

Date(s) of Evaluation

November 23-24, 2011

Test Report Serial No.

092811TFT-T1117-S24G

Test Report Revision No.

Rev. 1.1 (2nd Release)

Test Report Issue Date

February 16, 2012

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

DECLARATION OF COMPLIANCE

SAR RF EXPOSURE EVALUATION

FCC

Test Lab Information	Name	CELLTECH LABS INC.			
	Address	21-364 Lougheed Road, Kelowna B.C. V1X 7R8 Canada			
Test Lab Accreditation	ISO 17025	A2LA Test Lab Certificate No. 2470.01			
Applicant Information	Name	MAXID CORPORATION			
	Address	1775 Wiehle Avenue, Suite 104, Reston, VA 20190 USA			
Standard(s) Applied	FCC	47 CFR §2.1093			
Procedure(s) Applied	FCC	OET Bulletin 65, Supp. C (01-01)	IEEE	1528-2003	
	FCC	KDB Inquiry Tracking No. 942235	KDB 447498 D01v04	KDB 941225 D01v02	
Application Type(s)	FCC	New Certification			
Device-Under-Test Sample	Rcpt Date	September 12, 2011		Test Date(s)	
Device Under Test (DUT)	FCC ID:	TFT-IDL300		Description	
	Model	iDL300		Serial No.	
	HW Rev.	MAN9410		SW Rev.	
	Tx Freq.	13.56 MHz		Rated Power	
Co-located Transmitter (WWAN)	FCC ID:	TFT-SL8080		Description	
	Grantee	MAXID Corporation		Model	
	Mode(s)	GSM/GPRS/WCDMA/HSDPA		Grant Date	
	Tx Freq.	824.2 - 848.8 MHz (GPRS/EDGE 850)		Rated Power	
		1850.2 - 1909.8 MHz (GPRS/EDGE 1900)			
		826.4 - 846.6 MHz (WCDMA/HSDPA 850)			
		1852.4 - 1907.5 MHz (WCDMA/HSDPA 1900)			
Co-located Transmitter (WLAN/Bluetooth Combo)	FCC ID:	TFT-W2CBW003		Description	
	Grantee	MAXID Corporation		Model	
	Mode(s)	802.11b/g (WLAN)		Grant Date	
		GFSK, π/4 DQPSK, 8DQPSK (Bluetooth)		Rated Power	
	Tx Freq.	2412 - 2462 MHz (WLAN)		Tx Freq.	
Transmitter Evaluated for SAR	WWAN	SL8081		Test Config.	
Transmitter Mode(s) Tested	WWAN	GPRS (Class 10)		Duty Cycle	
Antenna-to-Antenna Distance	WWAN	WWAN-to-WLAN = 95 mm		WWAN-to-Bluetooth = 112 mm	
Antenna-to-Edge Distance(s)	WWAN	WWAN to DUT Back Side = 22 mm		WWAN to DUT Bottom End = 106 mm	
Antenna Type(s) Tested	WWAN	Penta-band SMT Antenna		Model: A10340	
Power Source(s) Tested	iDL300	Lithium-Polymer Battery		P/N: A10340	
Max. Measured SAR Level(s)	HAND (Extremity)	0.902 W/kg	10g average	850 Band	
		0.671 W/kg	10g average	1900 Band	
FCC Spatial Peak SAR Limit	Extremity	4.0 W/kg	averaged over 10 grams		

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device is compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and IEEE 1528-2003. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Test Report Approved By		Sean Johnston	Lab Manager	Celltech Labs Inc.
-------------------------	--	---------------	-------------	--------------------

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 1 of 45						

Date(s) of Evaluation
November 23-24, 2011

Test Report Issue Date
February 16, 2012

Test Report Serial No.
092811TFT-T1117-S24G

Test Report Revision No.
Rev. 1.1 (2nd Release)

Description of Test(s)
Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Lab Certificate No. 2470.01

TABLE OF CONTENTS

1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	5
4.0 REFERENCE OUTPUT POWER MEASUREMENTS	5
5.0 FLUID DIELECTRIC PARAMETERS	6
FLUID DIELECTRIC PARAMETERS (Cont.)	7
6.0 SAR MEASUREMENT SUMMARY	8
7.0 DETAILS OF SAR EVALUATION	9
8.0 SAR EVALUATION PROCEDURES	9
9.0 CO-LOCATED TRANSMITTER(S)	10
10.0 STANDALONE & SIMULTANEOUS TRANSMISSION ASSESSMENT	10
11.0 SYSTEM PERFORMANCE CHECK	11
12.0 SIMULATED EQUIVALENT TISSUES	12
13.0 SAR LIMITS	12
14.0 ROBOT SYSTEM SPECIFICATIONS	13
15.0 PROBE SPECIFICATIONS	14
16.0 PHANTOM	14
17.0 DEVICE HOLDER	14
18.0 TEST EQUIPMENT LIST	15
19.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION	15
20.0 MEASUREMENT UNCERTAINTIES	16
MEASUREMENT UNCERTAINTIES (Cont.)	17
21.0 REFERENCES	18
APPENDIX A - SAR MEASUREMENT PLOTS	19
APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	26
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	31
APPENDIX D - SAR TEST SETUP PHOTOGRAPHS	34
APPENDIX E - SAR DUT PHOTOGRAPHS	37
APPENDIX F - DIPOLE CALIBRATION	43
APPENDIX G - PROBE CALIBRATION	44
APPENDIX H - SAM PHANTOM V4.0 CERTIFICATE OF CONFORMITY	45

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 2 of 45

 Celltech <small>Testing and Engineering Services Lab</small>	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

REVISION HISTORY			
REVISION NO.	DESCRIPTION	IMPLEMENTED BY	RELEASE DATE
1.0	1st Release	Jon Hughes	December 14, 2011
1.1	2nd Release	Jon Hughes	February 16, 2012
	Revised Co-Transmitter FCC ID's		

TEST REPORT SIGN-OFF			
DEVICE TESTED BY	REPORT PREPARED BY	QA REVIEW BY	REPORT APPROVED BY
Mike Meaker	Mike Meaker	Jon Hughes	Sean Johnston

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 3 of 45						

	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

1.0 INTRODUCTION

This measurement report demonstrates that the MaxID Corporation FCC ID: TFT-IDL300 Model: iDL300 Handheld Biometric PC with RFID, incorporating the SL8081 WWAN Module FCC ID: TFT-SL8080 and W2CBW003 WLAN/Bluetooth Combo Module FCC ID: TFT-W2CBW003, complies with the SAR (Specific Absorption Rate) RF exposure requirements of FCC 47 CFR §2.1093 (see reference [1]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [2]) and IEEE Standard 1528-2003 (see reference [3]) were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY4 System with SAM Twin Phantom V4.0C

DASY4 Measurement Server

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 4 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

3.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ± 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ± 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ± 25 MHz $<$ 300 MHz and ± 50 MHz \geq 300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [6]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	± 50 MHz \geq 300 MHz
835 MHz	848.8 MHz	13.8 MHz	< 50 MHz
1900 MHz	1850.2 MHz	49.8 MHz	< 50 MHz

The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.

4.0 REFERENCE OUTPUT POWER MEASUREMENTS

RF OUTPUT POWER MEASUREMENT RESULTS					
Mode / Band	Channel	Frequency (MHz)	Measured RF Output Power Levels		
			dBm	Watts	Method
GPRS 850 (2 Uplink Slots)	128	824.2	27.35	0.543	ERP
	190	836.6	27.95	0.624	
	251	848.8	30.35	1.08	
GPRS 1900 (2 Uplink Slots)	512	1850.2	29.90	0.977	EIRP
	661	1880.0	28.87	0.771	
	810	1909.8	29.00	0.794	

Note(s):

1. The conducted output power of the DUT could not be measured due to the integral antenna type.
2. The radiated output power levels were performed at Celltech Labs 3 meter open area test site using the substitution method in accordance with ANSI TIA-603-2004 (see reference [5]).

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 5 of 45

5.0 FLUID DIELECTRIC PARAMETERS

FLUID DIELECTRIC PARAMETERS						
Date: 11/23/2011		Frequency: 1900 MHz			Tissue: Body	
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
1.800	51.28	1.38	53.3	1.52	-3.79%	-9.21%
1.810	51.21	1.41	53.3	1.52	-3.92%	-7.24%
1.820	51.18	1.43	53.3	1.52	-3.98%	-5.92%
1.830	51.27	1.45	53.3	1.52	-3.81%	-4.61%
1.840	51.2	1.47	53.3	1.52	-3.94%	-3.29%
1.850	50.93	1.47	53.3	1.52	-4.45%	-3.29%
1.8502*	50.9	1.47	53.3	1.52	-4.50%	-3.29%
1.860	50.93	1.49	53.3	1.52	-4.45%	-1.97%
1.870	51	1.52	53.3	1.52	-4.32%	0.00%
1.880	50.95	1.51	53.3	1.52	-4.41%	-0.66%
1.890	50.76	1.53	53.3	1.52	-4.77%	0.66%
1.900	50.74	1.54	53.3	1.52	-4.80%	1.32%
1.910	50.99	1.56	53.3	1.52	-4.33%	2.63%
1.920	50.61	1.56	53.3	1.52	-5.05%	2.63%
1.930	50.61	1.58	53.3	1.52	-5.05%	3.95%
1.940	50.66	1.57	53.3	1.52	-4.95%	3.29%
1.950	50.64	1.59	53.3	1.52	-4.99%	4.61%
1.960	50.5	1.63	53.3	1.52	-5.25%	7.24%
1.970	50.6	1.61	53.3	1.52	-5.07%	5.92%
1.980	50.33	1.65	53.3	1.52	-5.57%	8.55%
1.990	50.25	1.66	53.3	1.52	-5.72%	9.21%
2.000	50.36	1.66	53.3	1.52	-5.52%	9.21%

* interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m ³)
Nov 23	1900 Body	22.0°C	22.0°C	≥ 15 cm	101.1 kPa	35%	1000

Date(s) of Evaluation

November 23-24, 2011

Test Report Serial No.

092811TFT-T1117-S24G

Test Report Revision No.

Rev. 1.1 (2nd Release)

Test Report Issue Date

February 16, 2012

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

FLUID DIELECTRIC PARAMETERS (Cont.)

FLUID DIELECTRIC PARAMETERS						
Date: 11/24/2011		Frequency: 835 MHz			Tissue: Body	
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	55.33	0.86	55.2	0.97	0.24%	-11.34%
0.745	55.18	0.88	55.2	0.97	-0.04%	-9.28%
0.755	55.28	0.89	55.2	0.97	0.14%	-8.25%
0.765	55.21	0.9	55.2	0.97	0.02%	-7.22%
0.775	54.8	0.9	55.2	0.97	-0.72%	-7.22%
0.785	54.73	0.93	55.2	0.97	-0.85%	-4.12%
0.795	54.8	0.94	55.2	0.97	-0.72%	-3.09%
0.805	55	0.95	55.2	0.97	-0.36%	-2.06%
0.815	54.87	0.96	55.2	0.97	-0.60%	-1.03%
0.825	54.59	0.97	55.2	0.97	-1.11%	0.00%
0.835	54.71	0.97	55.2	0.97	-0.89%	0.00%
0.845	54.39	0.99	55.2	0.97	-1.47%	2.06%
0.8488*	54.4	0.994	55.2	0.97	-1.45%	2.47%
0.855	54.52	1	55.2	0.97	-1.23%	3.09%
0.865	54.18	0.99	55.2	0.97	-1.85%	2.06%
0.875	53.92	1.01	55.2	0.97	-2.32%	4.12%
0.885	53.91	1.02	55.2	0.97	-2.34%	5.15%
0.895	54.07	1.04	55.2	0.97	-2.05%	7.22%
0.905	54.08	1.05	55.2	0.97	-2.03%	8.25%
0.915	53.51	1.07	55.2	0.97	-3.06%	10.31%
0.925	53.67	1.07	55.2	0.97	-2.77%	10.31%
0.935	53.88	1.08	55.2	0.97	-2.39%	11.34%

* interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m ³)
Nov 24	835 Body	22.0°C	20.8°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 7 of 45						

Date(s) of Evaluation

November 23-24, 2011

Test Report Serial No.

092811TFT-T1117-S24G

Test Report Revision No.

Rev. 1.1 (2nd Release)

Test Report Issue Date

February 16, 2012

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Lab Certificate No. 2470.01

6.0 SAR MEASUREMENT SUMMARY**HAND (EXTREMITY) SAR MEASUREMENT RESULTS**

Test Date	Freq. Band	Test Freq.	Ch.	Test Mode		DUT Position to Planar Phantom	DUT Distance to Planar Phantom	Reference Output Power Before Test		SAR Drift During Test	Measured SAR (10g)										
				MHz	MHz			dBm	Method												
Nov 24	850	848.8	251	GPRS	2 Uplink Slots	Back Side	Touch	30.35	ERP	-0.113	0.365										
		848.8	251	GPRS	2 Uplink Slots	Left Edge	Touch	30.35	ERP	-0.001	0.902										
Nov 23	1900	1850.2	512	GPRS	2 Uplink Slots	Back Side	Touch	29.90	EIRP	-0.096	0.233										
		1850.2	512	GPRS	2 Uplink Slots	Left Edge	Touch	29.90	EIRP	0.019	0.671										
SAR LIMIT(S)			HAND (EXTREMITY)			SPATIAL PEAK			RF EXPOSURE CATEGORY												
FCC 47 CFR 2.1093			4.0 W/kg			10g average			General Population / Uncontrolled												
Notes																					
Procedure used to establish test signal																					
The DUT Test software utilizing "AT Commands" was used to put the device into a GPRS transmit mode on the desired channel.																					

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 8 of 45

 Celltech Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

7.0 DETAILS OF SAR EVALUATION

1. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A. The test setup photographs are shown in Appendix D.
2. The measured SAR levels were < 2.0 W/kg (10g); therefore SAR evaluations for the remaining channels were not required (per FCC KDB 447498 - see reference [4]).
3. The SAR evaluation for GPRS mode in the cellular band was performed with test software provided by MaxID that generated a test transmission with 2 uplink slots (Multi-slot Class 10).
4. The SAR evaluation for GPRS mode in the PCS band was performed with test software provided by MaxID that generated a test transmission with 2 uplink slots (Multi-slot Class 10).
5. The reference output power levels of the DUT were measured prior to the SAR evaluations (see Section 4.0).
6. The SAR drift of the DUT during the SAR evaluations was measured by the DASY4 system.
7. The DUT battery was fully charged prior to the SAR evaluations.
8. The fluid temperature remained within +/-2°C from the dielectric parameter measurement to the completion of the SAR evaluations.
9. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

8.0 SAR EVALUATION PROCEDURES

- (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 An area scan was determined as follows:
 - c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
 - d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 A 1g and 10g spatial peak SAR was determined as follows:
 - e. Extrapolation is used to determine the values between the dipole center of the probe and the surface of the phantom. For E-Field Probe EX3DV4 this data cannot be measured because the center of the dipole sensors is 1.0 mm away from the probe tip and the distance between the probe and the boundary must be larger than 25% of the probe diameter. The probe diameter is 2.4 mm (see probe calibration document in Appendix G). In the DASY4 software, the distance between the sensor center and phantom surface is set to 2.0 mm. This provides a distance of 1.0 mm between the probe tip and the surface. For E-Field Probe ET3DV6 this data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation of the values between the dipole center and the surface of the phantom was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
 - f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
 - g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 9 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

9.0 CO-LOCATED TRANSMITTER(S)

The MaxID iDL300 Handheld Biometric Computer FCC ID: TFT-IDL300, incorporating the SL8081 WWAN Module FCC ID: TFT-SL8080, can be co-located and co-transmitting with the following transmitters:

Transmitter Type	Grantee	Model	Co-Transmit with WWAN?
WLAN	MAXID Corp.	W2CBW003	Yes
Bluetooth	MAXID Corp.	W2CBW003	Yes
RFID	MAXID Corp.	iDL300	Yes

Closest Antenna-to-Antenna Separation Distance	
WWAN-to-WLAN	95 mm
WWAN-to-Bluetooth	112 mm
WWAN-to-RFID	20 mm

10.0 STANDALONE & SIMULTANEOUS TRANSMISSION ASSESSMENT

Provisions set forth in KDB 447498 4) c) iii) (1) and (3) and in accordance with the guidance per FCC KDB Inquiry Tracking No. 942235.

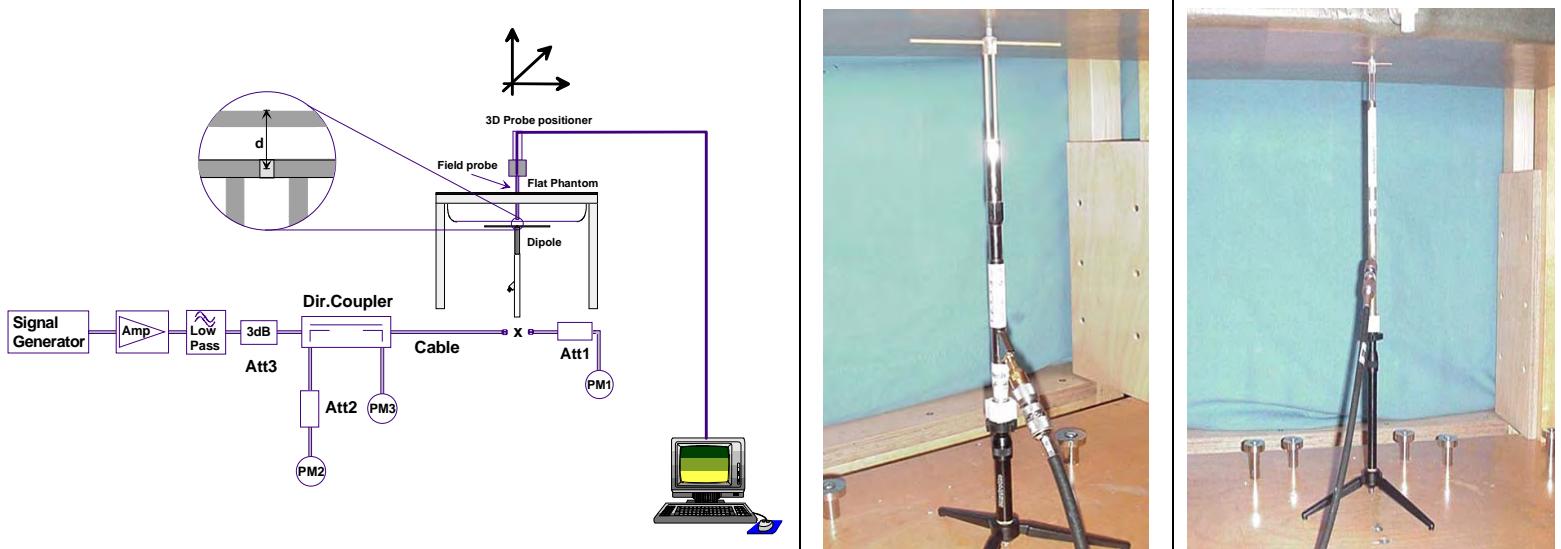
Hand SAR is required for hand-held and hand-operated devices with output power $> 1000 \cdot [f(\text{GHz})] \cdot 0.5 \text{ mW}$ that are designed with the hand operating closer than 5 cm from the antenna during normal use.

Transmitter	Frequency (GHz)	Power Threshold (Watts)	Standalone SAR required
WWAN GPRS (850)	0.835	1.09	Yes
WWAN GPRS (1900)	1.88	0.73	Yes
WLAN	2.42	0.64	No
Bluetooth	2.42	0.64	No

Transmitter	Max. SAR Level (1g)	Sum 1g-SAR	SAR to Peak Location Separation Ratio	Co-Transmit SAR Eval. Required?
WLAN	n/a (output power $< P_{\text{Ref}}$ and the antenna is $\geq 5 \text{ cm}$ from WWAN Tx antenna)			WWAN-WLAN No
Bluetooth	n/a (output power $< P_{\text{Ref}}$ and the antenna is $\geq 5 \text{ cm}$ from WWAN Tx antenna)			WWAN-BT No
RFID	n/a (output power $< P_{\text{Ref}}$)			WWAN-RFID No

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 10 of 45

11.0 SYSTEM PERFORMANCE CHECK


Prior to the SAR evaluations, daily system checks were performed using a planar phantom with 835 MHz and 1900 MHz SPEAG dipoles (see Appendix B for system performance check evaluation plots) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]). The dielectric parameters of the simulated tissue mixtures were measured prior to the system performance checks using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ from the system manufacturer's dipole calibration target SAR values (see Appendix F for system manufacturer's dipole calibration procedures).

SYSTEM PERFORMANCE CHECK EVALUATION RESULTS

Test Date	Fluid Freq.	SAR 1g (W/kg)			Dielectric Constant ϵ_r			Conductivity σ (mho/m)			ρ (Kg/m ³)	Amb. Temp. (°C)	Fluid Temp. (°C)	Fluid Depth (cm)	Humid. (%)	Barom. Press. (kPa)
	Body (MHz)	Target	Meas.	Dev.	Target	Meas.	Dev.	Target	Meas.	Dev.						
Nov 24	835	2.49 $\pm 10\%$	2.38	-4.4%	55.2 $\pm 5\%$	54.7	-0.9%	0.97 $\pm 5\%$	0.97	+0.0%	1000	22.0	20.8	≥ 15	30	101.1
Nov 23	1900	10.6 $\pm 10\%$	11.1	+4.7%	53.3 $\pm 5\%$	50.7	-4.8%	1.52 $\pm 5\%$	1.54	+1.3%	1000	22.0	22.0	≥ 15	35	101.1

Notes

1. The target SAR values are the measured values from the dipole calibration performed by SPEAG (see Appendix F).
2. The target dielectric parameters are the nominal values from the dipole calibration performed by SPEAG (see Appendix F).
3. The fluid temperature remained within $\pm 2^\circ\text{C}$ from the dielectric parameter measurement to the completion of the system performance check.
4. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

System Performance Check Measurement Setup Diagram (IEEE 1528-2003)

835 MHz Validation Dipole Setup

1900 MHz Validation Dipole Setup

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 11 of 45

12.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes listed in the table below are derived from the SAR system manufacturer's suggested recipe in the DASY4 manual (see reference [7]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [3]). The ingredient percentage may have been adjusted marginally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

1900 MHz TISSUE MIXTURE	
INGREDIENT	1900 MHz BODY
Water	69.85 %
Glycol Monobutyl	29.89 %
Salt	0.26 %

835 MHz TISSUE MIXTURE	
INGREDIENT	835 MHz BODY
Water	53.79 %
Sugar	45.13 %
Salt	0.98 %
Bactericide	0.10 %

13.0 SAR LIMITS

SAR RF EXPOSURE LIMITS		
FCC 47 CFR 2.1093	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)
Spatial Average (averaged over the whole body)	0.08 W/kg	0.4 W/kg
Spatial Peak (averaged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg
The Spatial Average value of the SAR averaged over the whole body.		
The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.		
The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.		
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.		
Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.		

14.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
<u>Data Acquisition Electronic (DAE) System</u>	
<u>Cell Controller</u>	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
<u>Data Converter</u>	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock
<u>DASY4 Measurement Server</u>	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
<u>E-Field Probe</u>	
<u>Probe (850 Band)</u>	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
<u>Probe (1900 Band)</u>	
Model	EX3DV4
Serial No.	3600
Construction	Symmetrical design with triangular core
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
<u>Phantom(s)</u>	
Type	SAM V4.0C
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 25 liters

15.0 PROBE SPECIFICATIONS

ET3DV6 E-Field Probe

Construction: Symmetrical design with triangular core
 Built-in shielding against static charges
 PEEK enclosure material (resistant to organic solvents, glycol)
Calibration: In air from 10 MHz to 2.5 GHz
 In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)
Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)
 \pm 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range: 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB
Surface Detect: \pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions: Overall length: 330 mm
 Tip length: 16 mm
 Body diameter: 12 mm
 Tip diameter: 6.8 mm
Application: Distance from probe tip to dipole centers: 2.7 mm
 General dosimetry up to 3 GHz
 Compliance tests of mobile phone

ET3DV6 E-Field Probe

EX3DV4 E-Field Probe

Construction: Symmetrical design with triangular core
 Built-in shielding against static charges
 PEEK enclosure material (resistant to organic solvents, e.g. DGBE)
Calibration: Basic Broadband Calibration in air: 10-3000 MHz
 Conversion Factors (CF) for HSL 900 and HSL 1750
Frequency: 10 MHz to >6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity: \pm 0.3 dB in HSL (rotation around probe axis)
 \pm 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range: 10 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)
Dimensions: Overall length: 330 mm (Tip: 20 mm)
 Tip diameter: 2.5 mm (Body: 12 mm)
Application: Typical distance from probe tip to dipole centers: 1.0 mm
 High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better than 30%.

EX3DV4 E-Field Probe

16.0 PHANTOM

The SAM Twin Phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix H for specifications of the SAM Twin Phantom V4.0C).

SAM Twin Phantom V4.0C

17.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Device Holder

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 14 of 45						

Date(s) of Evaluation

November 23-24, 2011

Test Report Serial No.

092811TFT-T1117-S24G

Test Report Revision No.

Rev. 1.1 (2nd Release)

Test Report Issue Date

February 16, 2012

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Lab Certificate No. 2470.01

18.0 TEST EQUIPMENT LIST

TEST EQUIPMENT		ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION INTERVAL
USED	DESCRIPTION				
x	Schmid & Partner DASY4 System	-	-	-	-
x	-DASY4 Measurement Server	00158	1078	CNR	CNR
x	-Robot	00046	599396-01	CNR	CNR
x	-DAE4	00019	353	27Apr10	Biennial
x	-ET3DV6 E-Field Probe	00017	1590	22Jul11	Annual
x	-EX3DV4 E-Field Probe	00213	3600	23Jun11	Annual
x	-D835V2 Validation Dipole	00217	4d075	20Apr09	Triennial
x	-D1900V2 Validation Dipole	00218	5d107	21Apr09	Triennial
x	SPEAG SAM Twin Phantom V4.0C	00154	1033	CNR	CNR
x	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
x	Gigatronics 8652A Power Meter	00007	1835272	04May10	Biennial
x	Gigatronics 80701A Power Sensor	00014	1833699	04May10	Biennial
x	HP 8753ET Network Analyzer	00134	US39170292	04May10	Biennial
x	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
x	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required; N/A = Not Applicable				

19.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION

SAR dipoles calibrated less than two years ago but more than one year ago were confirmed by maintaining return loss (< -20dB, within 20% of prior calibration) and impedance (within 5Ω from prior calibration) requirements per extended calibrations in FCC KDB 450824 (see reference [6]).

SPEAG D835V3 SN: 4d075

Date of Measurement	Frequency	Fluid Type	Return Loss (dB)	Δ %	Impedance (Ω)	Δ Ω
Apr. 20, 2009	835 MHz	Body	-26.7	-	48.0	-
Apr. 20, 2011			-24.0	10.1%	51.3	3.3

SPEAG D1900V2 SN: 5d107

Date of Measurement	Frequency	Fluid Type	Return Loss (dB)	Δ %	Impedance (Ω)	Δ Ω
Apr. 21, 2009	1900 MHz	Body	-22.1	-	45.9	-
May. 9 2011			-26.4	19.5%	45.6	0.3

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 15 of 45

 Testing and Engineering Services Lab	Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	 Test Lab Certificate No. 2470.01
	November 23-24, 2011	092811TFT-T1117-S24G	Rev. 1.1 (2nd Release)	
Test Report Issue Date	February 16, 2012	Description of Test(s)	RF Exposure Category	Gen. Pop. / Uncontrolled

20.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION

Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V_i or V_{eff}
Measurement System									
Probe Calibration (835 MHz)	E.2.1	6.0	Normal	1	1	1	6.0	6.0	∞
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measured)	E.3.3	2.47	Normal	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measured)	E.3.3	1.45	Normal	1	0.6	0.49	0.9	0.7	∞
Combined Standard Uncertainty				RSS			10.78	10.57	
Expanded Uncertainty (95% Confidence Interval)				k=2			21.55	21.13	
Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003									

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 16 of 45

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR DEVICE EVALUATION

Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V_i or V_{eff}
Measurement System									
Probe Calibration (1900 MHz)	E.2.1	6.0	Normal	1	1	1	6.0	6.0	∞
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measured)	E.3.3	3.29	Normal	1	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measured)	E.3.3	4.5	Normal	1	0.6	0.49	2.7	2.2	∞
Combined Standard Uncertainty			RSS				11.16	10.81	
Expanded Uncertainty (95% Confidence Interval)			k=2				22.33	21.62	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

 Celltech <small>Testing and Engineering Services Lab</small>	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

21.0 REFERENCES

- [1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [3] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [4] Federal Communications Commission, Office of Engineering and Technology - "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.
- [5] ANSI/TIA-603-C-2004 - "Land mobile fm or pm communications equipment measurement and performance standards".
- [6] Federal Communications Commission, Office of Engineering and Technology - "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [7] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [8] ISO/IEC 17025 - "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [9] Federal Communications Commission - "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [10] Industry Canada - "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 3: December 2010.

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 18 of 45

 Celltech <small>Testing and Engineering Services Lab</small>	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

APPENDIX A - SAR MEASUREMENT PLOTS

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 19 of 45	

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Date Tested: 11/24/2011

Body SAR - GPRS 850 Band - 848.8 MHz - Bottom Side of DUT

DUT: MaxID iDL300; Type: WWAN; Serial: IDT00037

Ambient Temp: 22C; Fluid Temp: 20.8C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: GPRS 850

Frequency: 848.8 MHz; Duty Cycle: 1:2.08

Medium: M835 Medium parameters used (interpolated): $f = 848.8$ MHz; $\sigma = 0.994$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³

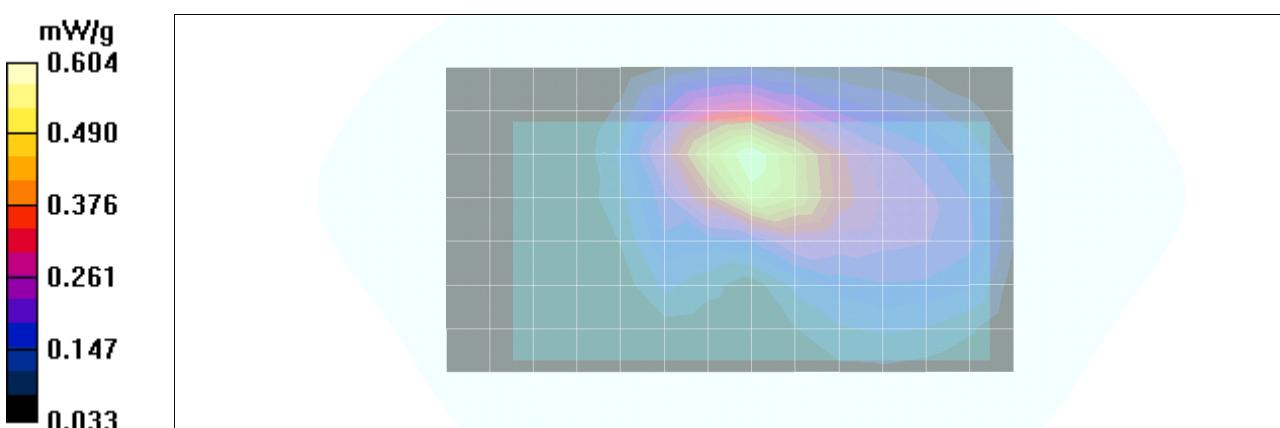
- Probe: ET3DV6 - SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cell 848.8 - Bottom side/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.567 mW/g

Cell 848.8 - Bottom side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 24.9 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 0.790 W/kg

SAR(1 g) = 0.558 mW/g; SAR(10 g) = 0.365 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.604 mW/g

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 20 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Date Tested: 11/24/2011

Body SAR - GPRS 850 Band - 848.8 MHz - Left Side of DUT

DUT: MaxID iDL300; Type: WWAN; Serial: IDT00037

Ambient Temp: 22C; Fluid Temp: 20.8C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: GPRS 850

Frequency: 848.8 MHz; Duty Cycle: 1:2.08

Medium: M835 Medium parameters used (interpolated): $f = 848.8$ MHz; $\sigma = 0.994$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³

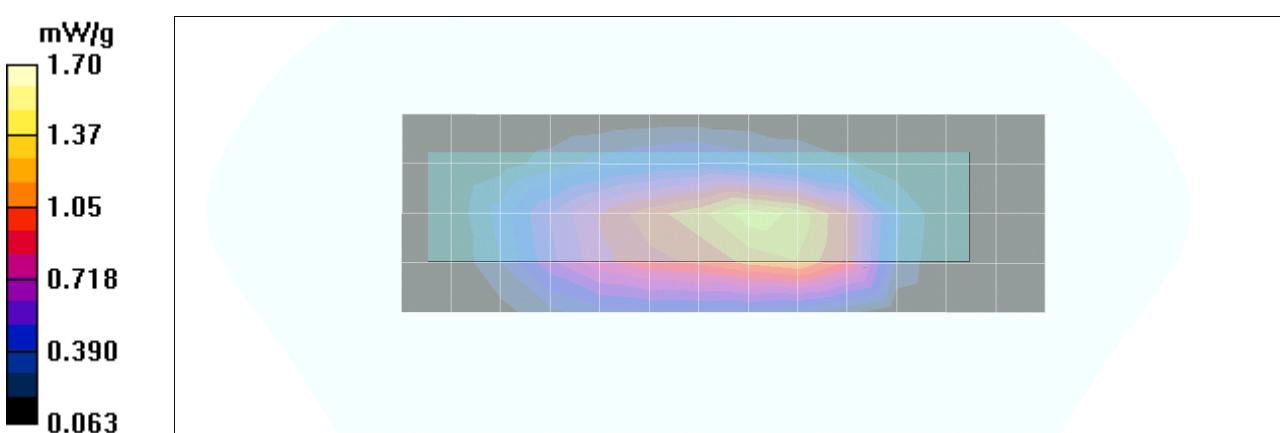
- Probe: ET3DV6 - SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cell 848.8 - Side/Area Scan (5x14x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.33 mW/g

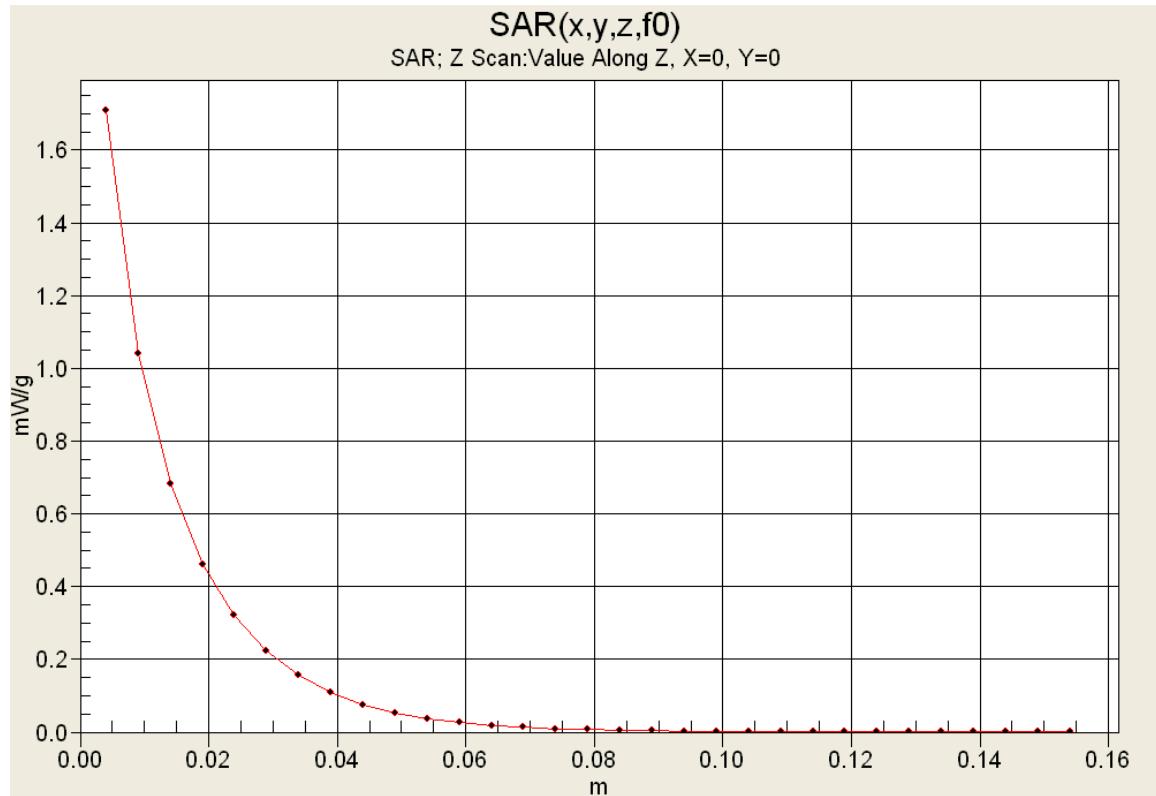
Cell 848.8 - Side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 38.1 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 3.21 W/kg

SAR(1 g) = 1.54 mW/g; SAR(10 g) = 0.902 mW/g

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 1.70 mW/g

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 21 of 45						

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Z-axis Scan

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 22 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Date Tested: 11/23/2011

Body SAR - GPRS 1900 Band - 1850.2 MHz - Bottom Side of DUT

DUT: MaxID iDL300; Type: WWAN; Serial: IDT00037

Ambient Temp: 22C; Fluid Temp: 22.0C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: GPRS 1900 (2 Time Slots)

Frequency: 1850.2 MHz; Duty Cycle: 1:4.16

Medium: M1900 Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

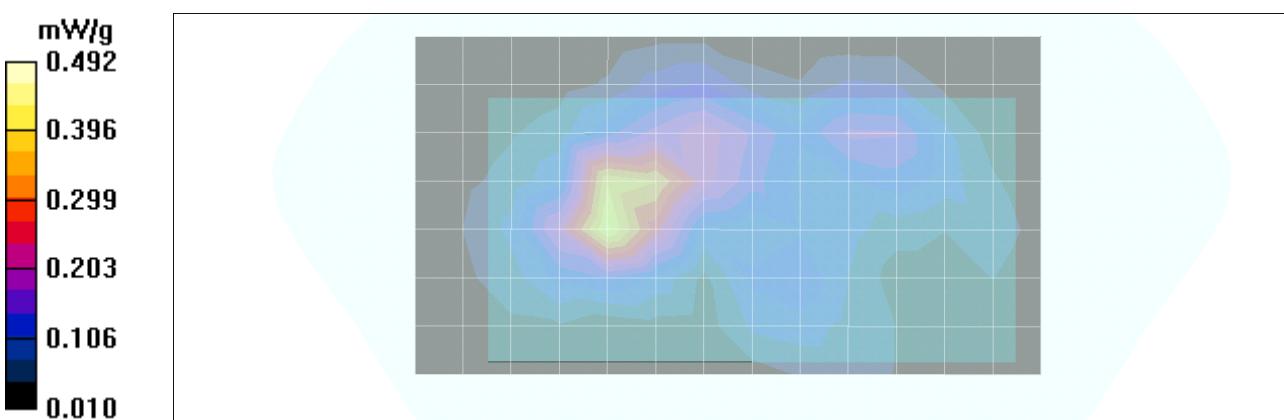
- Probe: EX3DV4 - SN3600; ConvF(6.71, 6.71, 6.71); Calibrated: 23/06/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

PCS 1850.2 - Bottom side/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.404 mW/g

PCS 1850.2 - Bottom side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.4 V/m; Power Drift = -0.096 dB

Peak SAR (extrapolated) = 0.705 W/kg

SAR(1 g) = 0.406 mW/g; SAR(10 g) = 0.233 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.492 mW/g

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 23 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Date Tested: 11/23/2011

Body SAR - GPRS 1900 Band - 1850.2 MHz - Left Side of DUT

DUT: MaxID iDL300; Type: WWAN; Serial: IDT00037

Ambient Temp: 22C; Fluid Temp: 22.0C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: GPRS 1900 (2 Time Slots)

Frequency: 1850.2 MHz; Duty Cycle: 1:4.16

Medium: M1900 Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

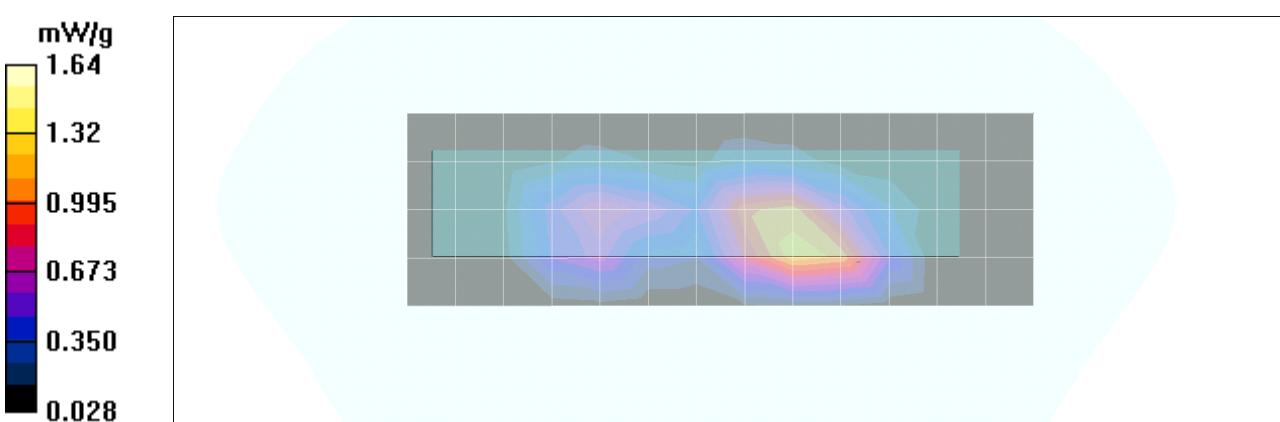
- Probe: EX3DV4 - SN3600; ConvF(6.71, 6.71, 6.71); Calibrated: 23/06/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

PCS 1850.2 - Side/Area Scan (5x14x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.16 mW/g

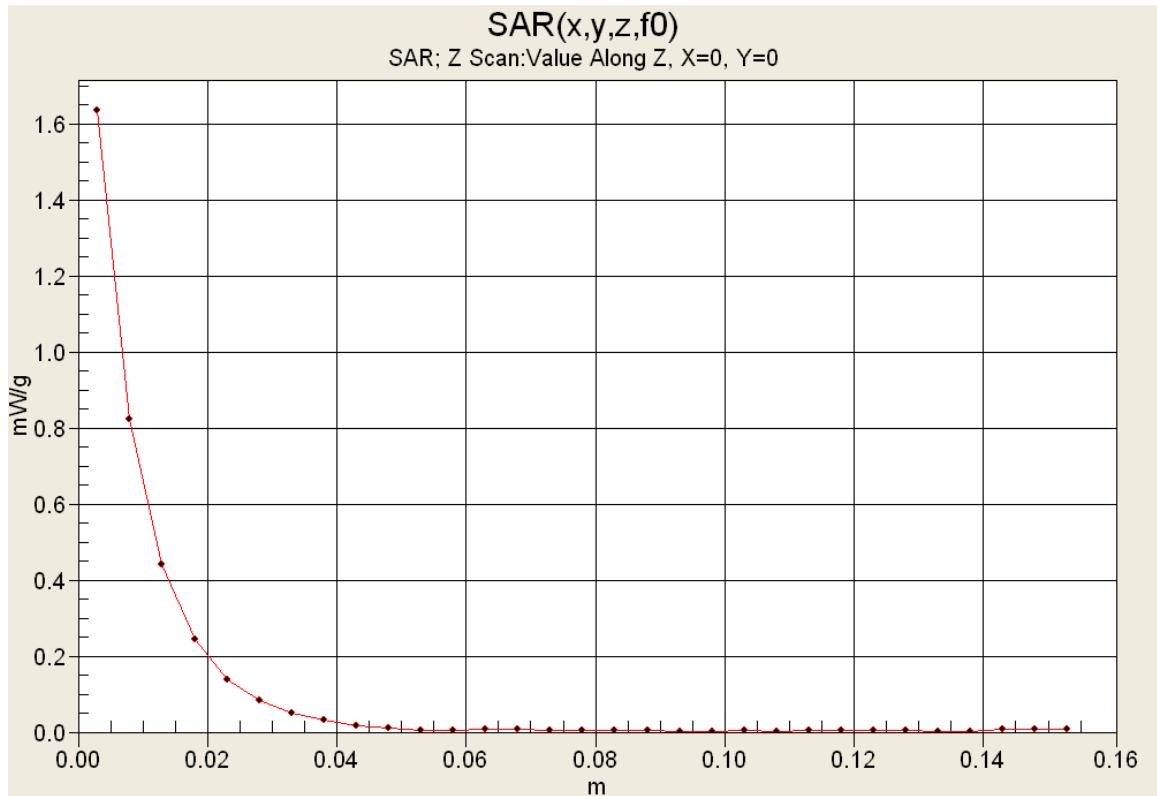
PCS 1850.2 - Side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 26.3 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 2.57 W/kg

SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.671 mW/g

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 1.64 mW/g

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 24 of 45						

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Z-axis Scan

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 25 of 45						

Date(s) of Evaluation
November 23-24, 2011

Test Report Issue Date
February 16, 2012

Test Report Serial No.
092811TFT-T1117-S24G

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Lab Certificate No. 2470.01

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 26 of 45						

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Date Tested: 11/24/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

Ambient Temp: 22C; Fluid Temp: 20.8C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

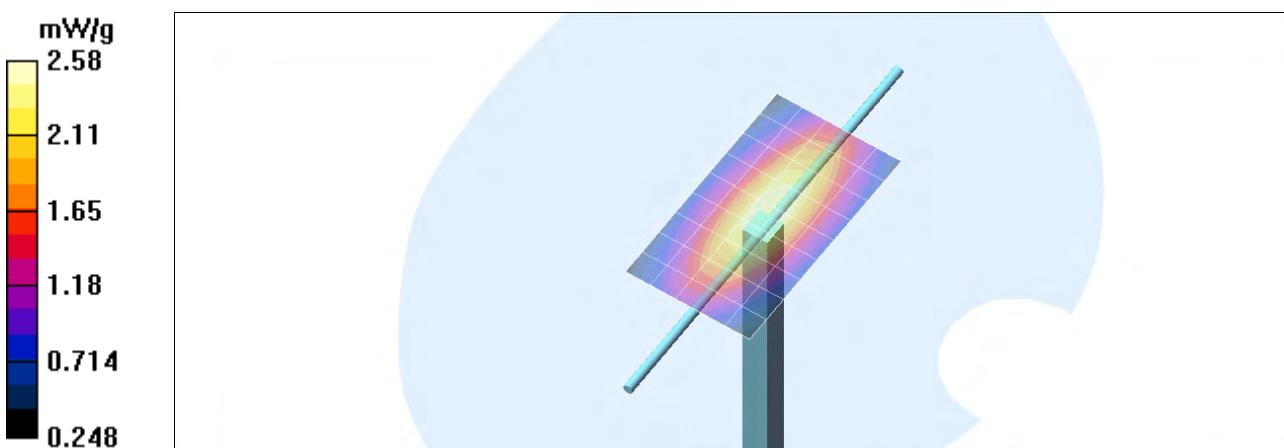
Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: $f = 835$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

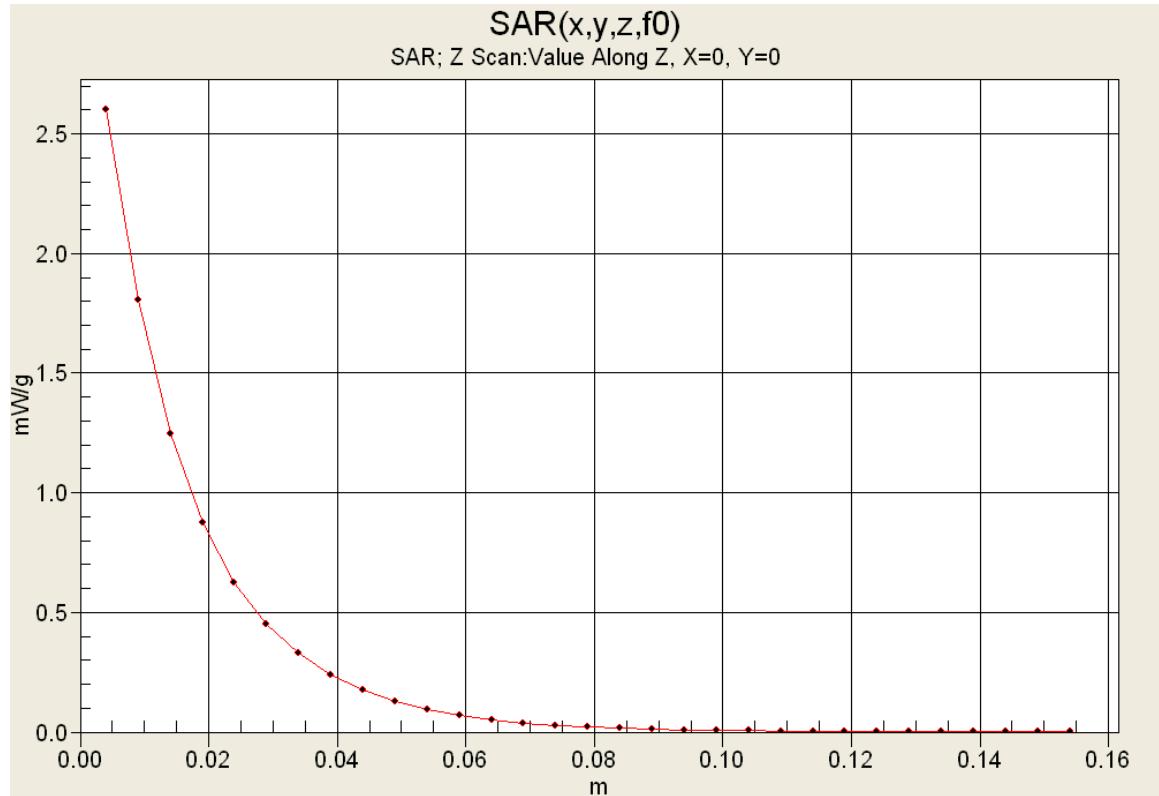
Maximum value of SAR (measured) = 2.46 mW/g


Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.5 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.58 mW/g


Maximum value of SAR (measured) = 2.58 mW/g

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 27 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Z-Axis Scan

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 28 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Date Tested: 11/23/2011

System Performance Check - 1900 MHz Dipole - Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d107; Calibrated: 21/04/2009

Ambient Temp: 22C; Fluid Temp: 22.0C; Barometric Pressure: 101.1 kPa; Humidity: 35%

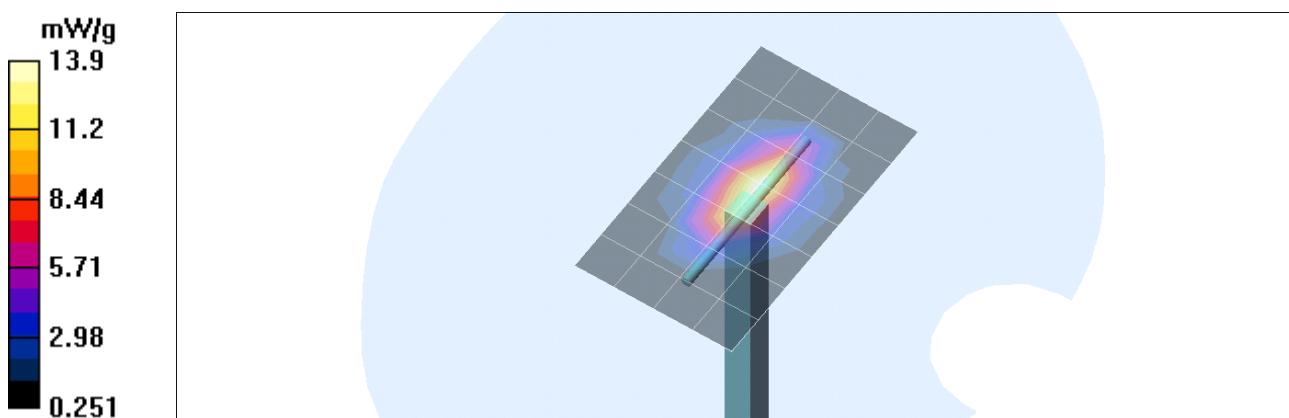
Communication System: CW

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

- Probe: EX3DV4 - SN3600; ConvF(6.71, 6.71, 6.71); Calibrated: 23/06/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

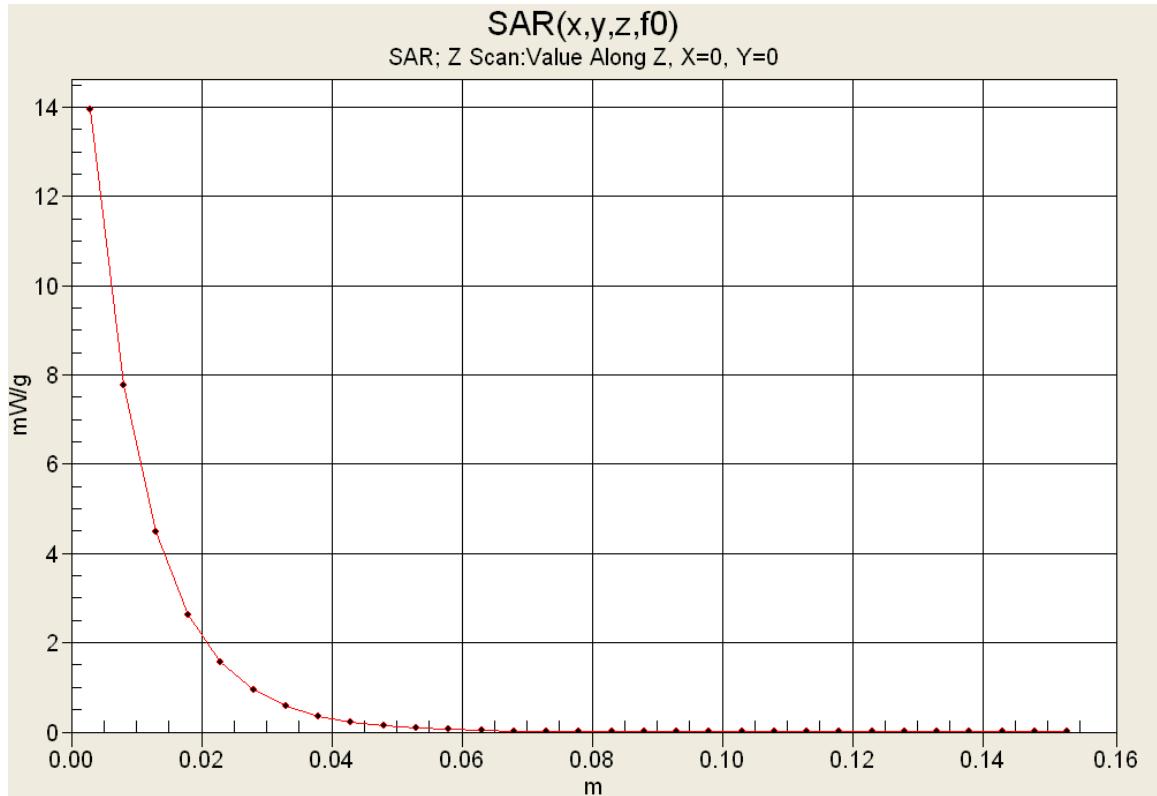
1900 MHz SPC/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 13.9 mW/g

1900 MHz SPC/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.5 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 20.5 W/kg


SAR(1 g) = 11.1 mW/g; SAR(10 g) = 5.69 mW/g

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 29 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

Z-Axis Scan

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 30 of 45						

Date(s) of Evaluation
November 23-24, 2011

Test Report Issue Date
February 16, 2012

Test Report Serial No.
092811TFT-T1117-S24G

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Lab Certificate No. 2470.01

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300		
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth						
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						
	Page 31 of 45						

 Celltech <small>Testing and Engineering Services Lab</small>	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

835 MHz (Body)

Celltech Labs Inc.
 Test Result for UIM Dielectric Parameter

24/Nov/2011

Freq Frequency(GHz)
 FCC_eB FCC Limits for Body Epsilon
 FCC_sB FCC Limits for Body Sigma
 Test_e Epsilon of UIM
 Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
0.7350	55.59	0.96	55.33	0.86
0.7450	55.55	0.96	55.18	0.88
0.7550	55.51	0.96	55.28	0.89
0.7650	55.47	0.96	55.21	0.90
0.7750	55.43	0.97	54.80	0.90
0.7850	55.39	0.97	54.73	0.93
0.7950	55.36	0.97	54.80	0.94
0.8050	55.32	0.97	55.00	0.95
0.8150	55.28	0.97	54.87	0.96
0.8250	55.24	0.97	54.59	0.97
0.8350	55.20	0.97	54.71	0.97
0.8450	55.17	0.98	54.39	0.99
0.8550	55.14	0.99	54.52	1.00
0.8650	55.11	1.01	54.18	0.99
0.8750	55.08	1.02	53.92	1.01
0.8850	55.05	1.03	53.91	1.02
0.8950	55.02	1.04	54.07	1.04
0.9050	55.00	1.05	54.08	1.05
0.9150	55.00	1.06	53.51	1.07
0.9250	54.98	1.06	53.67	1.07
0.9350	54.96	1.07	53.88	1.08

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 32 of 45

 Testing and Engineering Services Lab	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

1900 MHz (Body)

Celltech Labs Inc.
 Test Result for UIM Dielectric Parameter

23/Nov/2011

Freq Frequency(GHz)
 FCC_eB FCC Limits for Body Epsilon
 FCC_sB FCC Limits for Body Sigma
 Test_e Epsilon of UIM
 Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
1.8000	53.30	1.52	51.28	1.38
1.8100	53.30	1.52	51.21	1.41
1.8200	53.30	1.52	51.18	1.43
1.8300	53.30	1.52	51.27	1.45
1.8400	53.30	1.52	51.20	1.47
1.8500	53.30	1.52	50.93	1.47
1.8600	53.30	1.52	50.93	1.49
1.8700	53.30	1.52	51.00	1.52
1.8800	53.30	1.52	50.95	1.51
1.8900	53.30	1.52	50.76	1.53
1.9000	53.30	1.52	50.74	1.54
1.9100	53.30	1.52	50.99	1.56
1.9200	53.30	1.52	50.61	1.56
1.9300	53.30	1.52	50.61	1.58
1.9400	53.30	1.52	50.66	1.57
1.9500	53.30	1.52	50.64	1.59
1.9600	53.30	1.52	50.50	1.63
1.9700	53.30	1.52	50.60	1.61
1.9800	53.30	1.52	50.33	1.65
1.9900	53.30	1.52	50.25	1.66
2.0000	53.30	1.52	50.36	1.66

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 33 of 45

 Celltech <small>Testing and Engineering Services Lab</small>	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

APPENDIX F - DIPOLE CALIBRATION

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 43 of 45	

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Celltech**

Certificate No: **D835V2-4d075_Apr09**

CALIBRATION CERTIFICATE

Object **D835V2 - SN: 4d075**

Calibration procedure(s) **QA CAL-05.v7**
Calibration procedure for dipole validation kits

Calibration date: **April 20, 2009**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by: **Name** **Jeton Kastrati** **Function** **Laboratory Technician**

Approved by: **Katja Pokovic** **Technical Manager**

Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.1 \pm 6 %	0.89 mho/m \pm 6 %
Head TSL temperature during test	(22.1 \pm 0.2) °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.46 mW /g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.19 mW /g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.1 ± 0.2) °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	9.96 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.61 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.64 mW / g
SAR normalized	normalized to 1W	6.56 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.39 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 3.1 $j\Omega$
Return Loss	- 29.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.1 $j\Omega$
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.401 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

DASY5 Validation Report for Head TSL

Date/Time: 14.04.2009 11:20:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

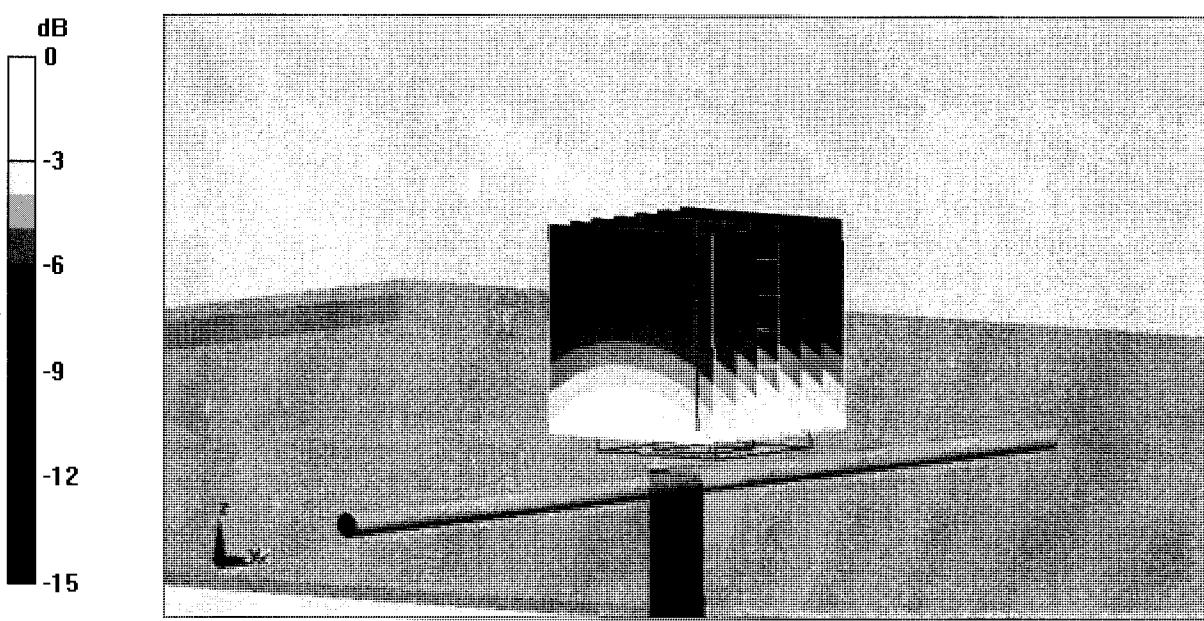
Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

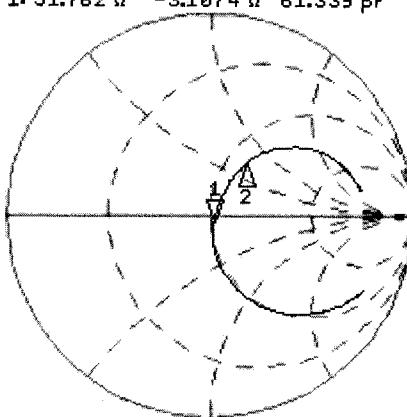

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.011 dB

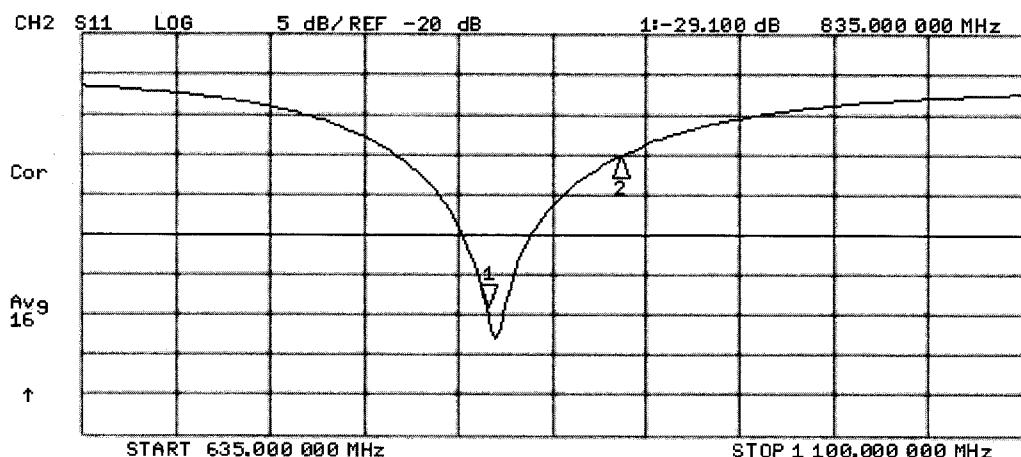
Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.74 mW/g


Impedance Measurement Plot for Head TSL

CH1 S11 1 U FS 1: 51.762 Ω -3.1074 Ω 61.339 pF 14 Apr 2009 09:17:58
835.000 000 MHz


*
Del
Cor

Avg
16

↑

CH1 Markers
2: 60.352 Ω
33.270 Ω
900.000 MHz

CH2 Markers
2:-10.391 dB
900.000 MHz

DASY5 Validation Report for Body TSL

Date/Time: 20.04.2009 09:57:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

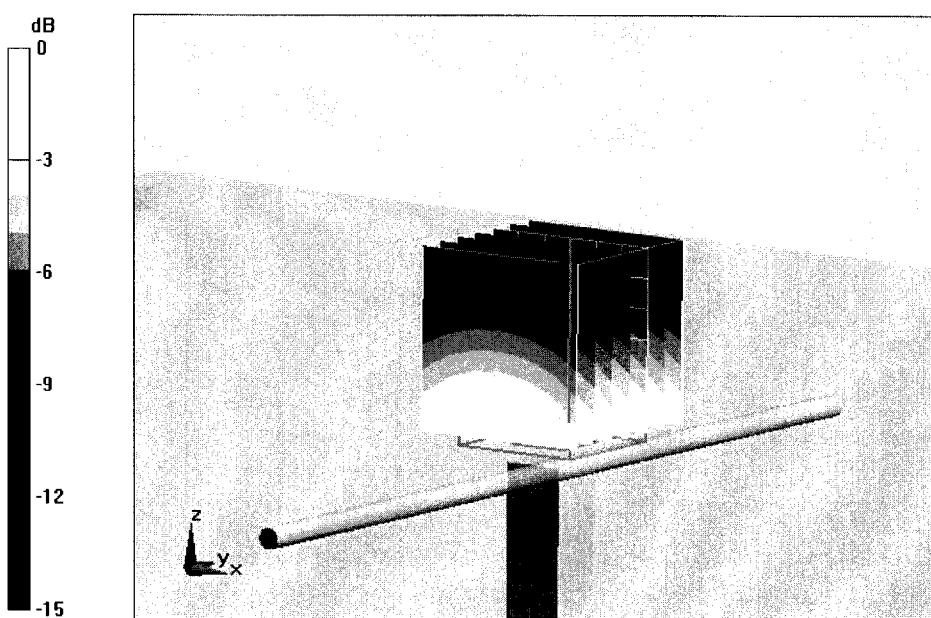
Medium parameters used: $f = 835$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

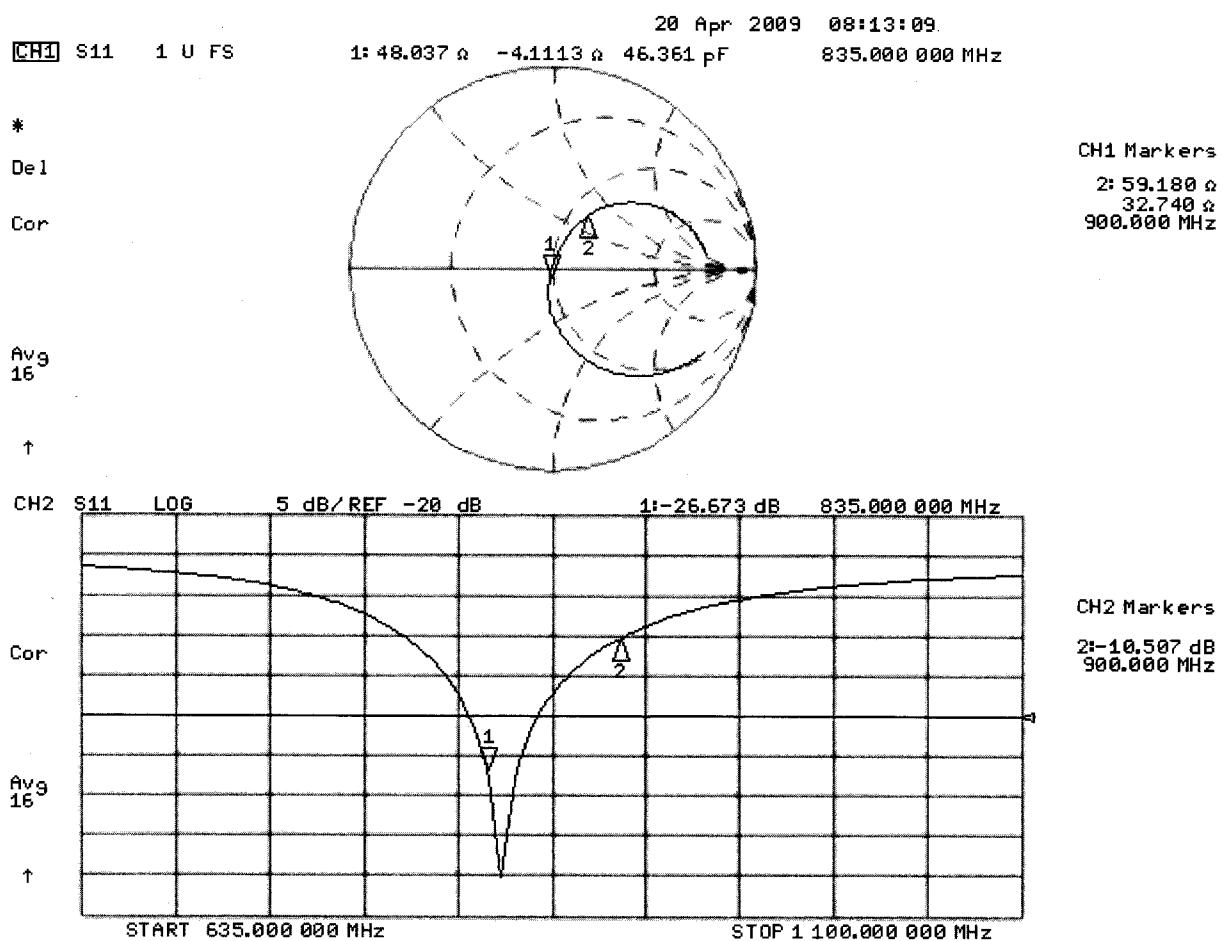
DASY5 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.00173 dB

Peak SAR (extrapolated) = 3.61 W/kg


SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.64 mW/g

Maximum value of SAR (measured) = 2.9 mW/g

0 dB = 2.9mW/g

Impedance Measurement Plot for Body TSL

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Celltech**

Certificate No: **D1900V2-5d107-Apr09**

CALIBRATION CERTIFICATE

Object **D1900V2 - SN: 5d107**

Calibration procedure(s) **QA CAL-05.v7**
Calibration procedure for dipole validation kits

Calibration date: **April 21, 2009**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by: **Claudio Leubler** **Laboratory Technician**

Approved by: **Katja Pokovic** **Technical Manager**

Issued: April 24, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- **Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- **Antenna Parameters with TS:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- **Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- **Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- **SAR measured:** SAR measured at the stated antenna input power.
- **SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- **SAR for nominal TS parameters:** The measured TS parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	38.6 \pm 6 %	1.47 mho/m \pm 6 %
Head TSL temperature during test	(22.0 \pm 0.2) °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.6 mW / g
SAR normalized	normalized to 1W	42.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	40.9 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.45 mW / g
SAR normalized	normalized to 1W	21.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	21.4 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.56 mho/m ± 6 %
Body TSL temperature during test	(21.3 ± 0.2) °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR normalized	normalized to 1W	42.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	42.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.62 mW / g
SAR normalized	normalized to 1W	22.5 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	22.4 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.0 \Omega + 5.5 j\Omega$
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$45.9 \Omega + 6.3 j\Omega$
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

DASY5 Validation Report for Head TSL

Date/Time: 15.04.2009 15:01:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d107

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

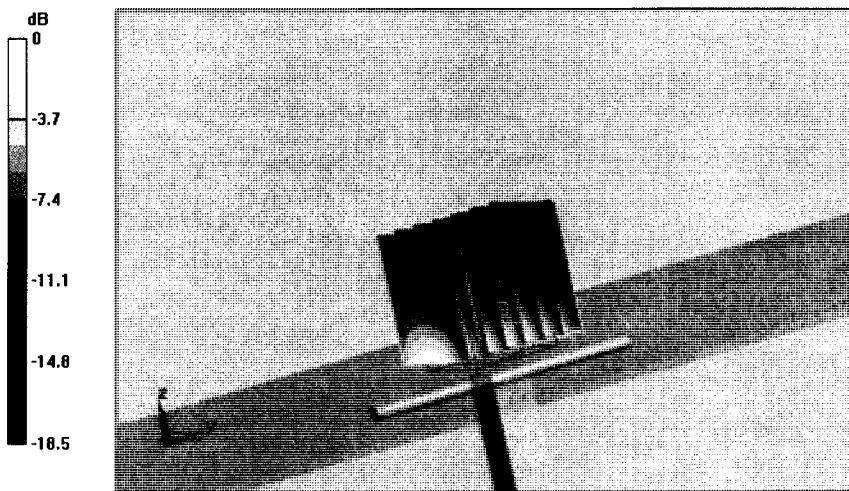
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

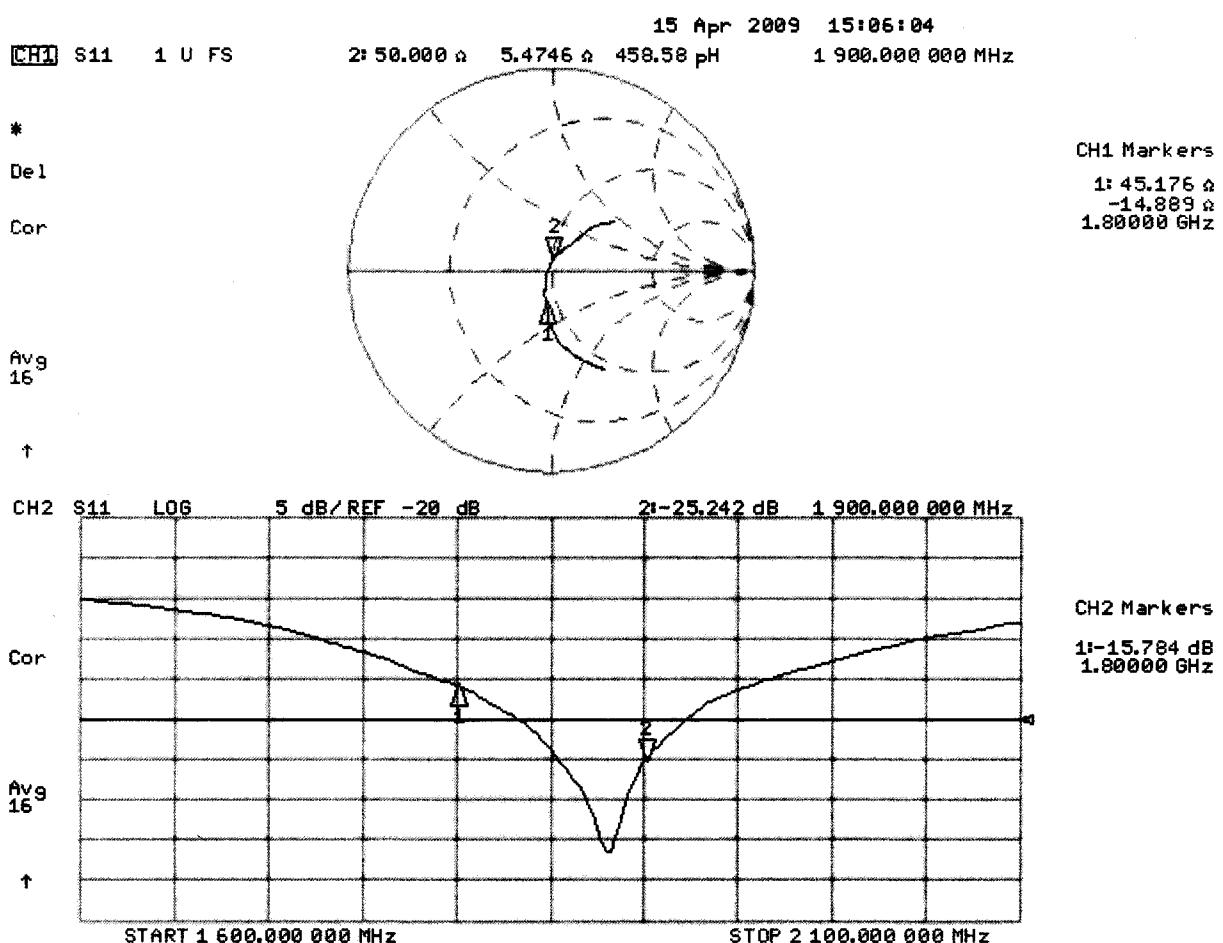
- Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.0 mm/Zoom Scan (dist=3.0 mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.7 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 20 W/kg


SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.45 mW/g

Maximum value of SAR (measured) = 13.2 mW/g

0 dB = 13.2mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 21.04.2009 15:29:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d107

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.56$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

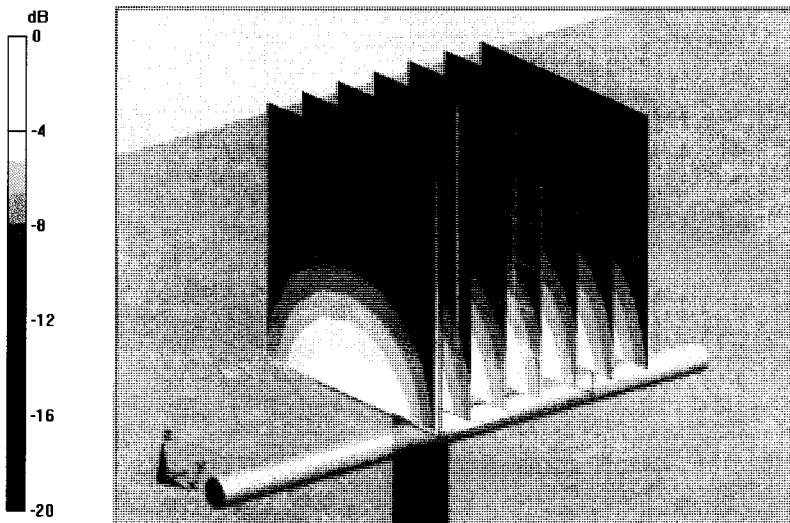
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

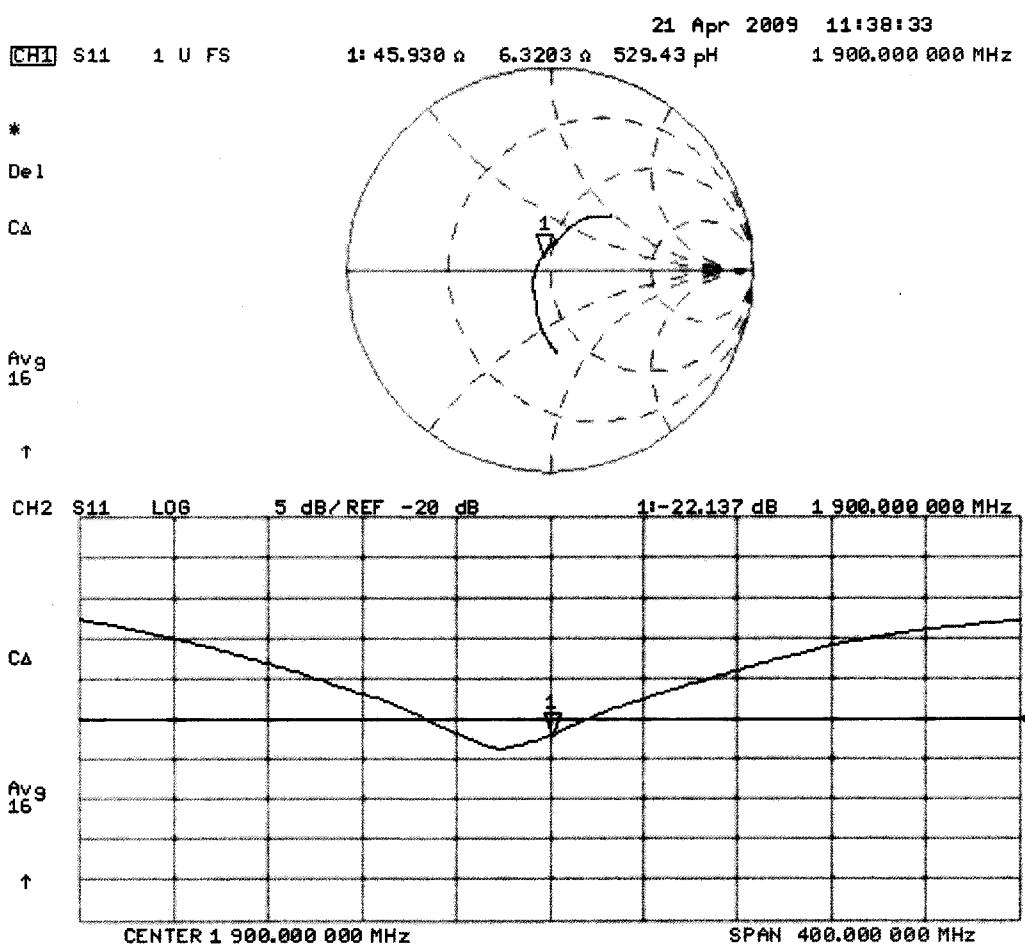
DASY5 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.0mm/Zoom Scan (dist=3.4mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.6 V/m; Power Drift = -0.00425 dB


Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.62 mW/g

Maximum value of SAR (measured) = 13.5 mW/g

Impedance Measurement Plot for Body TSL

 Celltech <small>Testing and Engineering Services Lab</small>	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

APPENDIX G - PROBE CALIBRATION

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iIDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 44 of 45	

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client **Celltech**

Certificate No: **ET3-1590_Jun11**

CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1590**

Calibration procedure(s) **QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4**
 Calibration procedure for dosimetric E-field probes

Calibration date: **June 22, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 23, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}**: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)_{x,y,z}** = **NORM_{x,y,z}** * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}**: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to **NORM_{x,y,z}** * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

Manufactured: March 19, 2001
Calibrated: June 22, 2011

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.93	2.00	1.66	$\pm 10.1\%$
DCP (mV) ^B	96.0	98.7	88.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	104.2	$\pm 2.7\%$
			Y	0.00	0.00	1.00	117.7	
			Z	0.00	0.00	1.00	129.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Calibration Parameter Determined in Head Tissue Simulating Media

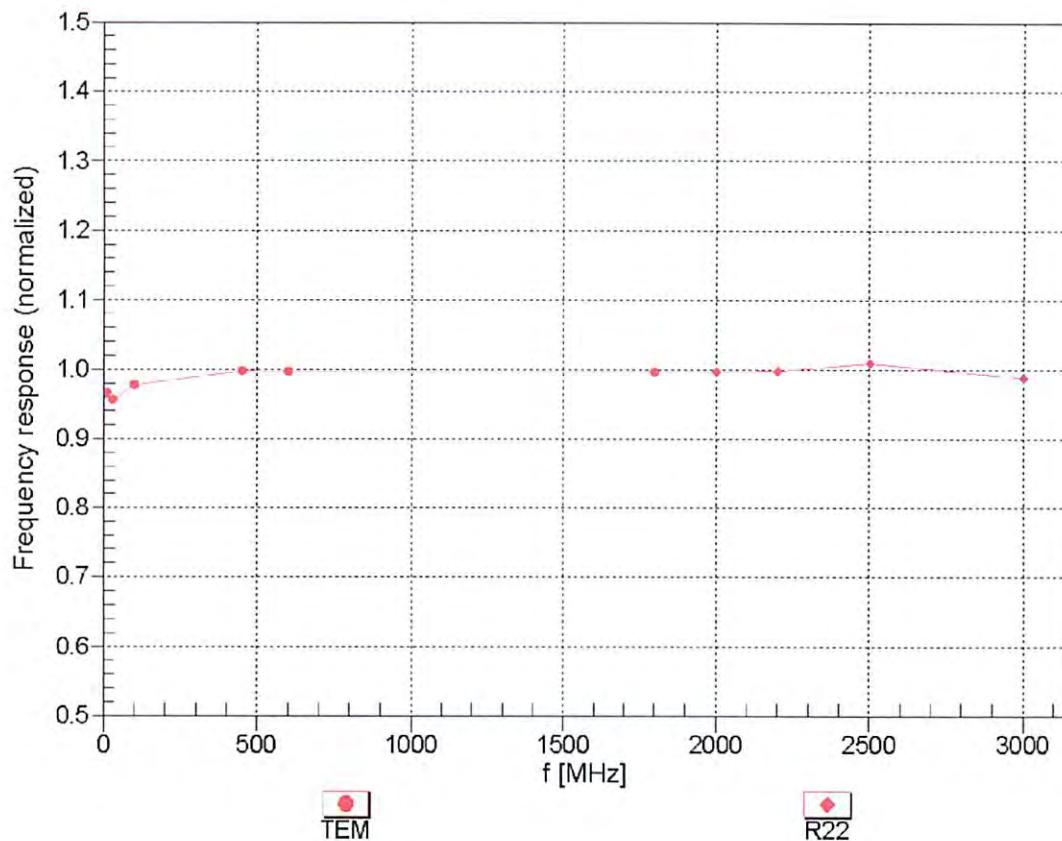
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.30	7.30	7.30	0.18	2.10	± 13.4 %
835	41.5	0.90	6.50	6.50	6.50	0.38	2.55	± 12.0 %
900	41.5	0.97	6.39	6.39	6.39	0.39	2.47	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ET3DV6- SN:1590

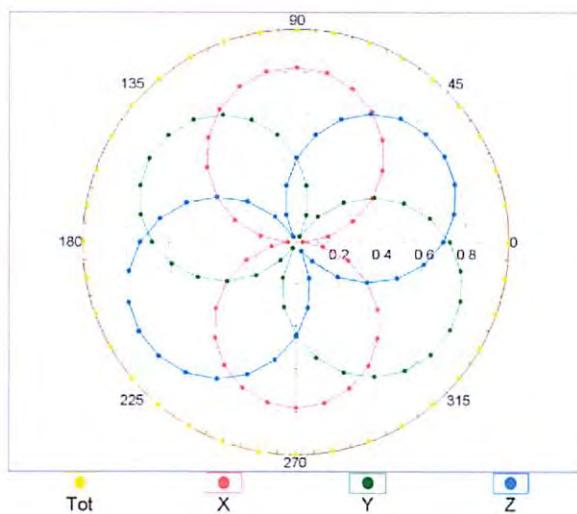
Calibration Parameter Determined in Body Tissue Simulating Media

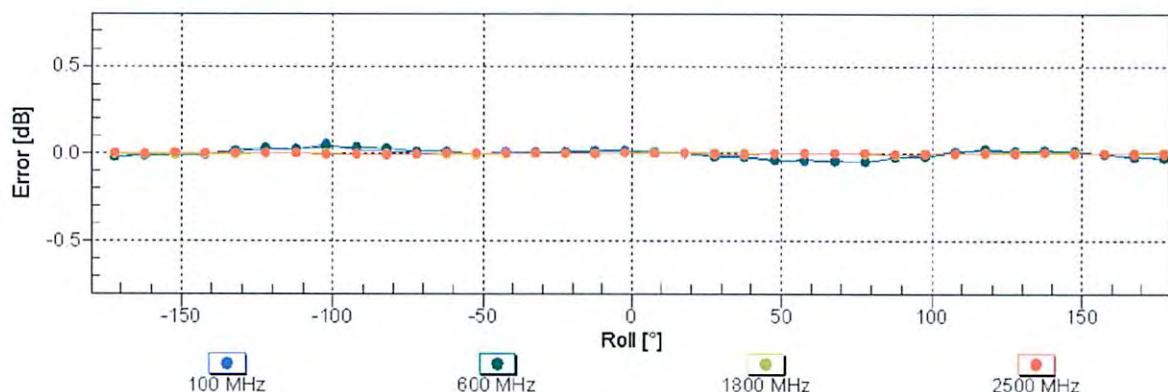
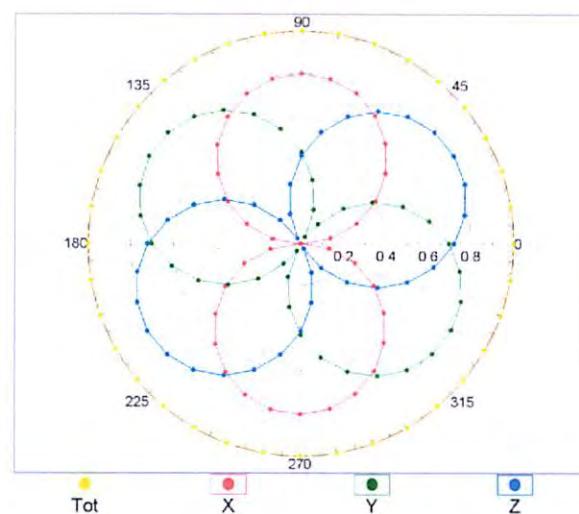

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.82	7.82	7.82	0.12	2.04	± 13.4 %
835	55.2	0.97	6.37	6.37	6.37	0.42	2.33	± 12.0 %
900	55.0	1.05	6.27	6.27	6.27	0.40	2.45	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

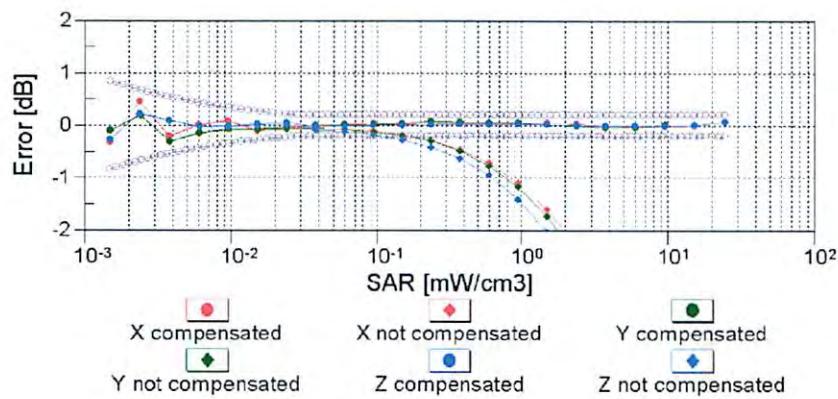
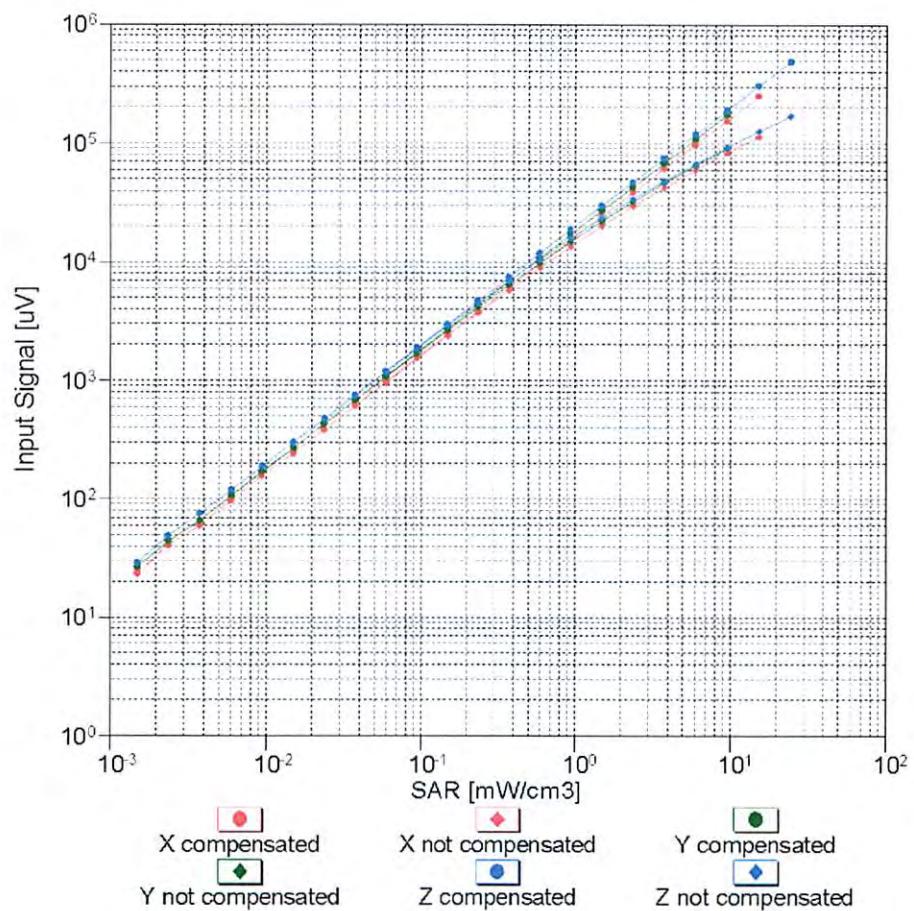
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

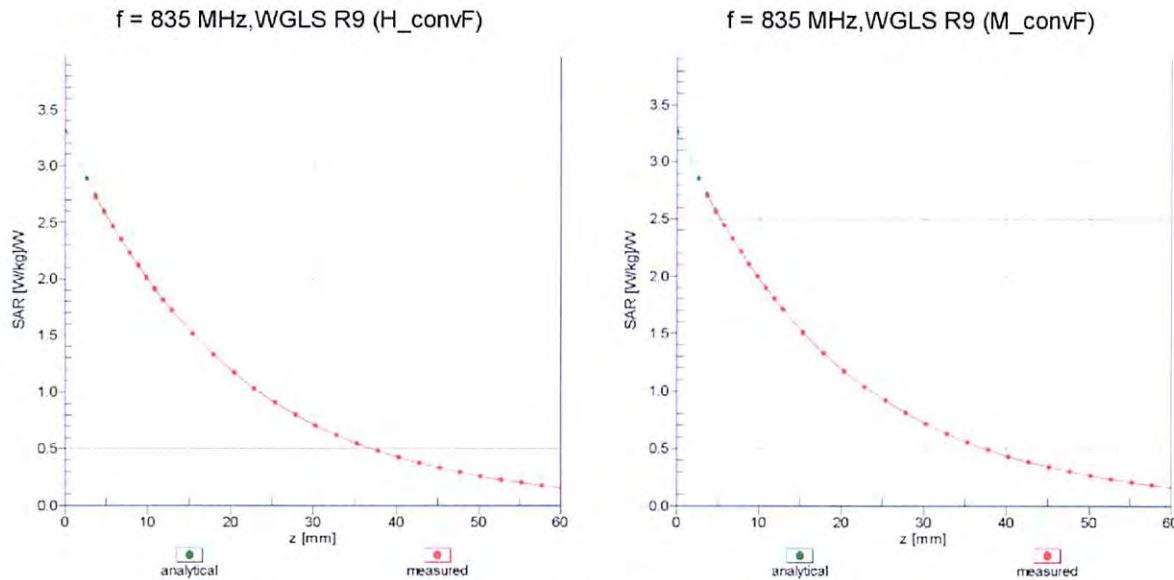


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

Receiving Pattern (ϕ), $\theta = 0^\circ$

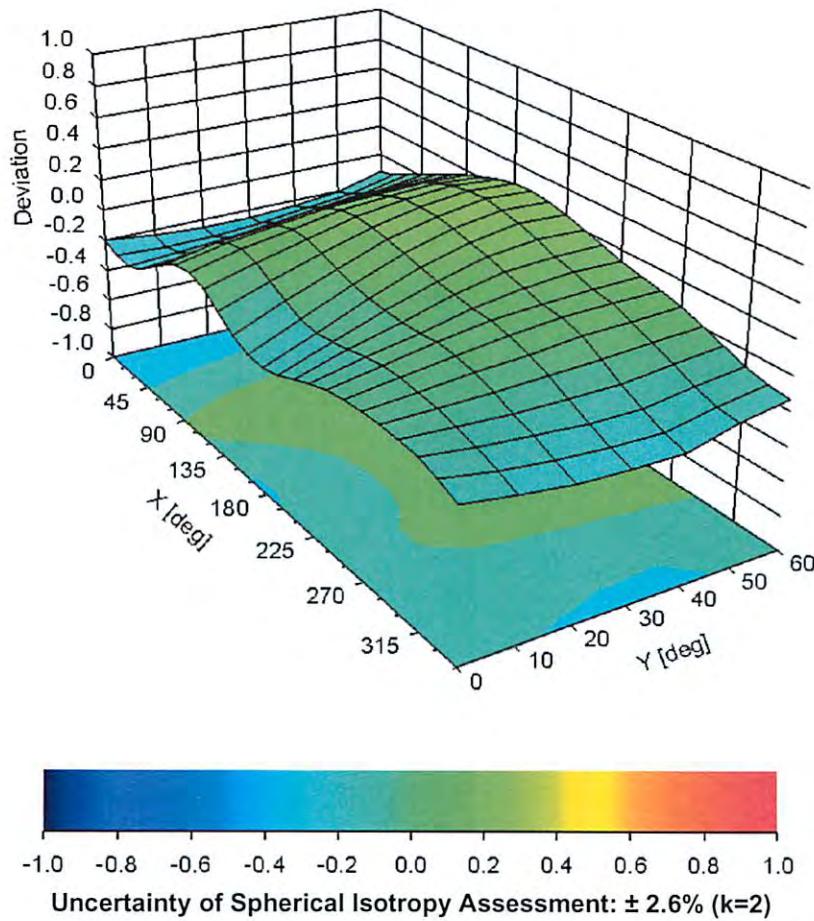
f=600 MHz,TEM



f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


Dynamic Range $f(\text{SAR}_{\text{head}})$

(TEM cell , $f = 900$ MHz)


Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Celltech**

Certificate No: **EX3-3600_Jun11**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3600**

Calibration procedure(s) **QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4**
 Calibration procedure for dosimetric E-field probes

Calibration date: **June 23, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name Katja Pokovic	Function Technical Manager	Signature
Approved by:	Niels Kuster	Quality Manager	

Issued: June 23, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}**: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below **ConvF**).
- NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of **ConvF**.
- DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}, VR_{x,y,z}**: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to **NORM_{x,y,z} * ConvF** whereby the uncertainty corresponds to that given for **ConvF**. A frequency dependent **ConvF** is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3600

Manufactured: January 10, 2007
Calibrated: June 23, 2011

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3600

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.50	0.49	0.39	$\pm 10.1\%$
DCP (mV) ^B	97.5	102.4	99.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	119.9	$\pm 3.0\%$
			Y	0.00	0.00	1.00	105.4	
			Z	0.00	0.00	1.00	102.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3600

Calibration Parameter Determined in Head Tissue Simulating Media

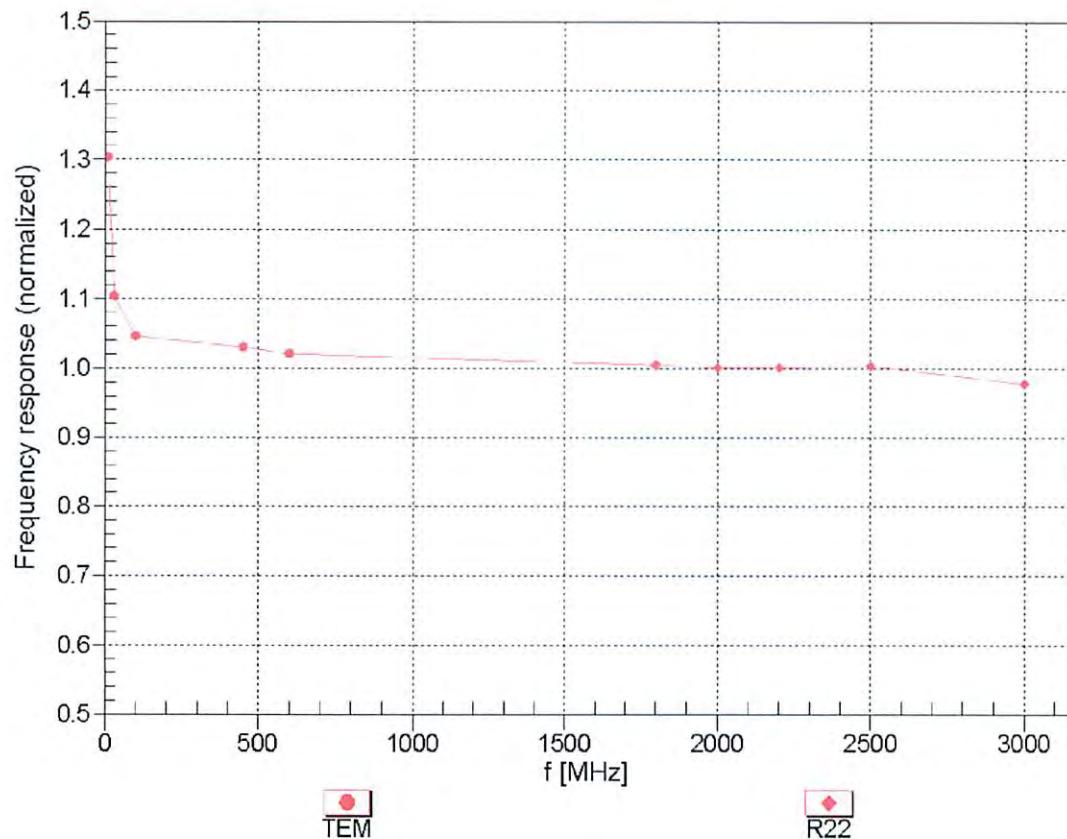
f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1810	40.0	1.40	7.38	7.38	7.38	0.69	0.66	± 12.0 %
1950	40.0	1.40	7.10	7.10	7.10	0.71	0.64	± 12.0 %
2450	39.2	1.80	6.55	6.55	6.55	0.56	0.73	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4- SN:3600

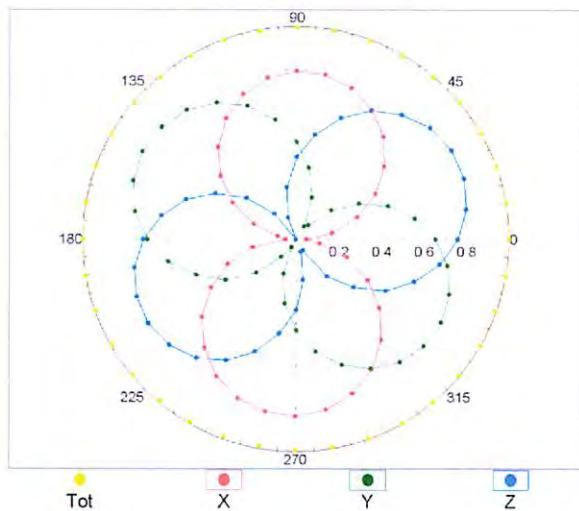
Calibration Parameter Determined in Body Tissue Simulating Media

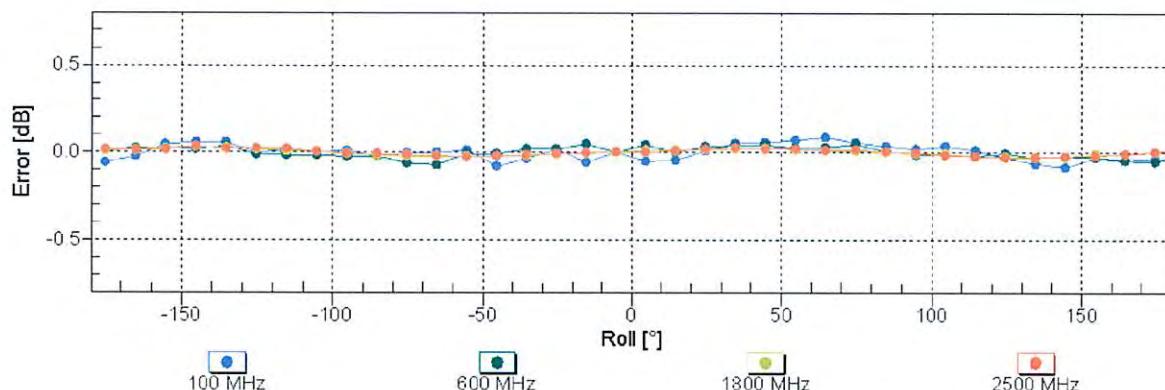
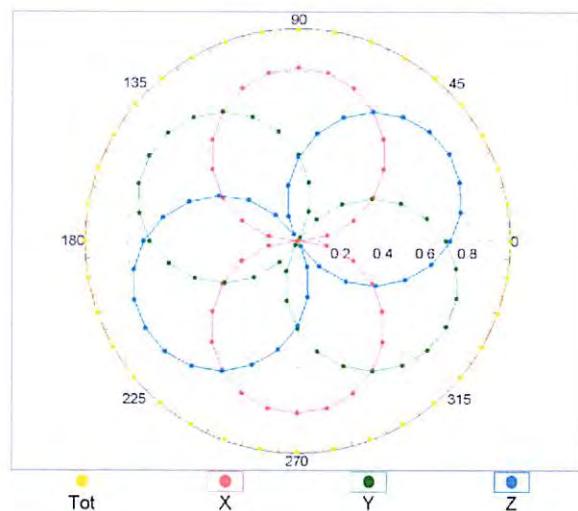

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1810	53.3	1.52	6.71	6.71	6.71	0.79	0.66	± 12.0 %
1950	53.3	1.52	6.61	6.61	6.61	0.79	0.64	± 12.0 %
2450	52.7	1.95	6.15	6.15	6.15	0.79	0.61	± 12.0 %
5200	49.0	5.30	3.91	3.91	3.91	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.38	3.38	3.38	0.55	1.90	± 13.1 %
5800	48.2	6.00	3.39	3.39	3.39	0.60	1.90	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

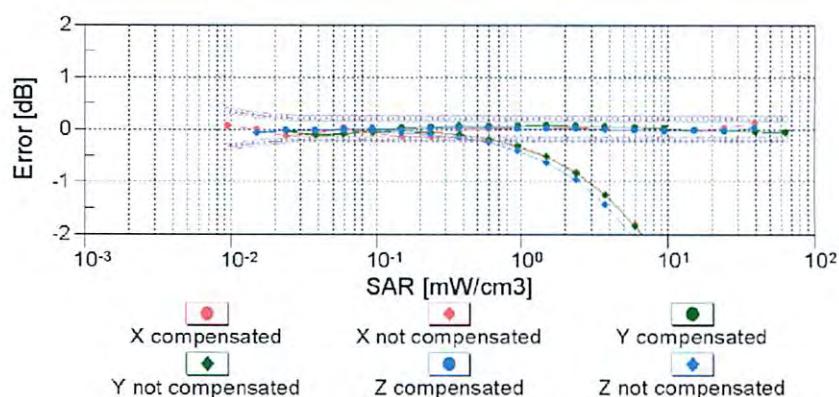
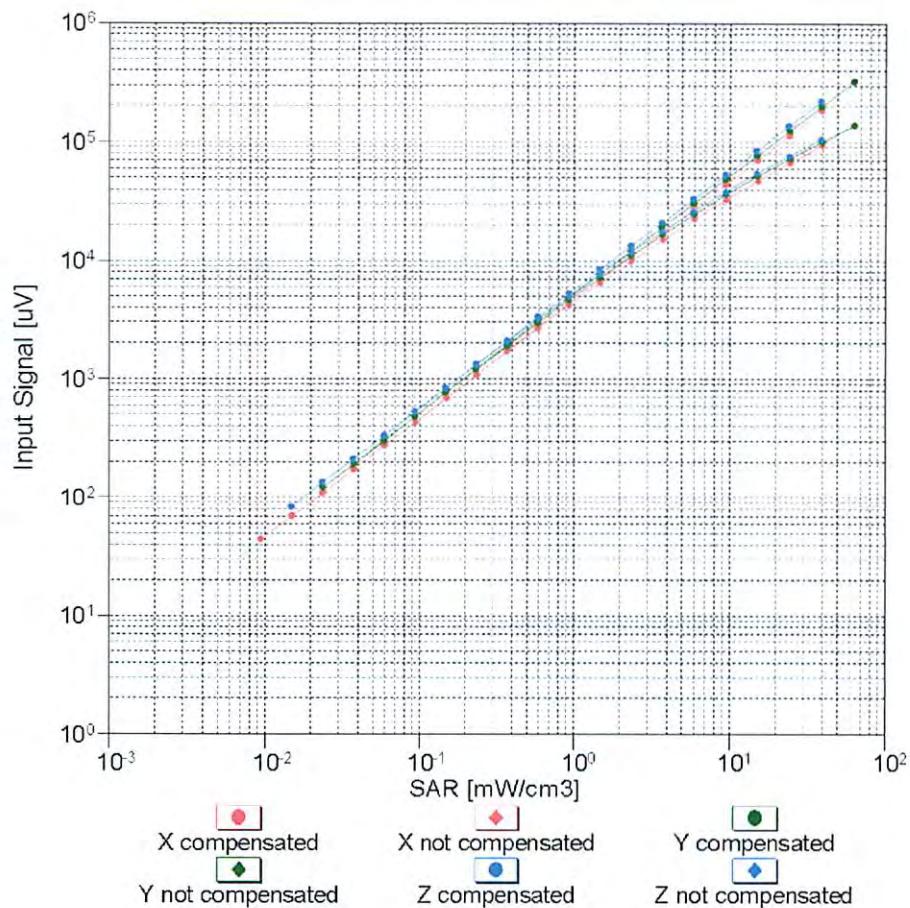
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$

Receiving Pattern (ϕ), $\theta = 0^\circ$

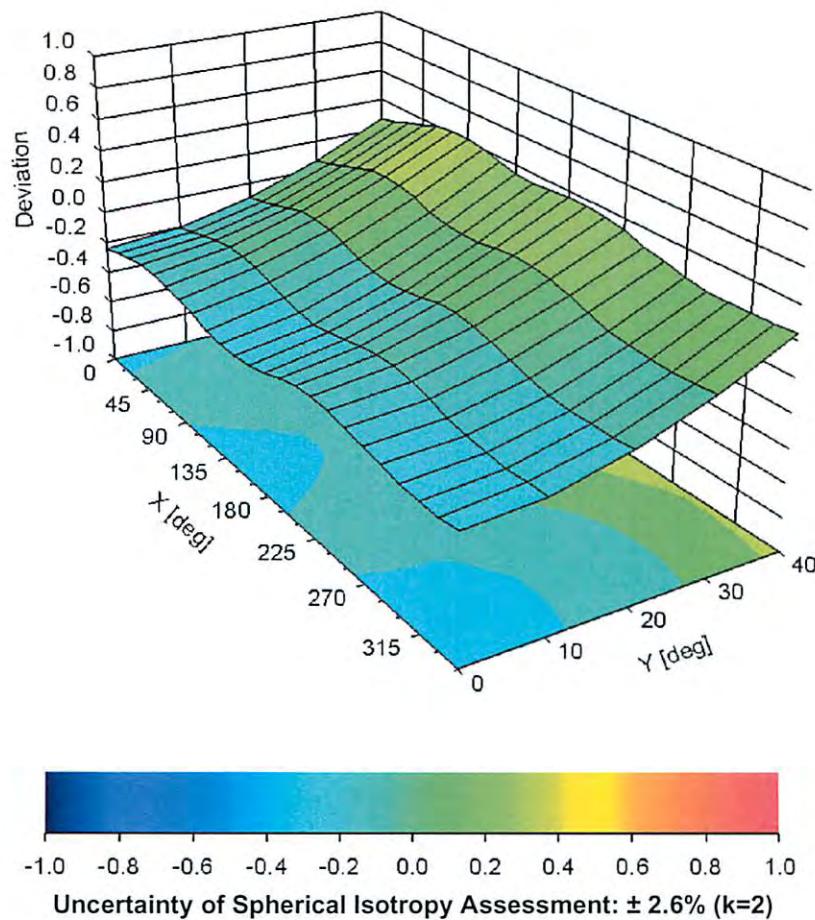
f=600 MHz, TEM



f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Dynamic Range $f(\text{SAR}_{\text{head}})$

(TEM cell , $f = 900$ MHz)


Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3600

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

 Celltech <small>Testing and Engineering Services Lab</small>	<u>Date(s) of Evaluation</u> November 23-24, 2011	<u>Test Report Serial No.</u> 092811TFT-T1117-S24G	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> February 16, 2012	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> Gen. Pop. / Uncontrolled	

APPENDIX H - SAM PHANTOM V4.0 CERTIFICATE OF CONFORMITY

Applicant:	MaxID Corporation	FCC ID:	TFT-IDL300	DUT Model:	iDL300	
DUT Type:	Handheld Biometric PC with RFID, GPRS/EDGE/WCDMA, 802.11a/b/g/n WLAN & Bluetooth					
2012 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 45 of 45	

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0		
Type No	QD 000 P40 BA		
Series No	TP-1002 and higher		
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland		

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9

(*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner
Engineering AG

Zeughausstrasse 43, CH-8004 Zurich
Tel. +41 1 245 97 00, Fax +41 1 245 97 79