

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

TEST REPORT # 311256 B LSR Job #: C-1283

Compliance Testing of: 900 MHz Transceiver with Dipole Antenna

<u>Test Date(s)</u>: September 23, 27, 28, October 4, November 8, 10, 2011, October 4, 2012

Prepared For: LS Research, LLC W66 N220 Commerce Ct Cedarburg, WI 53012

> In accordance with: Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 210 Annex 8 Frequency Hopping Spread Spectrum (FHSS) Operating in the Frequency Band 902-928 MHz

This Test Report is issued under the Authority of:			
·	2		
1+ 2:			
Signature: Leter Film	Date: 10/	17/10	
olghatare.	Date. 10/	17712	
Test Report Reviewed by:		Tested by:	
Adam Alger, EMC Engineer		Peter Feilen, EMC Engineer.	
		0, 7.	
Signature: Adum DAlge		Signature: Leter Film Date: 10/4/12	
Hour DAlge		Signature. Date. 10/4/12	
Signature:	Date: 10/16/12		

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	4
1.1 - Scope	4
1.2 – Normative References	4
1.3 - LS Research, LLC Test Facility	5
1.4 – Location of Testing	5
1.5 – Test Equipment Utilized	5
EXHIBIT 2. PERFORMANCE ASSESSMENT	6
2.1 – Client Information	6
2.2 - Equipment Under Test (EUT) Information	6
2.3 - Associated Antenna Description	6
2.4 - EUT'S Technical Specifications	7
2.5 - Product Description	8
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	9
3.1 - Climate Test Conditions	9
3.2 - Applicability & Summary Of EMC Emission Test Results	9
3.3 - Modifications Incorporated In The EUT For Compliance Purposes	10
3.4 - Deviations & Exclusions From Test Specifications	10
EXHIBIT 4. DECLARATION OF CONFORMITY	11
EXHIBIT 5. RADIATED EMISSIONS TEST	12
5.1 - Test Setup	12
5.2 - Test Procedure	12
5.3 - Test Equipment Utilized	13
5.4 - Test Results	13
5.5 - Calculation of Radiated Emissions Limits	14
5.6 - Radiated Emissions Test Data Chart	15
5.7 - Screen Captures - Radiated Emissions Test	17
5.9 - Receive Mode Testing	21
5.10 - Screen Captures - Radiated Emissions Testing – Receive Mode	22
EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE	24
EXHIBIT 7. OCCUPIED BANDWIDTH	27
7.1 - Limits	27
7.2 - Method of Measurements	27
7.3 - Test Data	28

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 2 of 47

7.4 - Screen Captures - Occupied Bandwidth	28
EXHIBIT 8. BAND EDGE MEASUREMENTS	30
8.1 - Method of Measurements	30
EXHIBIT 9. POWER OUTPUT (CONDUCTED)	31
9.1 - Method of Measurements	31
9.2 - Test Data	31
9.3 - Screen Captures – Power Output (Conducted)	32
EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)	34
10.1 - Limits	34
10.2 – Conducted Harmonic And Spurious RF Measurements	34
10.3- Screen Captures – Spurious Radiated Emissions	36
EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	38
EXHIBIT 12. CHANNEL PLAN AND SEPARATION	39
12.1 - Screen Captures – Channel Separation	40
EXHIBIT 13. CHANNEL OCCUPANCY	42
EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE	43
EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH	44
APPENDIX A – Test Equipment List	45
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	46
APPENDIX C - Uncertainty Statement	47

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 3 of 47

EXHIBIT 1. INTRODUCTION

<u> 1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 8
Title:	 FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low- Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or Business Residential

<u>1.2 – Normative References</u>

Please reference Appendix B for test standards followed.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 4 of 47

<u>1.3 - LS Research, LLC Test Facility</u>

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: <u>www.lsr.com</u>. Accreditation status can be verified at A2LA's web site: <u>www.a2la2.net</u>.

<u>1.4 – Location of Testing</u>

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Compact Chamber Semi-Anechoic Chamber Open Area Test Site (OATS)

<u>1.5 – Test Equipment Utilized</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 5 of 47

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 – Client Information

Manufacturer Name:	LS Research, LLC	
Address:	W66 N220 Commerce Ct	
Contact Name:	Bill Steinike	

<u>2.2 - Equipment Under Test (EUT) Information</u> The following information has been supplied by the applicant.

Product Name:	SiFLEX01
Model Number:	SiFLEX01
Serial Number:	SF01A2003

2.3 - Associated Antenna Description

An articulating dipole antenna with u.fl to reverse-gendered SMA connector, gain +2 dBi, is utilized.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 6 of 47

2.4 - EUT'S Technical Specifications

EUT Frequency Range (in MHz)	903-926.6 MHz
Maximum Conducted Output Power (in dBm)	24.5 dBm
Minimum Conducted Output Power (in dBm)	24.5 dBm
Field Strength at 3 meters	126.2 dBuV/m
Occupied Bandwidth (99% BW)	496 kHz
Type of Modulation	FSK
Emission Designator	496kFXD
EIRP (in mW)	446.68 mW
Transmitter Spurious (worst case) at 3 meters	47.3 dBuV/m
Receiver Spurious (worst case) at 3 meters	52.3 dBuV/m
Receiver Bandwidth	203 kHz
Receiver Sensitivity	-100 dBm
Stepped (Y/N)	No
Step Value:	N/A
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model #	CC430F6137IRGC
Antenna Information	
Detachable/non-detachable	Detachable
Туре	Dipole
Gain (in dBi)	+2.0 dBi
EUT will be operated under FCC Rule Part(s)	15.247
EUT will be operated under RSS Rule Part(s)	RSS 210
Modular Filing	🛛 Yes 🗌 No
Portable or Mobile?	Mobile

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Х	RF Evaluation

If <u>RF Evaluation</u> checked above, test engineer to complete the following:

Evaluated against exposure limits: 🛛 General Public U	se 🗌 Controlled Use
Duty Cycle used in evaluation: 100 %	
Standard used for evaluation: OET 65	
Measurement Distance: 20 cm	
RF Value: 0.889 \Box V/m \Box A/m \boxtimes W/m ²	
Measured Computed	🛛 Calculated

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 7 of 47

2.5 - Product Description

The SiFLEX01 module is a high performance 900MHz radio based on the Texas Instruments CC430 combined with the CC1190 front-end in a cost effective footprint, and is adaptable to many different applications.

The CC1190 is a companion IC that works in conjunction with the radio in the CC430. The CC1190 is a range extender that integrates a Power Amplifier (PA), a Low Noise Amplifier (LNA), switches, and RF matching in a single package. The CC1190 is core component on the module and is controlled via control signals from the CC430.

Note: Unique firmware, which cannot be altered by the end user, was used for all testing.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 8 of 47
		-

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	15-35 °C
Humidity:	30-60%
Pressure:	645-795 mmHg

<u>3.2 - Applicability & Summary Of EMC Emission Test Results</u>

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	Yes
FCC : 15.247 (a)(1)(i) IC : RSS 210 A8.1 (a)	20 dB Bandwidth	Yes
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	Yes
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	Yes
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
FCC:15.247 (a)(1)(i) IC: RSS 210 (b)	Carrier Frequency Separation	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Number of hopping channels	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Time of occupancy (Dwell Time)	Yes
FCC : 15.247(c), 15.209 & 15.205 IC : RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	Yes

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 9 of 47

<u>3.3 - Modifications Incorporated In The EUT For Compliance Purposes</u>

None

Yes (explain below)

<u>3.4 - Deviations & Exclusions From Test Specifications</u> None

Yes (explain below)

Note: Data presented is dated more than 1 year old. Data has been re-reviewed and the testing in the report is valid.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 10 of 47

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 8 (2010), Section Annex 8 (section A8.1) for a Frequency Hopping Spread Spectrum (FHSS) Transmitter.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 11 of 47

EXHIBIT 5. RADIATED EMISSIONS TEST

<u>5.1 - Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4-2003. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous modulated transmit mode for final testing using power as provided by a bench DC supply. 3 separate units were provided for testing on 3 different channels.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (903.0 MHz), middle (914.6 MHz) and high (926.6 MHz) to comply with FCC Part 15.31(m). The channels and operating modes were set via laptop computer using customer specific test code and test program.

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Bi-conical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 12 of 47

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 8 (2010), Annex 8 for a FHSS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 13 of 47

5.5 - Calculation of Radiated Emissions Limits

The maximum peak output power of an intentional radiator in the 902 to 928 MHz band, as specified in Title 47 CFR 15.247 and RSS 210 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.5, shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2, 2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m): dB μ V/m = 20 log ₁₀ (100)= 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

960 MHz to 10,000 MHz 500 μ V/m or 54.0 dB/ μ V/m at 3 meters 54.0 + 9.5 = 63.5 dB/ μ V/m at 1 meter

Generic sample of reported data for 200MHz:

Raw Data + Antenna Factor + Cable Factor = Reported Data

18.2 dBµV/m + 15.8 dB + 1.45 dB = 35.45 dBµV/m

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 14 of 47

5.6 - Radiated Emissions Test Data Chart

Manufacturer:	LS F	LS Research, LLC					
Date(s) of Test:	Sep	tember 22,23,28, Novemb	er 8	, 201	1		
Project Engineer:	Pete	er Feilen					
Test Engineer(s):	Pete	er Feilen					
Voltage:	3.3 \	VDC					
Operation Mode:	Con	tinuous transmit, modulate	ed m	node			
Environmental	Tem	perature: 71°F					
Conditions in the	Rela	Relative Humidity: 32 %					
Lab:							
EUT Power:		Single PhaseVAC			3 Phase	_VA	C
EUT FOWEI.		Battery		Х	Other: Ben	Other: Bench DC Supply	
EUT Placement:		80cm non-conductive tab	ble		10cm Space	10cm Spacers	
EUT Test Location:	х	3 Meter Semi-Anechoic			3/10m OAT	3/10m OATS	
	~	FCC Listed Chamber					
Measurements:		Pre-Compliance		Pi	eliminary		Final
Detectors Used:	Х	Peak	Х	Q	uasi-Peak	Х	Average

Frequency Range Inspected: 30 MHz to 10000 MHz

The following table depicts the level of significant spurious radiated RF emissions found (other than the fundamentals and its harmonics):

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
85.1	2.05	257	21.05	40.0	19.0	Н	SIDE
296.9	1.00	0	25.57	46.0	20.4	Н	SIDE
742.0	1.35	183	26.56	46.0	19.4	Н	SIDE
960.5	1.42	16	43.13	54.0	10.9	Н	SIDE

Note:

1. H: Horizontal, V: Vertical, F: Flat.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 15 of 47

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated harmonic emissions seen on Channel Low (903.0 MHz):

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
2708.985	1.00	0	46.9	42.5	54.0	11.5	Vertical	Side
3611.98	1.00	224	48.5	42.1	54.0	11.9	Horizontal	Vertical
4514.975	1.00	331	49.4	41.2	54.0	12.8	Vertical	Side
5417.97	1.00	0	60.1	52.1	63.5	11.4	Horizontal	Vertical
8126.955	1.03	281	59.1	45.6	63.5	17.9	Vertical	Flat
9029.95	1.02	218	52.9	41.7	63.5	21.9	Horizontal	Vertical

The following table depicts the level of significant radiated harmonic emissions seen on Channel Middle (914.6 MHz):

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
2743.9293	1.37	0	47.6	43.2	54.0	10.8	Horizontal	Side
3658.5724	1.00	256	48.1	41.5	54.0	12.5	Horizontal	Vertical
4573.2155	1.00	346	46.3	36.2	54.0	17.8	Vertical	Side
7317.1448	1.00	307	61.0	48.5	63.5	15.0	Vertical	Flat
8231.7879	1.00	264	61.4	47.3	63.5	16.2	Vertical	Flat
9146.431	1.00	207	53.0	41.0	63.5	22.5	Horizontal	Flat

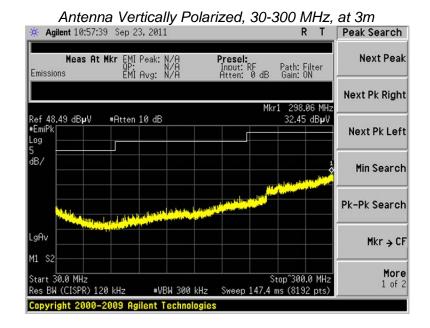
The following table depicts the level of significant radiated harmonic emissions seen on Channel High (926.6 MHz):

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
2779.8627	1.09	161	42.8	36.9	54.0	17.1	Horizontal	Side
3706.4836	1.00	223	49.8	42.7	54.0	11.3	Horizontal	Vertical
4633.1045	1.42	315	54.7	47.3	54.0	6.7	Vertical	Side
7412.9672	1.07	82	63.7	51.3	63.5	12.3	Vertical	Flat
8339.5881	1.03	294	57.0	44.5	63.5	19.0	Vertical	Flat

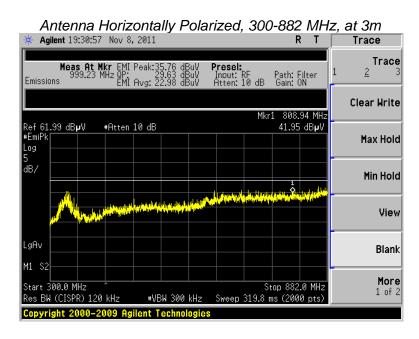
Notes:

1. A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.

2. Measurements above 5 GHz were made at 1 meters of separation from the EUT. Limits have been corrected to reflect the change in measurement distance.


3. H: Horizontal, V: Vertical, F: Flat, S: Side.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 16 of 47

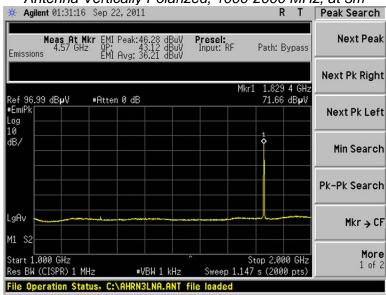

5.7 - Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

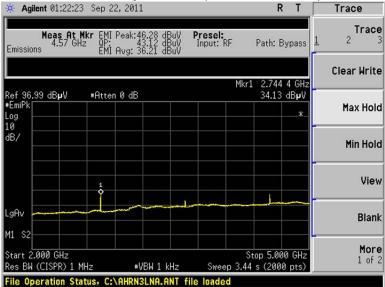
The signature scans shown here are from worst-case emissions, as measured on channels 903 MHz, 914.6 MHz, or 926.6 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 17 of 47

Screen Captures - Radiated Emissions Testing – Transmit Mode (continued)


Note: The frequency range 882-902 MHz and 926-960 MHz is in the Band-edge section (Exhibit 8).

K Agilent 00:21:1	9 Sep 28, 2011		RT	Trace
Meas At 960.52 missions	Mkr EMI Peak:47.93 MHz QP: 43.13 EMI Avg: 35.22	dBuV Presel: dBuV Input: RF dBuV	Path: Bypass	Тгасе 1 <u>2</u> 3
Marker 960.		Mkr1	960.520 MHz	Clear Write
ef 96.99 dBµV EmiPk og 0	#Atten 0 dB		48.37 dBµV	Max Hold
8/				Min Hold
	and and a start of the start of	ganagerighters	ntras visualismente manya	Viev
gAv				Blank
11 S2 tart 960.00 MHz Res BW (CISPR) 12	20 kHz #VBW 30		1.000 00 GHz ms (2000 pts)	More 1 of 2


Antenna Horizontally Polarized, 960-1000 MHz, at 3m

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 18 of 47

Screen Captures - Radiated Emissions Testing – Transmit Mode (continued)

Antenna Vertically Polarized, 1000-2000 MHz, at 3m

Antenna Vertically Polarized, 2000-5000 MHz, at 3m

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 19 of 47

🔆 Ag	jilent 01:29:23	Sep 2	3,2011							Peak Search
lef 96 'eak	6.99 dBµV	#Atter	n 0 dB				4	1kr1 7. 63.70	41 GHz dB µ V	Next Peak
og Ø B/										Next Pk Right
										Next Pk Left
gAv	man mar for the most	Aurton	an share and a	eljan Maria A	www.	and the second	whereast	with the state of	Mangupter	Min Search
1 \$2 3 FC AA										Pk-Pk Search
(f): Tun ∦p	Marker 7.410000		GHz-							Mkr → Cl
	63.70 d 4.00 GHz 3W 1 MHz	BµV_	#V	BW 1 M	 Hz	Sw		top 10.0 ms (60		More 1 of 2
	r not respon	ding	#V	SW I M	IHZ	24	eep IV	ms (60	I pts)	

Antenna Vertically Polarized, 4000-10000 MHz, at 1m

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 20 of 47

5.9 - Receive Mode Testing

Per the requirements of RSS-210 and CFR 47 part 15, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10 and CFR 47 15.109.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Measurement data and screen captures from the receive tests are presented below:

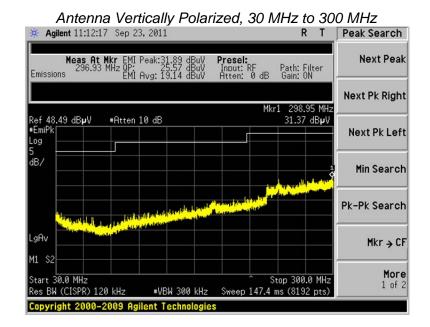
Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi-Peak Reading (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
299.0	1.00	0	25.0	46.0	21.0	Н	side
992.48	1.00	0	30.1	54.0	23.9	Н	side
3839.4	1.00	0	27.2	54.0	26.8	Н	side
389.04	1.00	0	35.2	46.0	10.8	Н	side

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Average Reading (dBμV/m)	E-Field Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
5486.7	1.01	0	62.9	61.8	63.5	1.7	V	S

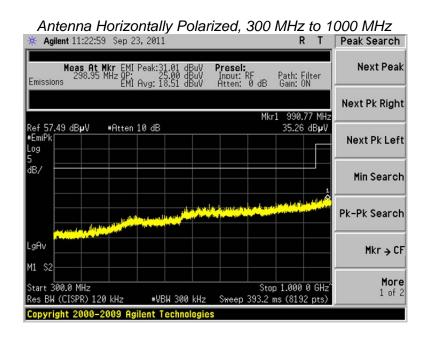
Notes:

 A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.

2. Measurements above 4 GHz were made at 1 meters of separation from the EUT.


3. H: Horizontal, V: Vertical, F: Flat, S: Side.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 21 of 47


5.10 - Screen Captures - Radiated Emissions Testing - Receive Mode

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 903.0 MHz, 914.6 MHz, or 926.6 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 22 of 47

Screen Captures - Radiated Emissions Testing – Receive Mode (continued)

Antenna Vertically Polarized, 1000 MHz to 4000 MHz

* Agilent 01:29:	07 Sep 28, 2011		RT	Trace
Meas At 3.84 (Emissions	t Mkr EMI Peak:39.71 c GHz QP: 34.96 c EMI Avg: 27.16 c	BuV Presel: BuV Input: RF BuV	Path: Bypass	Trace <u>1</u> 2 3
		Mkr1	3.839 4 GHz	Clear Write
Ref 91.99 dB µ V •EmiPk	#Atten 0 dB		27.38 dBµV	Max Hold
.0 IB/				Min Hold
			1	View
.gAv	******			Blank
M1 S2 Start 1.000 GHz #Res BW (CISPR)	1 MHz #VBW 10		top 4.000 GHz ns (2000 pts)	More 1 of 2

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 23 of 47

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

6.1 - Test Setup

The test area and setup are in accordance with ANSI C63.4-2003 and with Title 47 CFR, FCC Part 15, Industry Canada RSS-210 and RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), $50/250 \mu$ H Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the EMI Receiver. The EMCO LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

<u>6.2 - Test Procedure</u>

The EUT was investigated in continuous modulated transmit mode and continuous receive mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

An Enercell brand off-the-shelf AC-DC power supply was used during the test to supply the EUT with voltage.

6.3 - Test Equipment Utilized

Please see Appendix A.

6.4 - Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC CFR 47 Part **15.207** and **15.107**, Conducted Emissions. See the Data Charts and Graphs for more details of the test results. By virtue of meeting the requirements of FCC, the EUT also meets the requirements of IC **RSS 210** and **RSS GEN**.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 24 of 47

6.5 - FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B Limit	s (dBµV)	Measuring		
(MHz)	Quasi-Peak	Average	Bandwidth		
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz		
0.5 – 5.0	56	46	VBW ≥ 9 kHz for QP		
5.0 – 30	60	50	VBW = 1 Hz for Average		
* The limit decreases linearly with					
this range.	-				

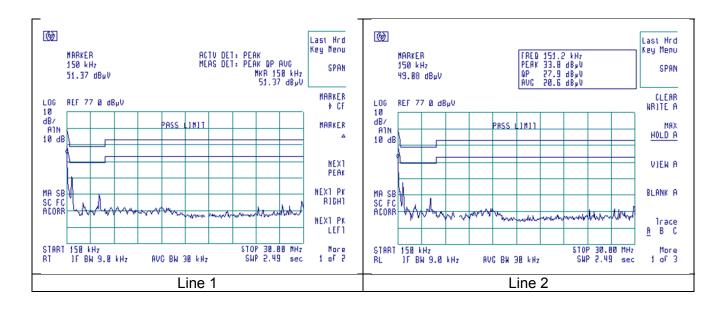
<u>6.6 – Conducted Emissions Test Data Chart</u> Frequency Range inspected: 150 KHz to 30 MHz

Test Standard: FCC 15.207 Class B IC RSS GEN 7.2.2

Manufacturer:	LS	LS Research, LLC					
Date(s) of Test:	00	ctober 4, 2012					
Project Engineer:	Pe	eter Feilen					
Voltage:	3.6	SVDC Nominal Volta	age				
Operation Mode:	Co	Continuous transmit and Continuous receive					
Environmental	Temperature: 20 – 25° C						
Conditions in the Lab:	Re	elative Humidity: 30	- 60	%			
Test Location:						Chamber	
EUT Placed On:	Х	40cm from Vertica	l Gro	und Plane		10cm Spacers	
EUT Flaced Off.	Х	K 80cm above Ground Plane				Other:	
Measurements:		Pre-Compliance		Preliminary	Х	Final	
Detector Used:		Peak	Х	Quasi-Peak	Х	Average	

Frequency (MHz)	Line	Q-Peak Reading (dBµV)	Q-Peak Limit (dBµV)	Quasi- Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBµV)	Average Margin (dB)
0.151	1	27.900	65.945	38.045	20.600	55.945	35.345
0.150	2	27.600	66.000	38.400	19.600	56.000	36.400

Notes:


1) The emissions listed are characteristic of the power supply used, and did not change by the EUT.

2) The EUT exhibited similar emissions in transit and receive modes
3) All other emissions were better than 20 dB below the limits.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 25 of 47

6.7 - Screen Captures - Conducted Emissions Test

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 26 of 47

EXHIBIT 7. OCCUPIED BANDWIDTH

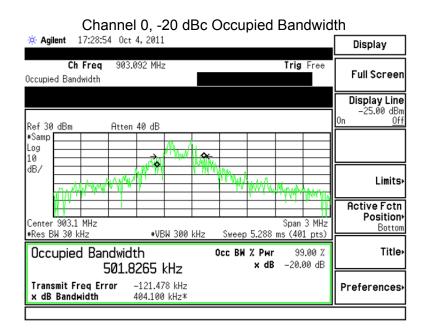
<u> 7.1 - Limits</u>

For a frequency Hopping system in the 902 to 928 MHz band, the 20 dB bandwidth shall not exceed 500 kHz for FCC CFR 47 15.247 (a)(1)(i) and IC RSS 210 A8.1. (c).

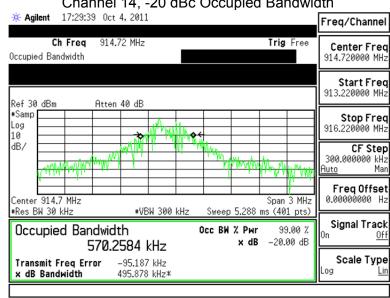
7.2 - Method of Measurements

Public notice DA 00-705 was observed for measurement guidance. The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 30 kHz RBW and VBW=300 kHz.

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements, without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 1 kHz for this portion of the tests. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.


From this data, the closest measurement (20 dB bandwidth) when compared to the specified limit, is 496 kHz, which is below the maximum of 500 kHz.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 27 of 47


7.3 - Test Data

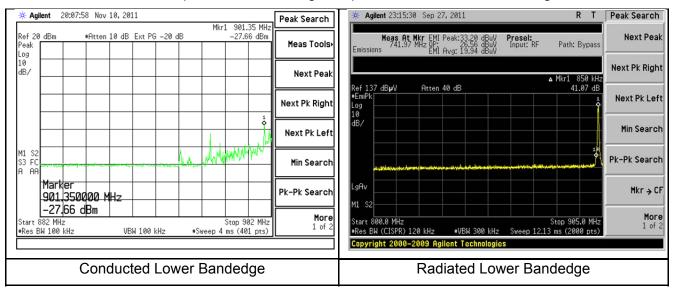
Channel	Center Frequency (MHz)	Measured 99% Occ. BW (kHz)	Measured -20 dBc Occ. BW (kHz)	Maximum - 20 dBc Limit (kHz)	Margin (kHz)
0	903.0	502	404	500	96
14	914.6	570	496	500	4
28	926.6	497	427	500	73

7.4 - Screen Captures - Occupied Bandwidth

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 28 of 47

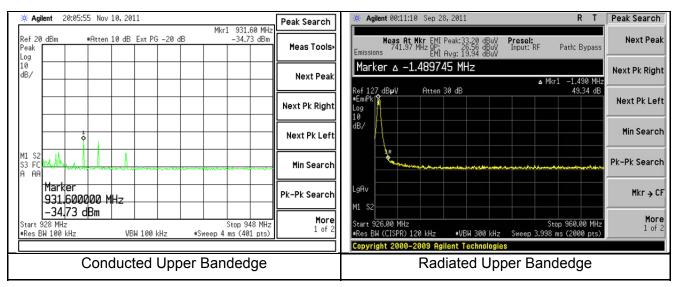
Channel 14, -20 dBc Occupied Bandwidth

Channel 28, -20 dBc Occupied Bandwidth


☆ Agilent 17:30:51 0c	t 4,2011			Freq/Channel
Ch Freq 928 Occupied Bandwidth	6.63 MHz		Trig Free	Center Fred 926.630000 MHz
Ref 30 dBm Atte	n 40 dB	Mkr1	926.6675 MHz 8.285 dBm	Start Fred 925.130000 MH;
#Samp Log 10	<u> </u>	◊ ∈		Stop Fred 928.130000 MH:
dB/		- WWWWWW	n/MA-	CF Step 300.000000 kH <u>Auto</u> Ma
Center 926.6 MHz #Res BW 30 kHz	#VBW 300 kHz	Sween 5 288	Span 3 MHz ms (401 pts)	Freq Offse 0.00000000 Hi
Occupied Bandwid		Occ BW % Pwr x dB	99.00 %	Signal Tracl On <u>Of</u>
Transmit Freq Error x dB Bandwidth	-15.591 kHz 427.092 kHz*			Scale Type Log <u>Li</u>

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 29 of 47

EXHIBIT 8. BAND EDGE MEASUREMENTS


8.1 - Method of Measurements

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902 MHz to 928 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

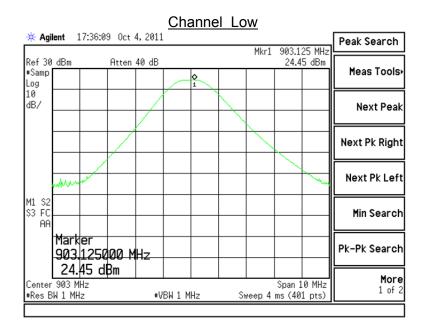
Screen Capture Demonstrating Compliance at the Lower Band-Edge

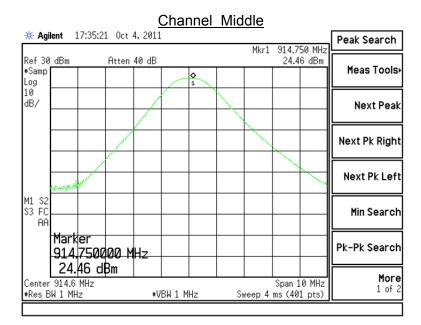
Screen Capture Demonstrating Compliance at the Upper Band-Edge

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 30 of 47

EXHIBIT 9. POWER OUTPUT (CONDUCTED)

9.1 - Method of Measurements


Public notice DA 00-705 was observed for measurement guidance. The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with resolution bandwidths set to 1 MHz and a span of 10 MHz with measurements from a peak detector presented in the chart below.


9.2	- Test Data

CHANNEL	CENTER FREQ (MHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)
LOW	903.0	30.0	24.5	4.5
MIDDLE	914.6	30.0	24.5	4.5
HIGH	926.6	30.0	24.5	4.5

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 31 of 47

9.3 - Screen Captures - Power Output (Conducted)

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 32 of 47
		-

		<u>ah</u>	el Hig	anne	<u>Ch</u>					
Peak Search						4,2011	5 Oct	17:34:3	lent 1	🔆 Agi
Meas Tools	926.725 MHz 24.47 dBm	Mkr1		0		40 dB	Atten		dBm	Ref 30 #Samp
Next Pea				1						Log 10 dB/
Next Pk Righ										
Next Pk Lef								\nearrow	browen	
Min Searcl										M1 S2 S3 FC AA
Pk-Pk Searcl						Hz		7250		
Mor 1 of	pan 10 MHz s (401 pts)	weep 4	S	 Hz	 BW 1 M	<u>ا</u> +۷	βW		24. 926.6 W 1 MH	

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 33 of 47

EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

<u> 10.1 - Limits</u>

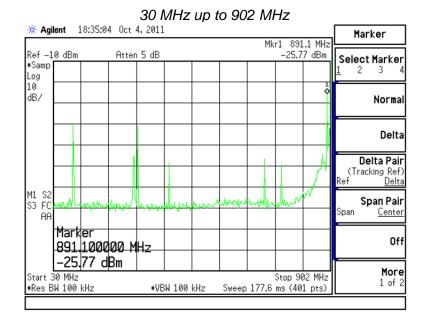
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

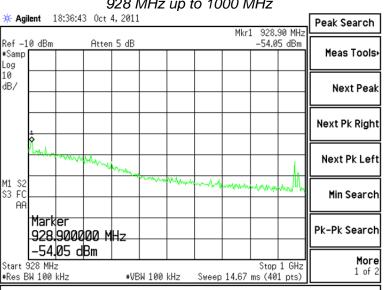
10.2 - Conducted Harmonic And Spurious RF Measurements

FCC Part 15.247(d) and IC RSS 210 A8.5 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. Public notice DA 00-705 was observed for measurement guidance. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

Conducted narmonics.			
Freq	903	914.6	926.6
2fo	-13.88	-15.91	-17.81
3fo	-1.49	-0.1	-0.02
4fo	-63.78	-66.7	-71.26
5fo	Note 1	Note 1	-71.93
6fo	Note 1	Note 1	Note 1
7fo	Note 1	Note 1	Note 1
8fo	Note 1	Note 1	Note 1
9fo	Note 1	Note 1	Note 1
10fo	Note 1	Note 1	Note 1

Conducted harmonics:


Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 34 of 47


Conducted spurious emissions:

Freq(MHz)	Chan	level(dBm)
494.3	28	-37.0
354.8	28	-51.6
952.7	28	-48.0
2777.5	28	-56.3
2732.5	14	-14.4
1337.5	14	-57.7
128.1	14	-41.8
93.2	0	-43.1
296.0	0	-41.0
891.1	0	-25.7
928.9	0	-54.1
997.1	0	-63.3
2080.0	0	-52.9

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 35 of 47

10.3- Screen Captures – Spurious Conducted Emissions

928 MHz up to 1000 MHz

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 36 of 47
		-

e Agi	lent	18:37:3	0 Uct	4,2011				Mkr1	2.00	00 GHz	Peak Search
	0 dBm		Atter	n 5 dB				PIKI .		2 dBm	
Samp og											Meas Tool
) 3/											Next Pea
		1									Next Pk Rig
											Next Pk Le
1 S2 3 FC AA	All the second	flag	VY Wilman	Mary	plunyhr	MIN	AMAN	UMAN	li hung	Mundi	Min Searc
		er 0000 12 d	000			, <u>,</u>	ΥΥ 				Pk-Pk Searc
	L GHz W 100				W 100			p 1.833		0 GHz	Mor 1 of

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 37 of 47

EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

Public notice DA 00-705 was observed for measurement guidance. For measurements of the frequency and power stability, the transmitter was powered by an external bench-type variable power supply. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers and also the output power at the antenna port.

	2.8 VDC		3.3 VDC			
Power	Frequency	Power	Frequency	Power	Frequency	Channel
23.39	903.0925	24.32	903.0925	25.31	903.0925	0
23.48	914.7425	24.43	914.75	25.17	914.75	14
23.38	926.725	24.37	926.725	25.11	926.72	28

max	min	freq drift (Hz)	Channel
903.093	903.093	0	0
914.750	914.743	0.0075	14
926.725	926.720	0.005	28

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characterizes were well behaved, and the system returned to the same state of operation as before the power cycle.

The maximum shift in frequency is better than 100 ppm in the 2400 MHz to 2483.5 MHz band.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 38 of 47

EXHIBIT 12. CHANNEL PLAN AND SEPARATION

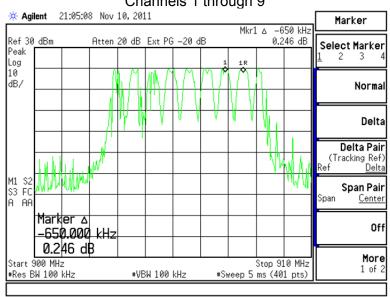
Public notice DA 00-705 was observed for measurement guidance. A spectrum analyzer was used with a resolution bandwidth of 100 kHz to measure the channel separation of the EUT.

The minimum and maximum channel-separations measured for this device are 650 kHz and 3.56 MHz respectively. The maximum occupied bandwidth of the device, as reported in the previous section is 496 kHz.

The minimum channel separation limit as stated in FCC CFR 47 15.247 and IC RSS210 is 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

The minimum number of channels limit as stated in FCC CFR 47 15.247 and IC RSS210 is 50 channels for channel bandwidth less than 250 kHz and 25 channels for channel bandwidth greater than 250 kHz.

The following plots describe this spacing, and also establish the channel separation and plan.

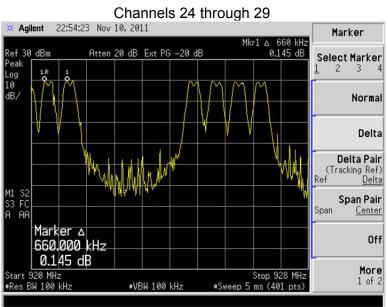

RANGE (MHz)	NUMBER OF CHANNELS PER CAPTURE	Max separation (Hz)
900 - 910	9.0	65000
910 - 920	14.0	65000
920 - 930	6.0	3560000

Total Channels	29
Max separation	3560000 Hz
Min Separation	65000 Hz

Total number of channels = 29

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 39 of 47

12.1 - Screen Captures - Channel Separation



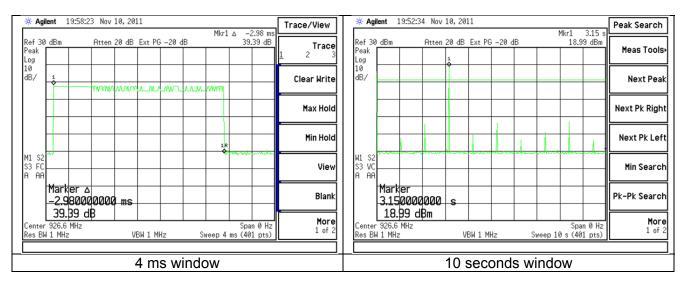
Channels 10 through 24 ☆ Agilent 21:33:01 Nov 10, 2011 Marker Mkr1 ∆ 650 kHz -0.053 dB Ref 30 dBm Atten 20 dB Ext PG -20 dB Select Marker Peak 2 3 Δ 1 R 4 Log 10 dB/ 'n. Normal h Delta Delta Pair (Tracking Ref) Ref <u>Delta</u> M1 S2 S3 FC A AA Span Pair Center Span Marker 🛆 Off 650,000 kHz -0.053 dB More 1 of 2 Start 910 MHz #Res BW 100 kHz Stop 920 MHz #Sweep 5 ms (401 pts) #VBW 100 kHz

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 40 of 47

Screen Captures - Channel Separation (continued)

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 41 of 47
		-

EXHIBIT 13. CHANNEL OCCUPANCY


Part 15.247(a)(1) requires a channel occupancy, for this device, of no more than 400 milliseconds in a 10 second window. The channel occupancy for this EUT was measured using a spectrum analyzer, set to zero-span at the frequency of interest. With the analyzer in peak-hold mode, the transmission lengths can be measured by adjusting the sweep rate of the analyzer. A suitable sweep rate was used to measure the channel occupancy at the low, mid and high channels.

The longest time any transmission will occur on a single channel is 3.48 milliseconds. In a 10 second window, each channel has 3 transmission cycles. The maximum occupancy in a 10 second window is calculated by multiplying 3 transmission cycles by 3.48 milliseconds transmission duration per cycle, to arrive at 10.44 milliseconds total occupancy. This means the device is within tolerance, transmitting 10.44 ms, which is less than the maximum allowable of 400 ms in 10 second period.

Greatest Occupancy Observed

Channel	Frequency (MHz)	Total Occupancy in 10 seconds	Occupancy in 400 ms window	
		(ms)	(ms)	
High	926.6	8.94	2.98	

Plots of Greatest Channel Occupancy

Channel High Occupancy

Note: High channel data provided as an example. Low, middle and high channels are similar.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 42 of 47

EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.

This system uses the spread spectrum technique of frequency hopping. The carrier frequency changes many times per second. As required by the FCC, each channel is guaranteed not be used more than 400 ms in a 10 second window. Also all channels are used equally by the system and every device within the system. For this reason at 29 channels are used and all devices must channel hop.

The channel sets implemented are a list of channels a radio will cycle through as part of its frequency hopping. Each channel set available consists of the same 29 channels in pseudo-random order. The sets are created as orthogonal as possible to minimize the amount of interference between radios using different channel sets. The channel set used by a gateway is determined by the least significant byte of the 2 byte identifier (configured via the gateway GUI). The gateway forwards the channel set to the sensors when they join the gateway's system via the Network Initialization Vector (NIV). The channel gets implemented are defined in the following table.

{0, 3, 20, 5, 4, 22, 19, 18, 13, 11, 23, 12, 16, 2, 1, 8, 15, 27, 9, 24, 10, 26, 28, 14, 6, 7, 17, 25, 21} {10, 22, 16, 17, 24, 3, 2, 27, 13, 26, 6, 23, 9, 8, 7, 25, 18, 20, 28, 21, 11, 15, 4, 5, 12, 14, 0, 1, 19} {12, 15, 2, 26, 4, 1, 10, 19, 9, 27, 25, 6, 28, 17, 16, 20, 18, 21, 3, 7, 8, 5, 24, 14, 13, 22, 11, 23, 0} 18, 5, 22, 14, 3, 24, 2, 9, 10, 23, 19, 12, 16, 25, 1, 13, 4, 8, 0, 28, 7, 21, 17, 20, 27, 6, 26, 15, 11 {3, 13, 1, 27, 25, 7, 15, 5, 14, 28, 24, 23, 10, 19, 8, 17, 2, 12, 21, 9, 26, 4, 18, 6, 20, 0, 16, 22, 11} {17, 7, 1, 16, 24, 3, 6, 9, 25, 0, 11, 2, 10, 21, 28, 5, 23, 8, 14, 18, 19, 4, 20, 22, 13, 27, 26, 15, 12} {2, 9, 22, 19, 5, 13, 24, 18, 4, 7, 27, 23, 16, 10, 12, 25, 6, 11, 14, 8, 15, 28, 20, 0, 3, 17, 21, 1, 26} {0, 22, 4, 11, 18, 21, 8, 12, 3, 6, 5, 28, 1, 2, 17, 25, 15, 16, 20, 19, 26, 7, 24, 14, 9, 13, 23, 27, 10} {16, 23, 24, 19, 22, 25, 10, 8, 26, 11, 20, 6, 21, 1, 9, 7, 17, 5, 0, 13, 12, 15, 28, 14, 2, 18, 3, 27, 4} 1, 2, 5, 19, 23, 16, 4, 22, 21, 8, 11, 0, 14, 15, 26, 25, 20, 3, 28, 10, 7, 9, 12, 17, 27, 6, 24, 18, 13 {14, 8, 12, 7, 20, 18, 3, 10, 5, 25, 1, 0, 4, 15, 2, 13, 17, 28, 24, 22, 19, 6, 16, 9, 27, 11, 23, 21, 26} {26, 28, 22, 24, 3, 11, 13, 27, 7, 25, 16, 8, 15, 10, 6, 19, 4, 14, 20, 23, 17, 1, 21, 5, 2, 12, 18, 0, 9} {6, 10, 20, 16, 1, 19, 9, 25, 21, 15, 27, 22, 12, 5, 26, 14, 3, 18, 4, 17, 13, 8, 7, 28, 23, 24, 0, 2, 11} {22, 10, 11, 7, 18, 27, 19, 3, 6, 1, 24, 20, 25, 2, 23, 4, 16, 5, 14, 26, 17, 21, 13, 28, 15, 9, 0, 12, 8} *{*6, 10, 28, 0, 17, 19, 9, 7, 23, 13, 14, 12, 8, 1, 22, 4, 5, 16, 26, 3, 2, 15, 24, 11, 21, 20, 27, 18, 25*}* {10, 19, 21, 3, 1, 26, 22, 28, 27, 6, 23, 4, 15, 24, 16, 7, 2, 25, 8, 12, 14, 9, 13, 5, 20, 0, 11, 17, 18}

Note: The information in this section is provided by the manufacturer.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 43 of 47

EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.

Sensors will resynchronize with the gateway once every second. They will synchronize to the gateway via the beacon message sent out on regular intervals by the gateway. The synchronization will be done just before the sensor is to transmit data to the gateway. This will ensure that the open communication window between the gateway and sensors will be as closely coordinated as possible.

To achieve this all sensors are put into a sleep mode in a systematic way within the communication protocol. By synchronizing the duty cycle which the radios in the battery powered sensors are turned on, the system can limit the power used by allowing the whole system to sleep in a coordinated manner. This is implemented first by keeping tight timing as described above. All devices can then sleep during the time periods where no communication is taking place, wake up on a time based interval, re-synchronize to the Gateway Beacon and TX/RX any data that needs to pass within the system. On each beacon message interval the channel used for communications is changed by incrementing the index of the channel selector to the next channel in the hop channel set selected for this network.

Note: The information in this section is provided by the manufacturer.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 44 of 47
		-

<u>APPENDIX A – Test Equipment List</u>

	30-Aug-2011	Type Test	Radiated Emissio	ons		Job #	<u>C-1283</u>
Prepared By:	Peter	Customer :	LSR			Quote #	311256
No. Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1 EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/7/2010	6/7/2011	Active Calibration
2 EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3 EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
4 AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration
5 AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	12/22/2009	12/22/2010	Active Calibration
6 AA 960150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration
7 EE 960147	Pre-Amp	Adv. Micro	WLA612	123101	12/28/2009	12/28/2010	Active Calibration
8 EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration
9 AA 960156	900MHz High Pass Filter	KWM	HPF-L-14185	unknown	6/4/2010	6/4/2011	Active Calibration
LS RE Wireless Equi	SEARCH LLC s Product Development pment Calibration						
Date :	30-Aug-2011	Type Test	Conducted Radio			Job #	: <u>C-1283</u>
Prepared By:		Customer :	LSR			Quote #	311256
No. Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1 EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration
Wireles: Equi Date :	SEARCH LLC Product Development pment Calibration 4-Oct-2012		Conducted Emiss	sions		_	: <u>C-1283</u>
Wireless	s Product Development pment Calibration 4-Oct-2012	Type Test		sions		_	: <u>C-1283</u> : <u>311256</u>
Wireles: Equi Date :	s Product Development pment Calibration 4-Oct-2012			sions Serial#	Cal Date	_	
Wireles: Equi Date : Prepared By:	s Product Development pment Calibration 4-Oct-2012	Customer :	LSR			Quote #	: <u>311256</u>
Vireles: Equi Date : Prepared By: No. Asset # 1 AA 960072	Product Development pment Calibration 4-Oct-2012 	Customer : Manufacturer	LSR Model #	Serial #	Cal Date	Quote #	311256 Equipment Status
Wireles: Equi Date : Prepared By: No. Asset # 1 AA 960072	Product Development pment Calibration 4-Oct-2012 Description Transient Limiter	Customer : Manufacturer HP	LSR Model # 11947A	Serial # 3107A02515	Cal Date 9/20/2012 1/3/2012	Quote # Cal Due Date 9/20/2013	311256 Equipment Status Active Calibration
Wireles: Equil Date : Prepared By: 10. Asset # 1 11. AA 960072 2 2. AA 960008 2	Product Development prent Calibration 4-Oct-2012 Description Transient Limiter LISN	Customer : Manufacturer HP EMCO	LSR Model # 11947A 3816/2NM	Serial # 3107A02515 9701-1057	Cal Date 9/20/2012 1/3/2012	Quote # Cal Due Date 9/20/2013 1/3/2013	311256 Equipment Status Active Calibration Active Calibration
Wireless Equi Date : Prepared By: AA 960072 2 AA 960008 3 EE 960013	Product Development pment Calibration 4-Oct-2012 Description Transient Limter LISN EMI Receiver	Customer : Manufacturer HP EMCO HP	LSR Model # 11947A 3816/2NM 8546A System	Serial # 3107A02515 9701-1057 3617A00320;3448A	Cal Date 9/20/2012 1/3/2012 11/22/2011	Quote # Cal Due Date 9/20/2013 1/3/2013 11/22/2012	Equipment Status Active Calibration Active Calibration Active Calibration Active Calibration

Project Engineer:_____leter Filen

Quality Assurance:

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 45 of 47
		-

APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2003		
ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 16-1-1 Note 1	2010-01		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2009		
FCC 47 CFR, Parts 0-15, 18, 90, 95	2009		
FCC Public Notice DA 00- 1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 003	2004-02		
RSS GEN	2007-06		
RSS 210	2007-06		

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 46 of 47
		-

APPENDIX C - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64°/2.88 %RH

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 B	Model #: SiFLEX01	
LSR Job #: C-1283	Serial#:	Page 47 of 47