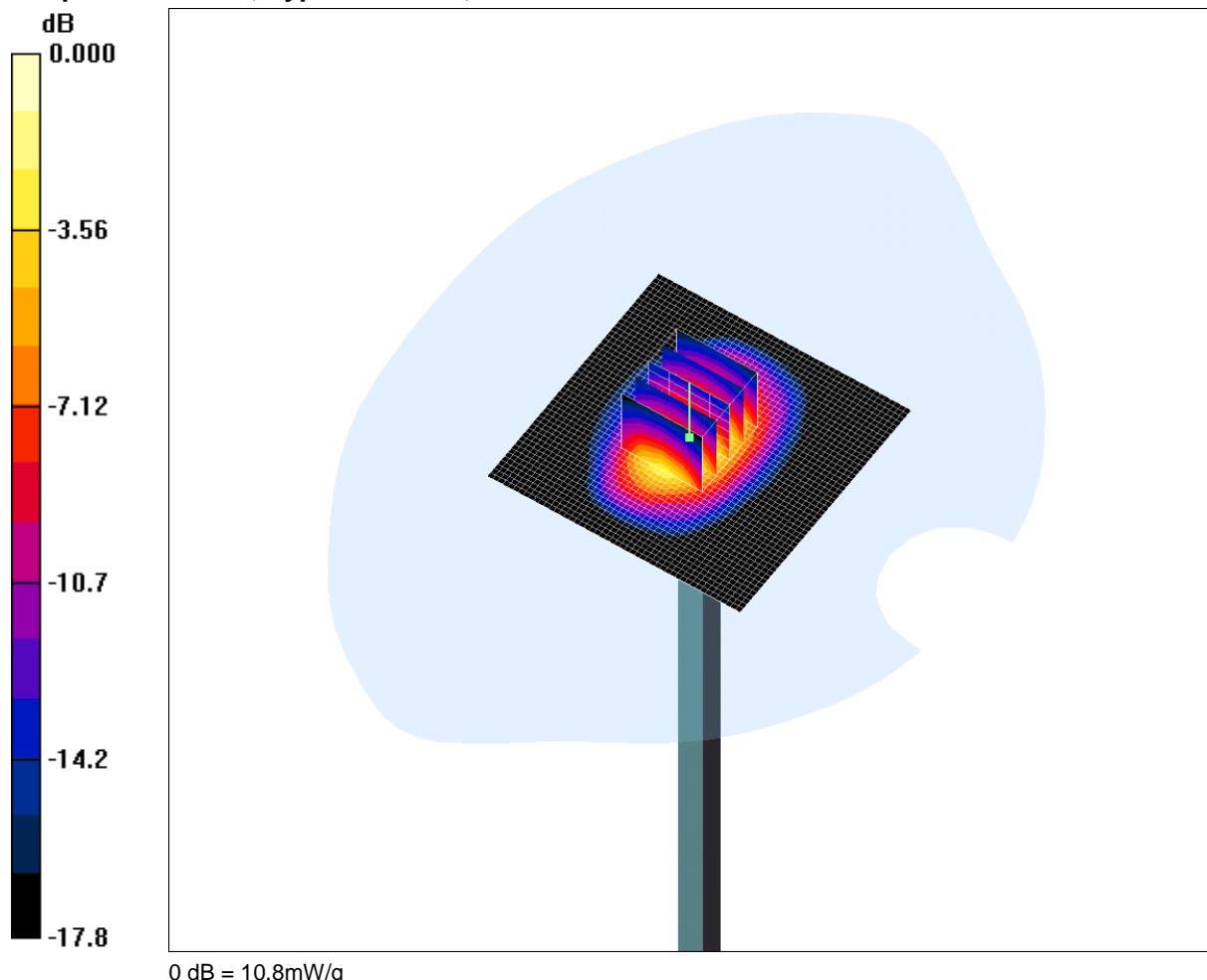
Maximum value of SAR (interpolated) = 0.006 mW/g

**Front Of EUT Facing Phantom With - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.736 V/m; Power Drift = -1.37 dB; Peak SAR (extrapolated) = 0.007 W/kg

**SAR(1 g) = 0.00149 mW/g; SAR(10 g) = 0.000685 mW/g**

Maximum value of SAR (measured) = 0.002 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/011: System Performance Check 1900MHz Body 27 03 08**

Date: 27/03/2008

**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540**



Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz MSL Medium parameters used:  $f = 1900$  MHz;  $\sigma = 1.6$  mho/m;  $\epsilon_r = 51.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.57, 4.57, 4.57); Calibrated: 06/07/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**d=15mm, Pin=250mW/Area Scan (51x51x1):** Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 13.2 mW/g

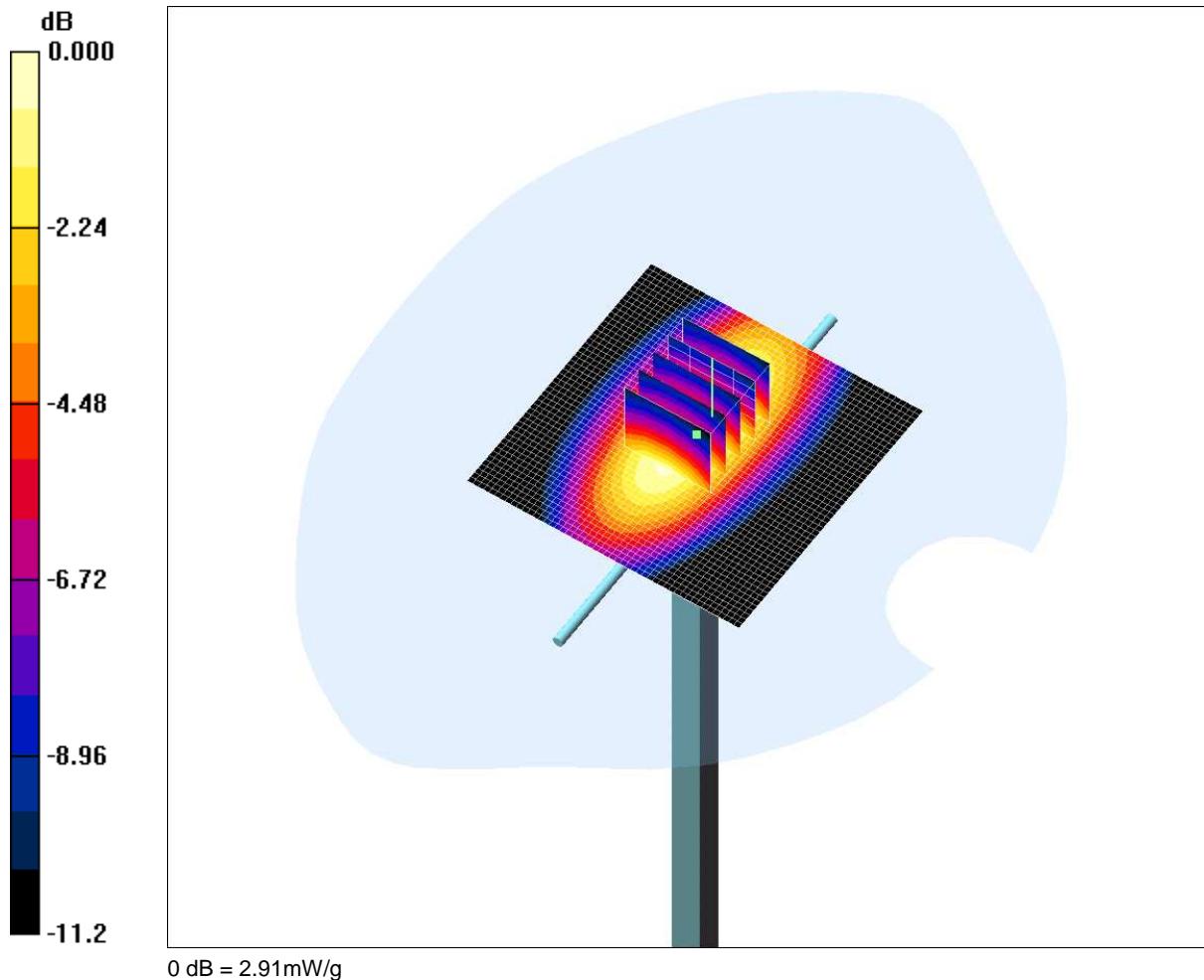
**d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 84.5 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 17.1 W/kg

**SAR(1 g) = 9.61 mW/g; SAR(10 g) = 5 mW/g**

Maximum value of SAR (measured) = 10.8 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/012: System Performance Check 900MHz Body 27 03 08**

Date: 27/03/2008

**DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185**



Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used:  $f = 900$  MHz;  $\sigma = 1.02$  mho/m;  $\epsilon_r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(5.9, 5.9, 5.9); Calibrated: 06/07/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**d=15mm, Pin=250mW/Area Scan (51x51x1):** Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 2.99 mW/g

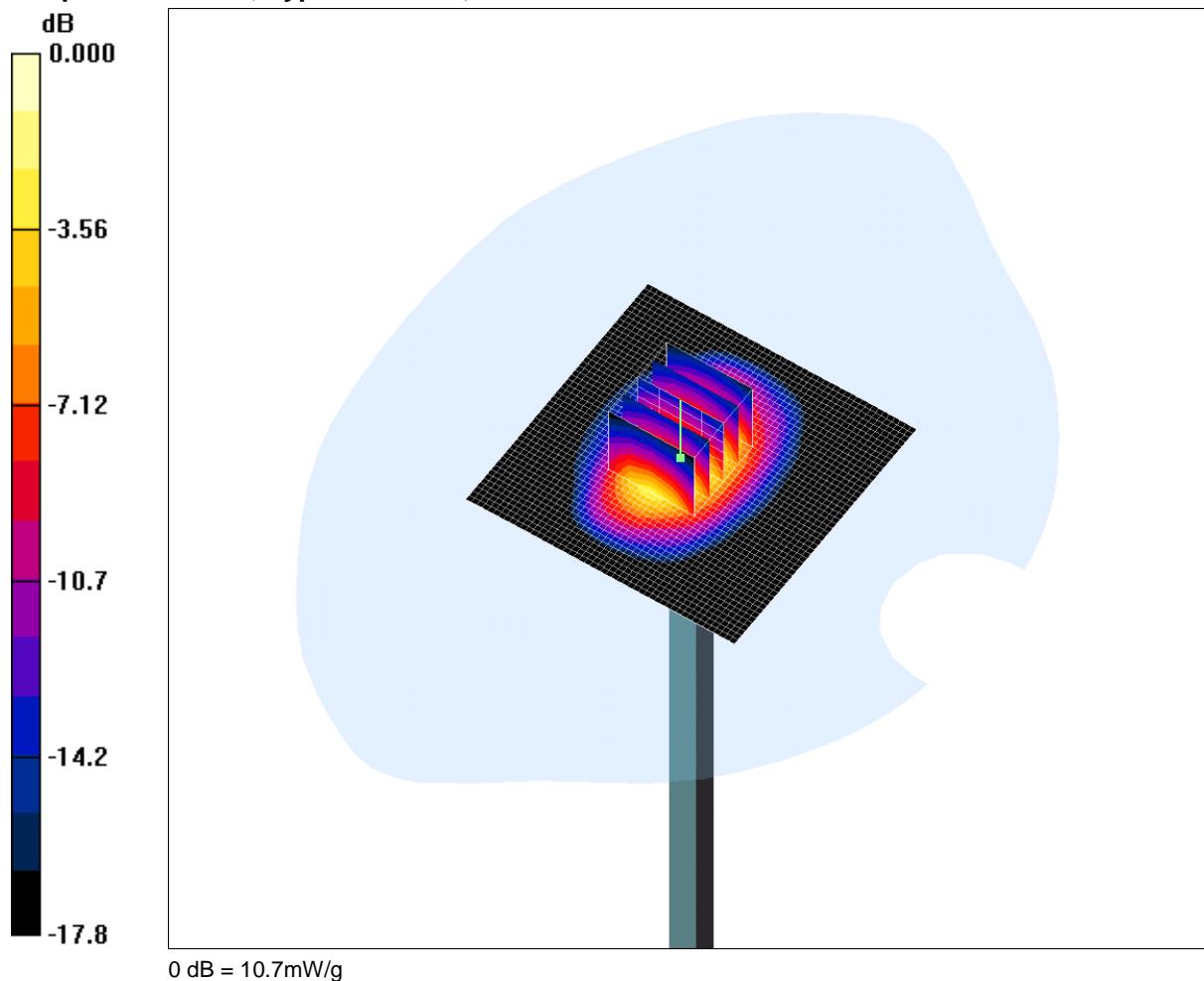
**d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.2 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 3.96 W/kg

**SAR(1 g) = 2.7 mW/g; SAR(10 g) = 1.74 mW/g**

Maximum value of SAR (measured) = 2.91 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/013: System Performance Check 1900MHz Body 28 03 08**

Date: 28/03/2008

**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540**



Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz MSL Medium parameters used:  $f = 1900$  MHz;  $\sigma = 1.57$  mho/m;  $\epsilon_r = 52.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.57, 4.57, 4.57); Calibrated: 06/07/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**d=15mm, Pin=250mW/Area Scan (51x51x1):** Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 13.1 mW/g

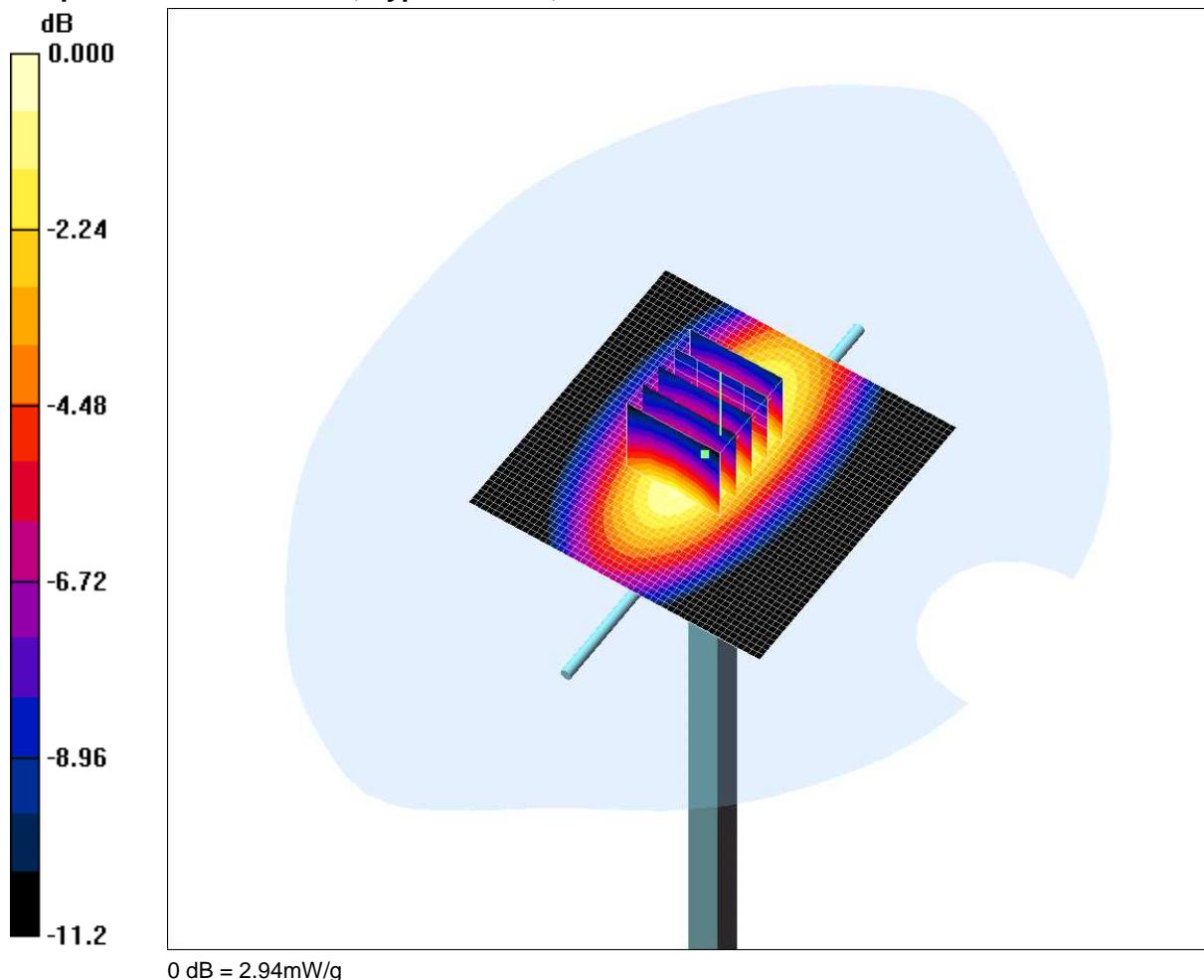
**d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 84.1 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 16.9 W/kg

**SAR(1 g) = 9.51 mW/g; SAR(10 g) = 4.95 mW/g**

Maximum value of SAR (measured) = 10.7 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73402JD03/014: System Performance Check 900MHz Body 28 03 08**

Date: 28/03/2008

**DUT: Dipole 900 MHz - SPARE; Type: D900V2; Serial: SN185**



Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used:  $f = 900$  MHz;  $\sigma = 1.02$  mho/m;  $\epsilon_r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(5.9, 5.9, 5.9); Calibrated: 06/07/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**d=15mm, Pin=250mW/Area Scan (51x51x1):** Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.03 mW/g

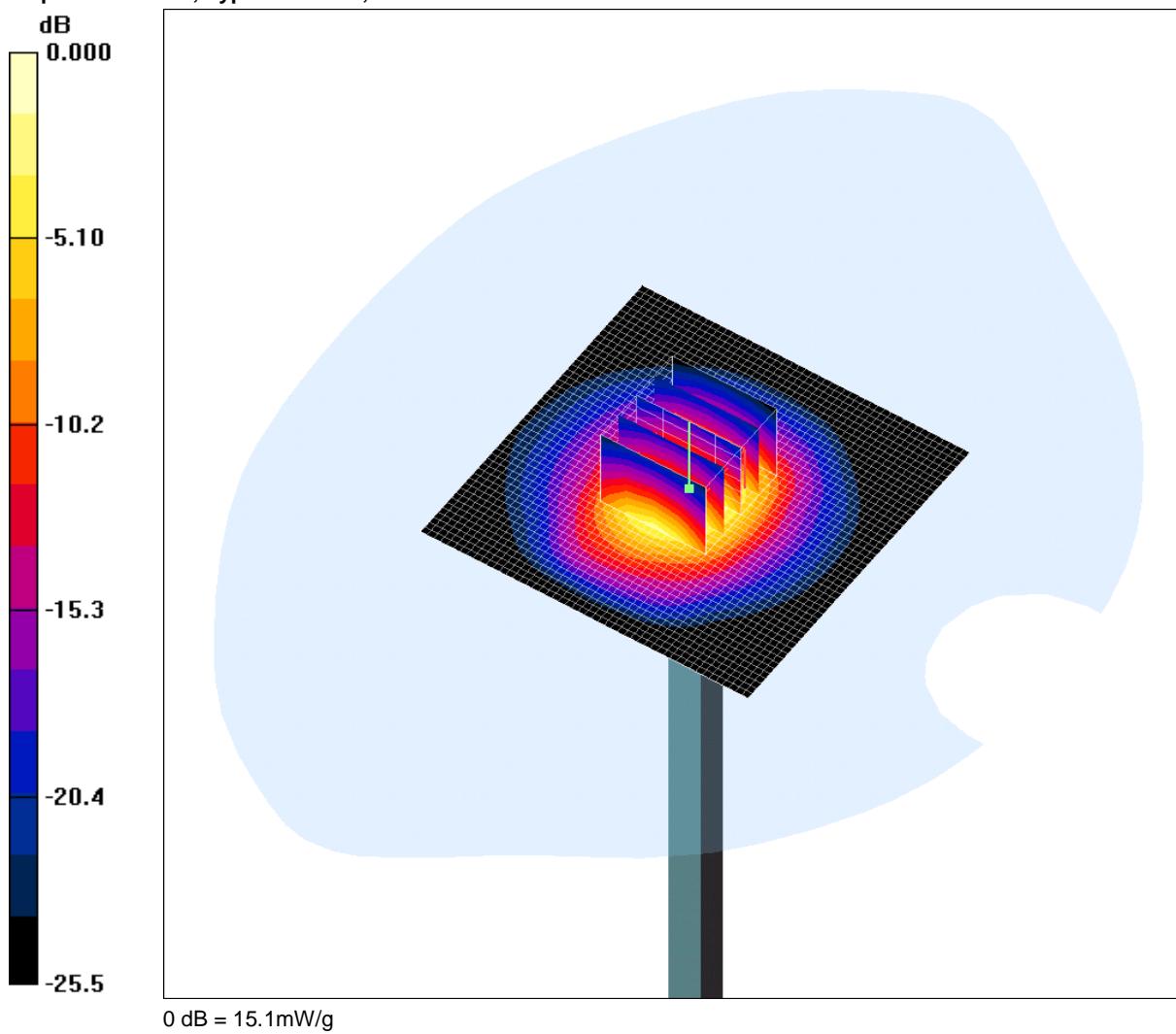
**d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 3.98 W/kg

**SAR(1 g) = 2.71 mW/g; SAR(10 g) = 1.75 mW/g**

Maximum value of SAR (measured) = 2.94 mW/g


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

**SCN/73125JD03/015: System Performance Check 2450MHz Body 09 05 08**

Date: 09/05/2008

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725



Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.92$  mho/m;  $\epsilon_r = 50.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3508add; ConvF(7.89, 7.89, 7.89); Calibrated: 16/11/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 24/05/2007
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**d=10mm, Pin=250mW 1/Area Scan (51x51x1):** Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 19.5 mW/g

**d=10mm, Pin=250mW 1/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 88.4 V/m; Power Drift = 0.023 dB; Peak SAR (extrapolated) = 30.7 W/kg

**SAR(1 g) = 13.6 mW/g; SAR(10 g) = 5.99 mW/g:** Maximum value of SAR (measured) = 15.1 mW/g

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **Appendix 4. Photographs**

This appendix contains the following photographs:

| Photo Reference Number | Title                                                                    |
|------------------------|--------------------------------------------------------------------------|
| PHT/73402JD03/001      | Test configuration for the measurement of Specific Absorption Rate (SAR) |
| PHT/73402JD03/002      | Front of EUT Facing Phantom                                              |
| PHT/73402JD03/003      | Rear of EUT Facing Phantom                                               |
| PHT/73402JD03/004      | Front View of EUT                                                        |
| PHT/73402JD03/005      | Rear View of EUT                                                         |
| PHT/73402JD03/006      | Internal View of EUT                                                     |
| PHT/73402JD03/007      | Battery View of EUT                                                      |
| PHT/73402JD03/008      | Top View of EUT Docking Station                                          |
| PHT/73402JD03/009      | Bottom View of EUT Docking Station                                       |
| PHT/73402JD03/010      | Charger View                                                             |
| PHT/73402JD03/011      | USB Cable Extension View                                                 |
| PHT/73402JD03/012      | USB to Serial Converter Cable and Serial Cable View                      |
| PHT/73402JD03/013      | 2450 MHz Fluid Level                                                     |
| PHT/73402JD03/014      | 1900 MHz Fluid Level                                                     |
| PHT/73402JD03/015      | 850 MHz Fluid Level                                                      |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/001: Test configuration for the measurement of Specific Absorption Rate (SAR)



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/002: Front of EUT Facing Phantom



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/003: Rear of EUT Facing Phantom



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/004: Front View of EUT



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/005: Rear View of EUT



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/006: Internal View of EUT



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/007: Battery View of EUT



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/008: Top View of EUT Docking Station



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/009: Bottom View of EUT Docking Station



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/010: Charger View



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/011: USB Cable Extension View

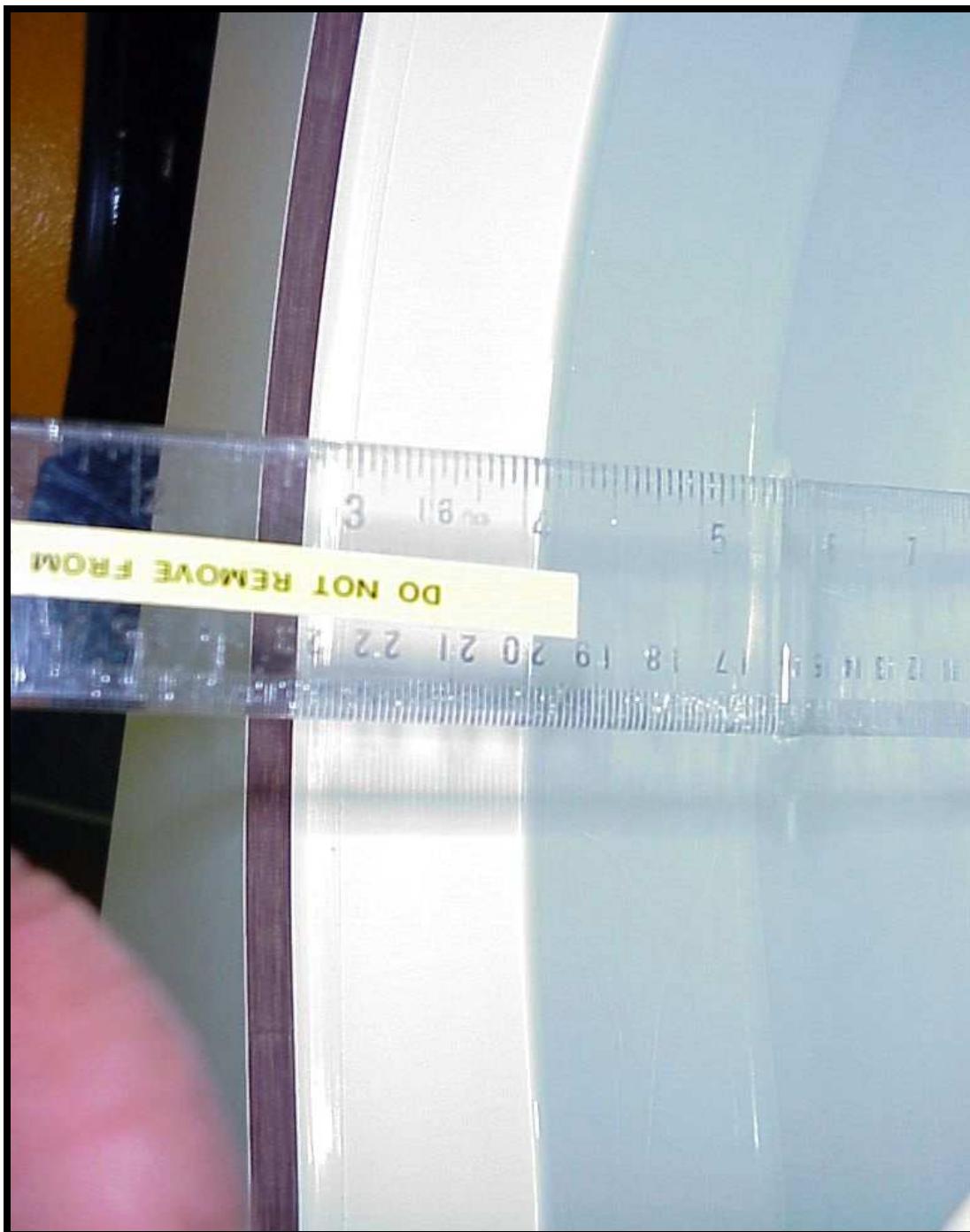


Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/012: USB to Serial Converter Cable and Serial Cable View

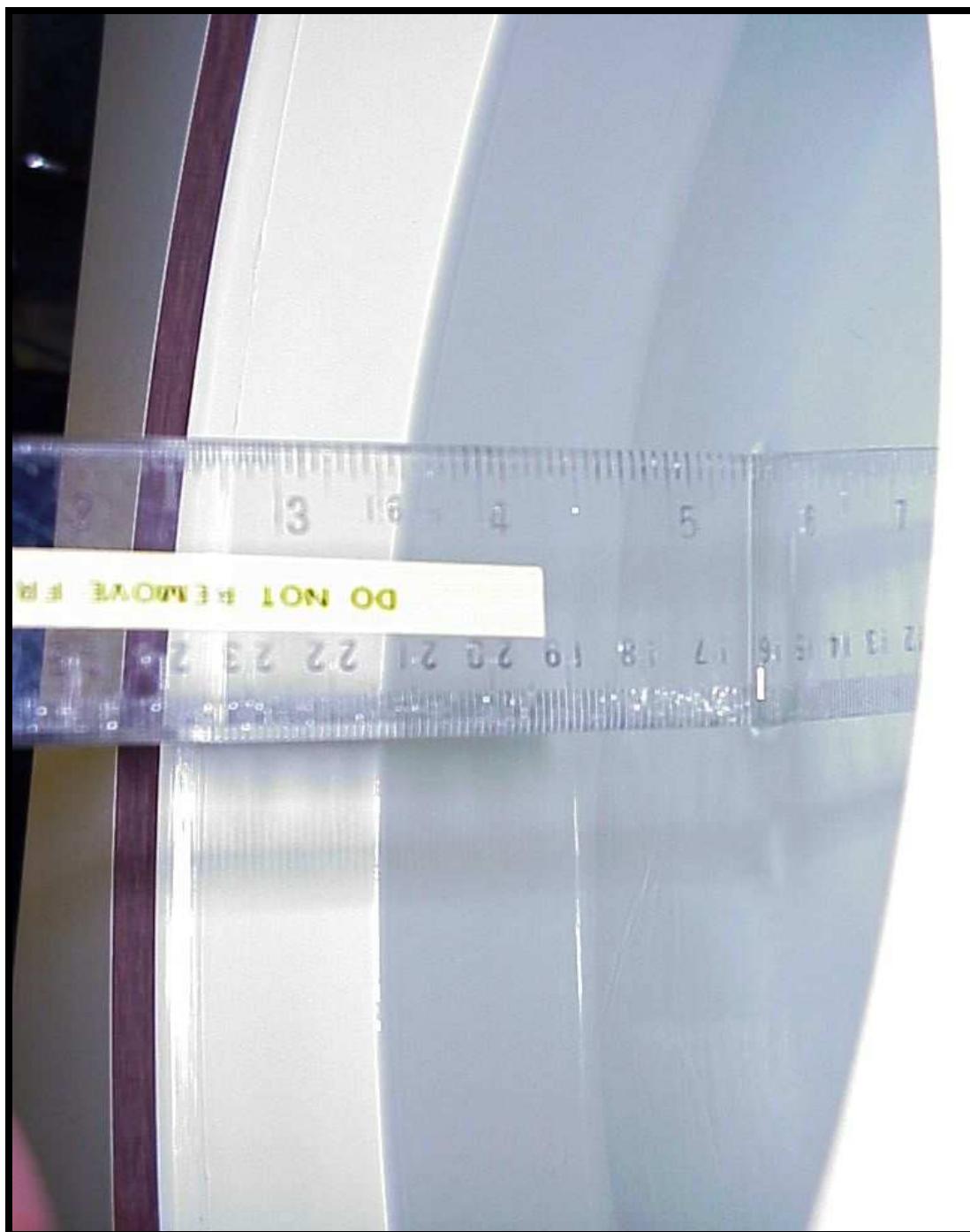



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/013: 2450 MHz Fluid Level




Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/014: 1900 MHz Fluid Level



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

PHT/73402JD03/015: 850 MHz Fluid Level



Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

## **Appendix 5. Validation of System**

Prior to the assessment, the system was verified in the flat region of the phantom.

A 900 MHz, 1900MHz and 2450 MHz dipole was used. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of  $\pm 5\%$  for the 900 MHz, 1900MHz and 2450 MHz dipole. The applicable verification (normalised to 1 Watt).

**Date: 25/03/2008**

**Validation Dipole and Serial Number: D2450V2: SN: 725**

| Simulant | Frequency (MHz) | Room Temperature | Liquid Temperature | Parameters   | Target Value | Measured Value | Deviation (%) | Limit (%) |
|----------|-----------------|------------------|--------------------|--------------|--------------|----------------|---------------|-----------|
| Body     | 2450            | 23.0 °C          | 23.0 °C            | $\epsilon_r$ | 52.70        | 51.46          | -0.02         | 5.00      |
|          |                 |                  |                    | $\sigma$     | 1.95         | 1.94           | -0.01         | 5.00      |
|          |                 |                  |                    | 1g SAR       | 53.30        | 53.20          | -0.19         | 5.00      |
|          |                 |                  |                    | 10g SAR      | 24.50        | 24.48          | -0.08         | 5.00      |

**Date: 26/03/2008**

**Validation Dipole and Serial Number: D2450V2: SN: 725**

| Simulant | Frequency (MHz) | Room Temperature | Liquid Temperature | Parameters   | Target Value | Measured Value | Deviation (%) | Limit (%) |
|----------|-----------------|------------------|--------------------|--------------|--------------|----------------|---------------|-----------|
| Body     | 2450            | 23.0 °C          | 23.0 °C            | $\epsilon_r$ | 52.70        | 51.46          | -0.02         | 5.00      |
|          |                 |                  |                    | $\sigma$     | 1.95         | 1.94           | -0.01         | 5.00      |
|          |                 |                  |                    | 1g SAR       | 53.30        | 52.80          | -0.94         | 5.00      |
|          |                 |                  |                    | 10g SAR      | 24.50        | 24.40          | -0.41         | 5.00      |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

Date: 27/03/2008

Validation Dipole and Serial Number: D900V2 SN: 185

| Simulant | Frequency (MHz) | Room Temperature | Liquid Temperature | Parameters   | Target Value | Measured Value | Deviation (%) | Limit (%) |
|----------|-----------------|------------------|--------------------|--------------|--------------|----------------|---------------|-----------|
| Body     | 900             | 23.0 °C          | 23.0 °C            | $\epsilon_r$ | 55.00        | 52.90          | -3.83         | 5.00      |
|          |                 |                  |                    | $\sigma$     | 1.05         | 1.02           | -3.11         | 5.00      |
|          |                 |                  |                    | 1g SAR       | 10.50        | 10.80          | 2.86          | 5.00      |
|          |                 |                  |                    | 10g SAR      | 6.88         | 6.96           | 1.16          | 5.00      |

Date: 27/03/2008

Validation Dipole and Serial Number: D1900V2:SN: 540

| Simulant | Frequency (MHz) | Room Temperature | Liquid Temperature | Parameters   | Target Value | Measured Value | Deviation (%) | Limit (%) |
|----------|-----------------|------------------|--------------------|--------------|--------------|----------------|---------------|-----------|
| Body     | 1900            | 23.0 °C          | 23.0 °C            | $\epsilon_r$ | 53.30        | 52.33          | -1.81         | 5.00      |
|          |                 |                  |                    | $\sigma$     | 1.52         | 1.53           | 0.95          | 5.00      |
|          |                 |                  |                    | 1g SAR       | 38.00        | 38.44          | 1.16          | 5.00      |
|          |                 |                  |                    | 10g SAR      | 20.70        | 20.00          | -3.38         | 5.00      |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

Date: 28/03/2008

Validation Dipole and Serial Number: D900V2 SN: 185

| Simulant | Frequency (MHz) | Room Temperature | Liquid Temperature | Parameters   | Target Value | Measured Value | Deviation (%) | Limit (%) |
|----------|-----------------|------------------|--------------------|--------------|--------------|----------------|---------------|-----------|
| Body     | 900             | 23.0 °C          | 23.0 °C            | $\epsilon_r$ | 55.00        | 52.90          | -3.83         | 5.00      |
|          |                 |                  |                    | $\sigma$     | 1.05         | 1.02           | -3.11         | 5.00      |
|          |                 |                  |                    | 1g SAR       | 10.50        | 10.84          | 3.24          | 5.00      |
|          |                 |                  |                    | 10g SAR      | 6.88         | 7.00           | 1.74          | 5.00      |

Date: 28/03/2008

Validation Dipole and Serial Number: D1900V2 SN: 540

| Simulant | Frequency (MHz) | Room Temperature | Liquid Temperature | Parameters   | Target Value | Measured Value | Deviation (%) | Limit (%) |
|----------|-----------------|------------------|--------------------|--------------|--------------|----------------|---------------|-----------|
| Body     | 1900            | 23.0 °C          | 23.0 °C            | $\epsilon_r$ | 53.30        | 52.38          | -1.72         | 5.00      |
|          |                 |                  |                    | $\sigma$     | 1.52         | 1.57           | 3.30          | 5.00      |
|          |                 |                  |                    | 1g SAR       | 10.50        | 38.04          | 0.11          | 5.00      |
|          |                 |                  |                    | 10g SAR      | 6.88         | 19.80          | -4.35         | 5.00      |

Date: 09/04/2008

Validation Dipole and Serial Number: D2450V2: SN: 725

| Simulant | Frequency (MHz) | Room Temperature | Liquid Temperature | Parameters   | Target Value | Measured Value | Deviation (%) | Limit (%) |
|----------|-----------------|------------------|--------------------|--------------|--------------|----------------|---------------|-----------|
| Body     | 2450            | 24.0 °C          | 24.0 °C            | $\epsilon_r$ | 52.70        | 50.57          | -4.05         | 5.00      |
|          |                 |                  |                    | $\sigma$     | 1.95         | 1.91           | -2.28         | 5.00      |
|          |                 |                  |                    | 1g SAR       | 53.30        | 54.40          | 2.06          | 5.00      |
|          |                 |                  |                    | 10g SAR      | 24.50        | 23.96          | -2.20         | 5.00      |

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **Appendix 6. Simulated Tissues**

The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

| Ingredient                  | Frequency                |
|-----------------------------|--------------------------|
|                             | <b>2450 MHz<br/>Body</b> |
| De-Ionised Water            | 68.64                    |
| Diglycol Butyl Ether (DGBE) | 31.37                    |

| Ingredient                  | Frequency                     |
|-----------------------------|-------------------------------|
|                             | <b>1800/1900 MHz<br/>Body</b> |
| De-Ionised Water            | 69.79%                        |
| Diglycol Butyl Ether (DGBE) | 30.00%                        |
| Salt                        | 0.20%                         |

| Ingredient       | Frequency                       |
|------------------|---------------------------------|
|                  | <b>835/850/900 MHz<br/>Body</b> |
| De-Ionised Water | 50.75%                          |
| Sugar            | 48.21%                          |
| Salt             | 0.94%                           |
| Kathon           | 0.10%                           |

**Test of: MaxID Ltd  
iDL3ID**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

## **Appendix 7. DASY4 System Details**

### **A.7.1. DASY4 SAR Measurement System**

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

#### A.7.2. DASY4 SAR System Specifications

##### Robot System

|                       |                                            |
|-----------------------|--------------------------------------------|
| Positioner:           | Stäubli Unimation Corp. Robot Model: RX90L |
| Repeatability:        | 0.025 mm                                   |
| No. of Axis:          | 6                                          |
| Serial Number:        | F00/SD89A1/A/01                            |
| Reach:                | 1185 mm                                    |
| Payload:              | 3.5 kg                                     |
| Control Unit:         | CS7                                        |
| Programming Language: | V+                                         |

##### Data Acquisition Electronic (DAE) System

|                |             |
|----------------|-------------|
| Serial Number: | DAE3 SN:394 |
|----------------|-------------|

##### Cell Controller

|                   |                          |
|-------------------|--------------------------|
| PC:               | Dell Precision 340       |
| Operating System: | Windows 2000             |
| Data Card:        | DASY4 Measurement Server |
| Serial Number:    | 1080                     |

##### Data Converter

|                   |                                                                                      |
|-------------------|--------------------------------------------------------------------------------------|
| Features:         | Signal Amplifier, multiplexer, A/D converted and control logic.                      |
| Software:         | DASY4 Software                                                                       |
| Connecting Lines: | Optical downlink for data and status info.<br>Optical uplink for commands and clock. |

##### PC Interface Card

|           |                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function: | 24 bit (64 MHz) DSP for real time processing Link to DAE3<br>16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Test of: MaxID Ltd  
iDL3ID

To: OET Bulletin 65 Supplement C: (2001-01)

### DASY4 SAR System Specifications (Continued)

#### E-Field Probe

|                       |                                              |
|-----------------------|----------------------------------------------|
| Model:                | ET3DV6                                       |
| Serial No:            | 1528                                         |
| Construction:         | Triangular core fibre optic detection system |
| Frequency:            | 10 MHz to 3 GHz                              |
| Linearity:            | ±0.2 dB (30 MHz to 3 GHz)                    |
| Probe Length (mm):    | 337                                          |
| Probe Diameter (mm):  | 12                                           |
| Tip Length (mm):      | 10                                           |
| Tip Diameter (mm):    | 6.8                                          |
| Sensor X Offset (mm): | 2.7                                          |
| Sensor Y Offset (mm): | 2.7                                          |
| Sensor Z Offset (mm): | 2.7                                          |

#### E-Field Probe

|                       |                           |
|-----------------------|---------------------------|
| Model:                | EX3DV3                    |
| Serial No:            | 3508                      |
| Construction:         | Triangular core           |
| Frequency:            | 10 MHz to >6 GHz          |
| Linearity:            | ±0.2 dB (30 MHz to 6 GHz) |
| Probe Length (mm):    | 330                       |
| Probe Diameter (mm):  | 12                        |
| Tip Length (mm):      | 20                        |
| Tip Diameter (mm):    | 2.5                       |
| Sensor X Offset (mm): | 1                         |
| Sensor Y Offset (mm): | 1                         |
| Sensor Z Offset (mm): | 1                         |

#### Phantom

|                 |             |
|-----------------|-------------|
| Phantom:        | SAM Phantom |
| Shell Material: | Fibreglass  |
| Thickness:      | 2.0 ±0.1 mm |