

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

TEST REPORT # 311256 A LSR Job #: C-1283

Compliance Testing of: 900 MHz Transceiver with Dipole Antenna

<u>Test Date(s)</u>: October 26, November 2, 8, 10, 2011, October 4, 2012

Prepared For: LS Research, LLC W66 N220 Commerce Ct Cedarburg, WI 53012

> In accordance with: Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 210 Annex 8 Frequency Hopping Spread Spectrum (FHSS) Operating in the Frequency Band 902-928 MHz

 This Test Report is issued under the Authority of:

 Signature:
 Item Trikin

 Date:
 10/17/12

 Test Report Reviewed by:
 Tested by:

 Adam Alger, EMC Engineer
 Tested by:

 Peter Feilen, EMC Engineer.
 Peter Feilen, EMC Engineer.

 Signature:
 Mum MMM

 Date:
 10/16/12

 Signature:
 Date:

 Adam Alger, EMC Engineer
 Signature:

 Image:
 Date:

 Image:
 Date:

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	.4
1.1 - Scope	4
1.2 – Normative References	4
1.3 - LS Research, LLC Test Facility	5
1.4 – Location of Testing	5
1.5 – Test Equipment Utilized	5
EXHIBIT 2. PERFORMANCE ASSESSMENT	6
2.1 – Client Information	6
2.2 - Equipment Under Test (EUT) Information	6
2.3 - Associated Antenna Description	6
2.4 - EUT'S Technical Specifications	7
2.5 - Product Description	8
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	9
3.1 - Climate Test Conditions	9
3.2 - Applicability & Summary of EMC Emission Test Results	9
3.3 - Modifications Incorporated In The EUT For Compliance Purposes	9
3.4 - Deviations & Exclusions From Test Specifications	9
EXHIBIT 4. DECLARATION OF CONFORMITY1	0
EXHIBIT 5. RADIATED EMISSIONS TEST1	1
5.1 - Test Setup1	1
5.2 - Test Procedure1	1
5.3 - Test Equipment Utilized1	2
5.4 - Test Results1	2
5.5 - Calculation of Radiated Emissions Limits1	3
5.6 - Radiated Emissions Test Data Chart1	4
5.7 - Screen Captures - Radiated Emissions Test1	6
5.9 - Receive Mode Testing1	9
5.10 - Screen Captures - Radiated Emissions Testing – Receive Mode	20
EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE	22
6.1 - Test Setup2	22
6.2 - Test Procedure2	22
6.3 - Test Equipment Utilized2	22
6.4 - Test Results2	22

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 2 of 45

6.5 - FCC Limits of Conducted Emissions at the AC Mains Ports 23 6.6 - Conducted Emissions Test Data Chart 23 6.7 - Screen Captures - Conducted Emissions Test 24 EXHIBIT 7. OCCUPIED BANDWIDTH 25 7.1 - Limits 25 7.2 - Method of Measurements 25 7.3 - Test Data 26 7.4 - Screen Captures - Occupied Bandwidth 26 EXHIBIT 8. BAND EDGE MEASUREMENTS 28 8.1 - Method of Measurements 28 EXHIBIT 9. POWER OUTPUT (CONDUCTED) 29 9.1 - Method of Measurements 29 9.2 - Test Data 29 9.3 - Screen Captures - Power Output (Conducted) 29 9.3 - Screen Captures - Power Output (Conducted) 29 9.3 - Screen Captures - Spurious Conducted Emissions 31 10.1 - Limits 31 10.2 - Conducted Harmonic And Spurious RF Measurements 31 10.3 - Screen Captures - Spurious Conducted Emissions 32 EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS 35 EXHIBIT 12. CHANNEL PLAN AND SEPARATION 36 12.1 - Screen Captures - Channel Separation 37 EXHIBIT 13. CHANNEL O		
6.7 - Screen Captures – Conducted Emissions Test24EXHIBIT 7. OCCUPIED BANDWIDTH257.1 - Limits257.2 - Method of Measurements257.3 - Test Data267.4 - Screen Captures - Occupied Bandwidth26EXHIBIT 8. BAND EDGE MEASUREMENTS288.1 - Method of Measurements28EXHIBIT 9. POWER OUTPUT (CONDUCTED)299.1 - Method of Measurements299.2 - Test Data299.3 - Screen Captures – Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits3110.2 - Conducted Harmonic And Spurious RF Measurements32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	6.5 - FCC Limits of Conducted Emissions at the AC Mains Ports	23
EXHIBIT 7. OCCUPIED BANDWIDTH257.1 - Limits.257.2 - Method of Measurements257.3 - Test Data267.4 - Screen Captures - Occupied Bandwidth26EXHIBIT 8. BAND EDGE MEASUREMENTS288.1 - Method of Measurements28EXHIBIT 9. POWER OUTPUT (CONDUCTED)299.1 - Method of Measurements299.2 - Test Data299.3 - Screen Captures – Power Output (Conducted)299.3 - Screen Captures – Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits3110.2 - Conducted Harmonic And Spurious RF Measurements32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	6.6 – Conducted Emissions Test Data Chart	23
7.1 - Limits.257.2 - Method of Measurements257.3 - Test Data267.4 - Screen Captures - Occupied Bandwidth26EXHIBIT 8. BAND EDGE MEASUREMENTS288.1 - Method of Measurements28EXHIBIT 9. POWER OUTPUT (CONDUCTED)299.1 - Method of Measurements299.2 - Test Data299.3 - Screen Captures - Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits3110.2 - Conducted Harmonic And Spurious RF Measurements3110.3 - Screen Captures - Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures - Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A - Test Equipment List43APPENDIX B - Test Standards: CURRENT PUBLICATION DATES RADIO44	6.7 - Screen Captures – Conducted Emissions Test	24
7.2 - Method of Measurements257.3 - Test Data267.4 - Screen Captures - Occupied Bandwidth26EXHIBIT 8. BAND EDGE MEASUREMENTS288.1 - Method of Measurements28EXHIBIT 9. POWER OUTPUT (CONDUCTED)299.1 - Method of Measurements299.2 - Test Data299.3 - Screen Captures – Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits3110.2 - Conducted Harmonic And Spurious RF Measurements3110.3 - Screen Captures – Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	EXHIBIT 7. OCCUPIED BANDWIDTH	25
7.3 - Test Data 26 7.4 - Screen Captures - Occupied Bandwidth 26 EXHIBIT 8. BAND EDGE MEASUREMENTS 28 8.1 - Method of Measurements 28 EXHIBIT 9. POWER OUTPUT (CONDUCTED) 29 9.1 - Method of Measurements 29 9.2 - Test Data 29 9.3 - Screen Captures – Power Output (Conducted) 29 EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS 31 10.1 - Limits 31 10.2 - Conducted Harmonic And Spurious RF Measurements 31 10.3 - Screen Captures – Spurious Conducted Emissions 32 EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS 35 EXHIBIT 12. CHANNEL PLAN AND SEPARATION 36 12.1 - Screen Captures – Channel Separation 37 EXHIBIT 13. CHANNEL OCCUPANCY. 40 EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE 41 EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH. 42 APPENDIX A – Test Equipment List 43 APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO 44	7.1 - Limits	25
7.4 - Screen Captures - Occupied Bandwidth 26 EXHIBIT 8. BAND EDGE MEASUREMENTS 28 8.1 - Method of Measurements 28 EXHIBIT 9. POWER OUTPUT (CONDUCTED) 29 9.1 - Method of Measurements 29 9.2 - Test Data 29 9.3 - Screen Captures – Power Output (Conducted) 29 EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS 31 10.1 - Limits 31 10.2 - Conducted Harmonic And Spurious RF Measurements 31 10.3 - Screen Captures – Spurious Conducted Emissions 32 EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS 35 EXHIBIT 12. CHANNEL PLAN AND SEPARATION 36 12.1 - Screen Captures – Channel Separation 37 EXHIBIT 13. CHANNEL OCCUPANCY 40 EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE 41 EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH. 42 APPENDIX A – Test Equipment List 43 APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO 44	7.2 - Method of Measurements	25
EXHIBIT 8. BAND EDGE MEASUREMENTS288.1 - Method of Measurements28EXHIBIT 9. POWER OUTPUT (CONDUCTED)299.1 - Method of Measurements299.2 - Test Data299.3 - Screen Captures – Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits3110.2 - Conducted Harmonic And Spurious RF Measurements3110.3 - Screen Captures – Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	7.3 - Test Data	26
8.1 - Method of Measurements.28EXHIBIT 9. POWER OUTPUT (CONDUCTED).299.1 - Method of Measurements.299.2 - Test Data.299.3 - Screen Captures – Power Output (Conducted).29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS.3110.1 - Limits.3110.2 - Conducted Harmonic And Spurious RF Measurements.3110.3 - Screen Captures – Spurious Conducted Emissions.32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS.35EXHIBIT 12. CHANNEL PLAN AND SEPARATION.3612.1 - Screen Captures – Channel Separation.37EXHIBIT 13. CHANNEL OCCUPANCY.40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH42APPENDIX A – Test Equipment List.43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO.44	7.4 - Screen Captures - Occupied Bandwidth	26
EXHIBIT 9. POWER OUTPUT (CONDUCTED) 29 9.1 - Method of Measurements 29 9.2 - Test Data 29 9.3 - Screen Captures – Power Output (Conducted) 29 EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS 31 10.1 - Limits 31 10.2 - Conducted Harmonic And Spurious RF Measurements 31 10.3 - Screen Captures – Spurious Conducted Emissions 32 EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS 35 EXHIBIT 12. CHANNEL PLAN AND SEPARATION 36 12.1 - Screen Captures – Channel Separation 37 EXHIBIT 13. CHANNEL OCCUPANCY 40 EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE 41 EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH. 42 APPENDIX A – Test Equipment List 43 APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO 44	EXHIBIT 8. BAND EDGE MEASUREMENTS	28
9.1 - Method of Measurements299.2 - Test Data299.3 - Screen Captures – Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits3110.2 - Conducted Harmonic And Spurious RF Measurements3110.3 - Screen Captures – Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	8.1 - Method of Measurements	28
9.1 - Method of Measurements299.2 - Test Data299.3 - Screen Captures – Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits3110.2 - Conducted Harmonic And Spurious RF Measurements3110.3 - Screen Captures – Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	EXHIBIT 9. POWER OUTPUT (CONDUCTED)	29
9.3 - Screen Captures – Power Output (Conducted)29EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS3110.1 - Limits.3110.2 - Conducted Harmonic And Spurious RF Measurements3110.3- Screen Captures – Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List.43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44		
EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS 31 10.1 - Limits 31 10.2 - Conducted Harmonic And Spurious RF Measurements 31 10.3- Screen Captures - Spurious Conducted Emissions 32 EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS 35 EXHIBIT 12. CHANNEL PLAN AND SEPARATION 36 12.1 - Screen Captures - Channel Separation 37 EXHIBIT 13. CHANNEL OCCUPANCY 40 EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE 41 EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH. 42 APPENDIX A - Test Equipment List 43 APPENDIX B - Test Standards: CURRENT PUBLICATION DATES RADIO 44	9.2 - Test Data	29
10.1 - Limits.3110.2 - Conducted Harmonic And Spurious RF Measurements3110.3 - Screen Captures - Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION.3612.1 - Screen Captures - Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A - Test Equipment List.43APPENDIX B - Test Standards: CURRENT PUBLICATION DATES RADIO44	9.3 - Screen Captures – Power Output (Conducted)	29
10.2 - Conducted Harmonic And Spurious RF Measurements3110.3- Screen Captures - Spurious Conducted Emissions32EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS35EXHIBIT 12. CHANNEL PLAN AND SEPARATION3612.1 - Screen Captures - Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A - Test Equipment List43APPENDIX B - Test Standards: CURRENT PUBLICATION DATES RADIO44	EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS	31
10.3- Screen Captures – Spurious Conducted Emissions	10.1 - Limits	31
EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	10.2 – Conducted Harmonic And Spurious RF Measurements	31
EXHIBIT 12. CHANNEL PLAN AND SEPARATION	10.3- Screen Captures – Spurious Conducted Emissions	32
12.1 - Screen Captures – Channel Separation37EXHIBIT 13. CHANNEL OCCUPANCY40EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE41EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.42APPENDIX A – Test Equipment List43APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	35
EXHIBIT 13. CHANNEL OCCUPANCY	EXHIBIT 12. CHANNEL PLAN AND SEPARATION	36
EXHIBIT 13. CHANNEL OCCUPANCY	12.1 - Screen Captures – Channel Separation	37
EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH		
APPENDIX A – Test Equipment List43 APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO44	EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE	41
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH	42
	APPENDIX A – Test Equipment List	43
APPENDIX C - Uncertainty Statement45	APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	44
	APPENDIX C - Uncertainty Statement	45

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC	
Report # 311256 A	Model #: SiFLEX01		
LSR Job #: C-1283	Serial #:	Page 3 of 45	

EXHIBIT 1. INTRODUCTION

<u> 1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 8
Title:	 FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low- Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or Business Residential

<u>1.2 – Normative References</u>

Please reference Appendix B for test standards followed.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 4 of 45

<u>1.3 - LS Research, LLC Test Facility</u>

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: <u>www.lsr.com</u>.

<u>1.4 – Location of Testing</u>

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Compact Chamber Semi-Anechoic Chamber Open Area Test Site (OATS)

<u>1.5 – Test Equipment Utilized</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 5 of 45
		-

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 – Client Information

Manufacturer Name:	LS Research, LLC
Address:	W66 N220 Commerce Ct
Contact Name:	Bill Steinike

<u>2.2 - Equipment Under Test (EUT) Information</u> The following information has been supplied by the applicant.

Product Name:	SiFLEX01
Model Number:	SiFLEX01
Serial Number:	11250121

2.3 - Associated Antenna Description

A half-wave center-fed dipole antenna with MMCX to reverse-gendered SMA connector is utilized.

Prepared For: LS Research, LLC	LC EUT: SiFLEX01 LS Research, LLC	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 6 of 45

2.4 - EUT'S Technical Specifications

903-926.6 MHz
18.5 dBm
18.3 dBm
488.9 kHz
FSK
489kFXD
112.20 mW
45.3 dBuV/m
52.3 dBuV/m
203 kHz
-100 dBm
No
N/A
Better than 100 ppm
CC430F6137IRGC
Detachable
Dipole
+2.0 dBi
15.247
RSS 210
🛛 Yes 🗌 No
Mobile

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Х	RF Evaluation

If <u>RF Evaluation</u> checked above, test engineer to complete the following:

Evaluated against	exposure limits	s: 🔀 Gene	ral Public I	Jse 🗌 Co	ontrolled Use
Duty Cycle used in	evaluation: 1	00 %			
Standard used for	evaluation: O	ET 65			
Measurement Dist	ance: 20 cm				
RF Value: 0.223	🗌 V/m	🗌 A/m	$\boxtimes W/m^2$		
	Measured	Con	nputed	Calculated	k

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 7 of 45

2.5 - Product Description

The SiFLEX01 module is a high performance 900MHz radio based on the Texas Instruments CC430 combined with the CC1190 front-end in a cost effective footprint, and is adaptable to many different applications.

The CC1190 is a companion IC that works in conjunction with the radio in the CC430. The CC1190 is a range extender that integrates a Power Amplifier (PA), a Low Noise Amplifier (LNA), switches, and RF matching in a single package. The CC1190 is core component on the module and is controlled via control signals from the CC430.

Note: Unique firmware, which cannot be altered by the end user, was used for all testing.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 8 of 45

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	15-35 °C
Humidity:	30-60%
Pressure:	645-795 mmHg

3.2 - Applicability & Summary of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	Yes
FCC : 15.247 (a)(1)(i) IC : RSS 210 A8.1 (a)	20 dB Bandwidth	Yes
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	Yes
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	Yes
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
FCC:15.247 (a)(1)(i) IC: RSS 210 (b)	Carrier Frequency Separation	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Number of hopping channels	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Time of occupancy (Dwell Time)	Yes
FCC : 15.247(c), 15.209 & 15.205 IC : RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	Yes

<u>3.3 - Modifications Incorporated In The EUT For Compliance Purposes</u>

🛛 None

Yes (explain below)

3.4 - Deviations & Exclusions From Test Specifications

🛛 None

Yes (explain below)

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 9 of 45

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 8 (2010), Section Annex 8 (section A8.1) for a Frequency Hopping Spread Spectrum (FHSS) Transmitter.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 10 of 45

EXHIBIT 5. RADIATED EMISSIONS TEST

<u> 5.1 - Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4-2003. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous modulated transmit mode for final testing using power as provided by a bench DC supply. 3 separate units were provided for testing on 3 different channels.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (903.0 MHz), middle (914.6 MHz) and high (926.6 MHz) to comply with FCC Part 15.31(m). The channels and operating modes were set via laptop computer using customer specific test code and test program.

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Bi-conical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels.

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 11 of 45

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 8 (2010), Annex 8 for a FHSS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 12 of 45

5.5 - Calculation of Radiated Emissions Limits

The maximum peak output power of an intentional radiator in the 902 to 928 MHz band, as specified in Title 47 CFR 15.247 and RSS 210 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.5, shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2, 2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m): dB μ V/m = 20 log ₁₀ (100)= 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

960 MHz to 10,000 MHz 500μV/m or 54.0 dB/μV/m at 3 meters 54.0 + 9.5 = 63.5 dB/μV/m at 1 meter

Reported data is the raw data corrected for all applicable factors such as antenna factors, cable loss, etc.

Generic sample of reported data for 200MHz:

Raw Data + Antenna Factor + Cable Factor = Reported Data

18.2 dBµV/m + 15.8 dB + 1.45 dB = 35.45 dBµV/m

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 13 of 45

5.6 - Radiated Emissions Test Data Chart

Frequency Range Inspected: 30 MHz to 10000 MHz

Manufacturer:	LS	LS Research, LLC				
Date(s) of Test:	Oct	ober 26, November 8-9, 201	1			
Test Engineer(s):	Pet	er Feilen				
Voltage:	3.3	VDC				
Operation Mode:	Cor	ntinuous transmit, modulated	d moo	de		
Environmental	Temperature: 71° F					
Conditions in the Lab:	Relative Humidity: 32 %					
EUT Power:		Single PhaseVAC		3 Phase VAC Other: Bench DC Supply		2
EUT FOWEI.		Battery	Х			C Supply
EUT Placement:	Х	80cm non-conductive table		10cm Spacers		
EUT Test Location:	Х	3 Meter Semi-Anechoic FCC Listed Chamber		3/10m OATS		
Measurements:		Pre-Compliance		Preliminar		Final
				у		
Detectors Used:	Х	Peak	Х	Quasi- Peak	Х	Average

The following table depicts the level of significant spurious radiated RF emissions found (other than the fundamentals and its harmonics):

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
299.8	1.00	0	25.2	46.0	20.8	Н	V
277.2	1.00	0	23.4	46.0	22.6	V	V
337.8	1.00	23	40.6	46.0	5.4	V	V
335.3	1.00	171	43.8	46.0	2.2	Н	V
332.9	1.02	2	40.2	46.0	5.8	V	v
283.5	1.12	18	45.3	46.0	0.7	Н	S
337.7	1.00	0	41.5	46.0	4.5	V	S
332.9	1.00	0	44.2	46.0	1.8	V	F
332.7	1.00	0	39.5	46.0	6.5	Н	F
901.9	1.12	20	45.1	46.0	0.9	V	S
279.0	1.71	10	35.2	46.0	10.8	V	v
170.2	1.04	340	39.6	43.5	3.9	V	V
273.7	1.15	34	43.9	46.0	2.1	Н	V
170.1	1.78	49	41.8	43.5	1.7	Н	V

Note:

1. H: Horizontal, V: Vertical, F: Flat, S: Side

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 14 of 45

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated harmonic emissions seen on Channel Low:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation	EUT Antenna
2709	1.05	0	40.0	30.2	54	23.82	Vertical	Vertical	Straight
3612	Note 1						Vertical	Vertical	Straight
4515	Note 1						Vertical	Vertical	Straight
5418	1.07	135	56.4	46.6	63.5	16.95	Vertical	Vertical	Straight
8127	Note 1						Vertical	Vertical	Straight
9030	Note 1						Vertical	Vertical	Straight

The following table depicts the level of significant radiated harmonic emissions seen on Channel Middle:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation	EUT Antenna
2744.01	1.02	3	46.2	41.8	54	12.2	Vertical	Vertical	Straight
3658.68	Note 1						Vertical	Vertical	Straight
4573.35	Note 1						Vertical	Vertical	Straight
7317.36	Note 1						Vertical	Vertical	Straight
8232.03	1.00	138	46.96	34.63	63.5	28.87	Vertical	Vertical	Straight
9146.7	Note 1						Vertical	Vertical	Straight

The following table depicts the level of significant radiated harmonic emissions seen on Channel High:

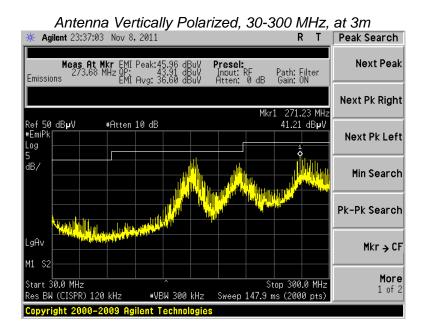
Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation	EUT Antenna
2780.1	1.00	6	41.4	35.4	54.0	18.6	Vertical	Vertical	Straight
3706.8	Note 1				54.0	54.0	Vertical	Vertical	Straight
4633.5	Note 1						Vertical	Vertical	Straight
7413.6	Note 1						Vertical	Vertical	Straight
8340.3	Note 1						Vertical	Vertical	Straight

Notes:

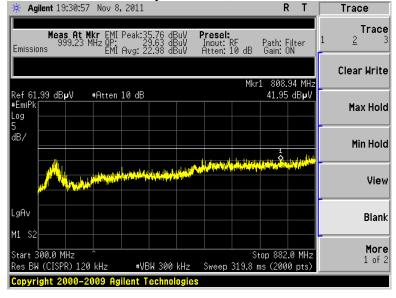
1. system noise floor recorded for given frequency and is below the limit at the respective frequency

 A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.

3. Measurements above 4 GHz were made at 1 meters of separation from the EUT. Limits have been corrected to reflect the change in measurement distance.


4. H: Horizontal, V: Vertical, F: Flat, S: Side.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 15 of 45


5.7 - Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 903.0 MHz, 914.6 MHz, or 926.6 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Antenna Horizontally Polarized, 300-882 MHz, at 3m

Note: The frequency range 882-902 MHz and 928-960 MHz is in the Band-edge section (Exhibit 8).

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 16 of 45

🔆 Agilent 02:15:3	1 Nov 8,2	2011				R	Т	Freq/Channel
Meas At 2.74 G Emissions	Mkr Emi P Hz QP: Emi A	eak:42.38 39.88 vg: 36.50	dBuV F dBuV dBuV	Presel:	Not Us	ed		Center Freq 1.50000000 GHz
					Mkr1	1.833	4 GHz	Start Freq 1.00000000 GHz
Ref 80 dB µ V #EmiPk	#Atten (0 dB				21.91	dBµV	Stop Fred
Log 10								2.00000000 GHz
dB/								CF Step 100.000000 MHz <u>Auto</u> Mar
						k.		Freq Offset 0.00000000 Hz
LgAv								Signal Track
M1 S2								0n <u>0f</u>
Start 1.000 GHz Res BW (CISPR) 1	MHz	#VBW 1	kHz ^	Sweep	Sti 1.147	op 2.00 s (200		
File Operation St	atus, C:\3	MCAB9.CE	SL file l	aded				

Antenna Vertically Polarized, 1000-2000 MHz, at 3m

Antenna Vertically Polarized, 2000-4000 MHz, at 3m

🔆 Agilent 01:55:28 Nov 8	, 2011			RT	Trace
Meas At Mkr EMI 2.74 GHz QP: Emissions EMI	Peak:42.38 dBuV 39.88 dBuV Avg: 36.50 dBuV	Presel:	Not Used		Trace <u>1</u> 2 3
			Mkr1 2.7	743 4 GHz	Clear Write
Ref 60 dBµV #Atte #EmiPk Log 5	n 0 dB		27	.49 dBµV	Max Hold
dB/					Min Hold
DI 54.0 dBµV	1 •				View
USPV LgAv V1 S2					Blank
Start 2.000 GHz Res BW (CISPR) 1 MHz	#VBW 1 kHz	Sweep	Stop 4 2.293 s (2	.000 GHz 2000 pts)	More 1 of 2
File Operation Status, C:	\3MCAB9.CBL fil	e loaded			

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 17 of 45

Agilent 21:21:44 Oc	ct 26, 2011		Display
	Atten 0 dB	Mkr1 5.42 GHz 50.55 dBµV	Full Screen
7		*	Display Line 81.99 dBµV On <u>Off</u>
	1		
Av			Limits
S2 FC		and a second	Active Fctn Position Bottom
f): un p			Title
art 4.00 GHz es BW 1 MHz	#VBW 10 kHz	Stop 10.00 GHz Sweep 467.9 ms (601 pts)	Preferences
e Operation Status,	, A:\SCREN790.GIF fi	le saved	-

Antenna Vertically Polarized, 4000-10000 MHz, at 1m

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 18 of 45
		-

5.9 - Receive Mode Testing

Per the requirements of RSS-210 and CFR 47 part 15, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10 and CFR 47 15.109.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
209.6	1.00	283	39.21	43.5	4.3	V	V
286.1	1.53	301	40.69	46.0	5.3	V	V
332.9	1.00	203	41.9	46.0	4.1	Н	V
437.0	1.78	331	28.4	46.0	17.6	Н	V
2415.0	1.00	0	33.8	54.0	20.2	Н	V

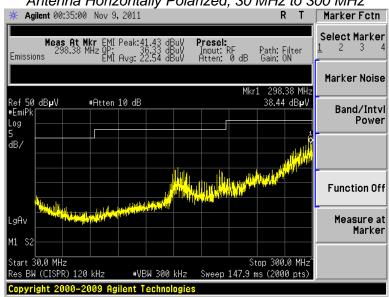
Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Average Reading (dBμV/m)	E-Field Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
5486.7	1.01	0	62.9	61.8	63.5	1.7	V	S

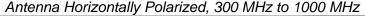
Notes:

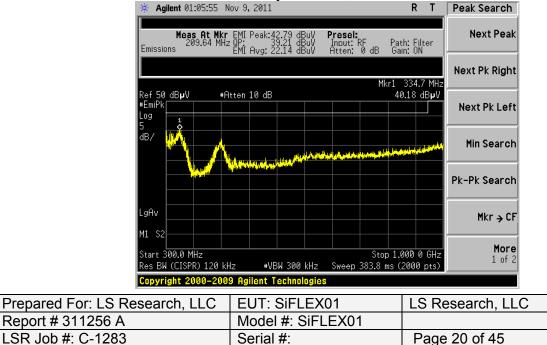
 A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.

2. Measurements above 4 GHz were made at 1 meters of separation from the EUT.

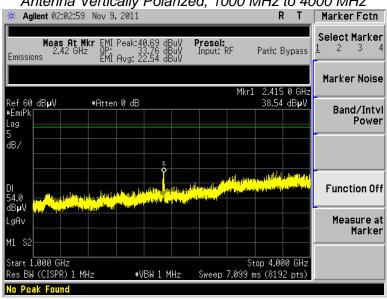

3. H: Horizontal, V: Vertical, F: Flat, S: Side.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 19 of 45


5.10 - Screen Captures - Radiated Emissions Testing - Receive Mode


These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 903.0 MHz, 914.6 MHz, or 926.6 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.



Antenna Horizontally Polarized, 30 MHz to 300 MHz

Screen Captures - Radiated Emissions Testing – Receive Mode (continued)

Antenna Vertically Polarized, 1000 MHz to 4000 MHz

				' Polari	zed, 4	4000	MHz	z to 1	10000MHz
💥 Ag	ilent 00:26:24	Nov 2	, 2011						Trace
Ref 96 Norm Log	.99 dBµV	#Atter	n Ø dB			M		49 GHz dBµV *	Trace 1 <u>2</u> 3
10 dB/									Clear Write
DI 63.5		1 \$							Max Hold
63.5 dB µ V LgAv								Mana	Min Hold
V1 S2 S3 FC A			*****			- Wertinger			View
€(f): FTun Swp	Marker -5.490000 60.80 d		GHz-						Blank
	L 00.00 U 1.00 GHz W 1 MHz		₩V	BW 10 kHz	Swee	St p 467.9		00 GHz 1 pts)	More 1 of 2
No Pe	ak Found								

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 21 of 45

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

6.1 - Test Setup

The test area and setup are in accordance with ANSI C63.4-2003 and with Title 47 CFR, FCC Part 15, Industry Canada RSS-210 and RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), $50/250 \mu$ H Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the EMI Receiver. The EMCO LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 - Test Procedure

The EUT was investigated in continuous modulated transmit mode and continuous receive mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

An Enercell brand off-the-shelf AC-DC power supply was used during the test to supply the EUT with voltage.

6.3 - Test Equipment Utilized

Please see Appendix A.

6.4 - Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC CFR 47 Part **15.207** and **15.107**, Conducted Emissions. See the Data Charts and Graphs for more details of the test results. By virtue of meeting the requirements of FCC, the EUT also meets the requirements of IC **RSS 210** and **RSS GEN**.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 22 of 45
		-

6.5 - FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B Limit	s (dBµV)	Measuring				
(MHz)	Quasi-Peak Average		Bandwidth				
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz				
0.5 – 5.0	56	46	VBW ≥ 9 kHz for QP				
5.0 – 30	60	50	VBW = 1 Hz for Average				
* The limit decreases linearly with							
this range.	, , ,						

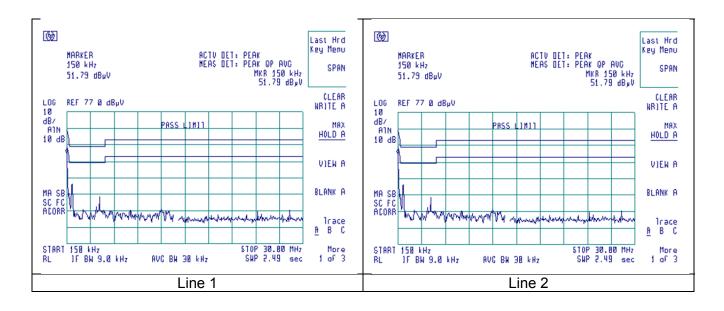
<u>6.6 – Conducted Emissions Test Data Chart</u> Frequency Range inspected: 150 KHz to 30 MHz

Test Standard: FCC 15.207 Class B IC RSS GEN 7.2.2

Manufacturer:	LS	LS Research, LLC				
Date(s) of Test:	00	tober 4, 2012				
Project Engineer:	Pe	ter Feilen				
Voltage:	3.6	SVDC Nominal Volta	age			
Operation Mode:	Сс	Continuous transmit and Continuous receive				
Environmental		Temperature: 20 – 25°C				
Conditions in the Lab:	Re	elative Humidity: 30	- 60	%		
Test Location:						Chamber
EUT Placed On:	Х	40cm from Vertical Ground Plane			10cm Spacers	
EUT Flaced Off.	Х	K 80cm above Ground Plane				Other:
Measurements:		Pre-Compliance		Preliminary	Х	Final
Detector Used:		Peak	Х	Quasi-Peak	Х	Average

Frequency (MHz)	Line	Q-Peak Reading (dBµV)	Q-Peak Limit (dBµV)	Quasi- Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBµV)	Average Margin (dB)
0.154	1	23.800	65.890	42.008	18.400	55.808	37.408
0.152	2	24.200	65.890	41.690	18.900	55.890	36.990

Notes:


1) The emissions listed are characteristic of the power supply used, and did not change by the EUT.

2) The EUT exhibited similar emissions in transit and receive modes
3) All other emissions were better than 20 dB below the limits.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 23 of 45

6.7 - Screen Captures - Conducted Emissions Test

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 24 of 45

EXHIBIT 7. OCCUPIED BANDWIDTH

<u> 7.1 - Limits</u>

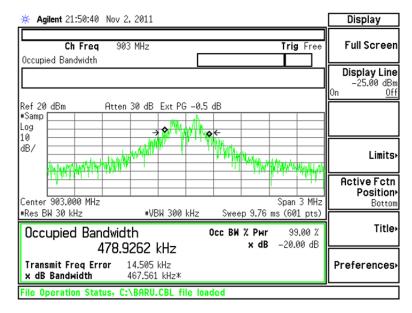
For a frequency Hopping system in the 902 to 928 MHz band, the 20 dB bandwidth shall not exceed 500 kHz for FCC CFR 47 15.247 (a)(1)(i) and IC RSS 210 A8.1. (c).

7.2 - Method of Measurements

FCC Public Notice DA 00-705 was observed for test methods. The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 30 kHz RBW and VBW=300 kHz.

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements, without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 1 kHz for this portion of the tests. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

From this data, the closest measurement (20 dB bandwidth) when compared to the specified limit, is 468 kHz, which is below the maximum of 500 kHz.


Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 25 of 45

7.3 - Test Data

Channel	Center Frequency (MHz)	Measured 99% Occ. BW (kHz)	Measured -20 dBc Occ. BW (kHz)	Maximum - 20 dBc Limit (kHz)	Margin (kHz)
0	903.0	479	468	500	32
14	914.6	489	440	500	60
28	926.6	445	446	500	121

7.4 - Screen Captures - Occupied Bandwidth

Channel 0, -20 dBc Occupied Bandwidth

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 26 of 45

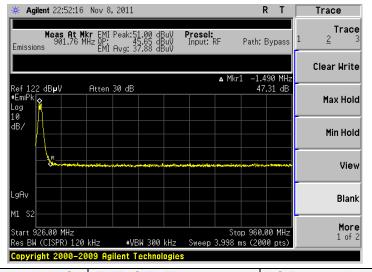
* Agilent 21:51:23 Nov 2, 2011	Freq/Channel
Ch Freq 914.655 MHz Trig F Occupied Bandwidth	ree 914.655000 MHz
Center 914.6550000 MHz	Start Freq 913.155000 MHz
Ref 20 dBm Atten 30 dB Ext PG -0.5 dB *Samp Log 10	Stop Freq 916.155000 MHz
	CF Step 300.000000 kHz Auto Man
Center 914.655 MHz Span 31	
•Res BW 30 kHz •VBW 300 kHz Sweep 9.76 ms (601 p Occupied Bandwidth Осс ВЖ % Рыг 99.00 488.9039 kHz × dB -20.00	Signal Track
Transmit Freq Error3.299 kHzx dB Bandwidth440.484 kHz*	
File Operation Status, A:\SCREN861.GIF file saved	

Channel 14, -20 dBc Occupied Bandwidth

Channel 28, -20 dBc Occupied Bandwidth

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 27 of 45

EXHIBIT 8. BAND EDGE MEASUREMENTS


8.1 - Method of Measurements

FCC Public Notice DA 00-705 was observed for test methods. FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902 MHz to 928 MHz Band-Edges, meeting the minimum requirement of 20 dBc. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

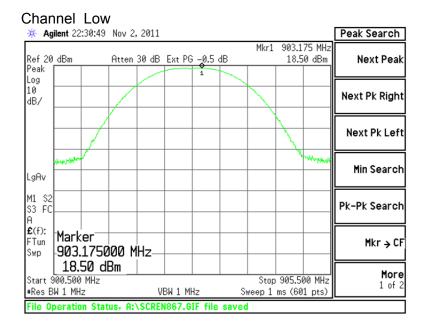
Agilent 22:06:24 Nov 8, 2011 R T Trace Trace Meas At Mkr EMI Peak:51.00 901.76 MHz QP: 45.65 EMI Avg: 37.88 Presel: Not Used dBu\ dBu\ dBu\ Emissions Clear Write ▲ Mkr1 Ref 117 dB**µ**V Atten 20 dB #Emil Max Hold Log 10 dB∠ Min Hold View gÂ Blank М1 More Center 893 32 MHz Span 22.64 MH; 1 of 2 Res BW (CISPR) 120 kHz #VBW 300 kHz Sweep 2.665 ms (2000 pts) File Operation Status, C:\B03LGV10.ANT file loaded

3m Radiated Measurement Screen Capture Demonstrating Compliance at the Lower Band-Edge

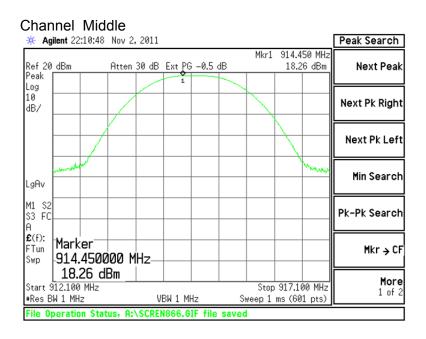
Screen Capture Demonstrating Compliance at the Higher Band-Edge

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 28 of 45

EXHIBIT 9. POWER OUTPUT (CONDUCTED)


9.1 - Method of Measurements

FCC Public Notice DA 00-705 was observed for test methods. The conducted RF output power of the EUT was measured at the antenna port using a short RF cable connected to the spectrum analyzer. The loss from the cable was added on the analyzer as gain offset settings, allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with resolution bandwidths set to 1 MHz and a span of 5 MHz with measurements from a peak detector presented in the chart below.


<u>9.2 - Test Data</u>

CHANNEL	CENTER FREQ (MHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)
LOW	903.0	30.0	18.5	11.5
MIDDLE	914.6	30.0	18.3	11.7
HIGH	926.6	30.0	18.5	11.5

9.3 - Screen Captures - Power Output (Conducted)

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 29 of 45

Channel High

🗰 Agi	ilent 21:59:41	Nov 2	, 2011						Peak Search
Ref 20 Peak [dBm	Atten	30 dB	Ext PG	-0.5	dB	Mkr1	36 MHz i3 dBm	Next Peak
Log 10 dB/							$\overline{\ }$		Next Pk Right
									Next Pk Left
LgAv	when whe							 he manse	Min Search
M1 S2 S3 FC A									Pk-Pk Search
	Marker 926.4360		Hz_						Mkr → CF
	18.53 d 926.627 MHz W 1 MHz		l v	 BW 1 M	Hz	Sr	veep 1	5 MHz 1 pts)	More 1 of 2
File Op	peration Stat	tus, A:	SCRE	N865.G	IF file	saved			

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 30 of 45

EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS

<u> 10.1 - Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.2 – Conducted Harmonic And Spurious RF Measurements

FCC Public Notice DA 00-705 was observed for test methods. FCC Part 15.247(d) and IC RSS 210 A8.5 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured. Channels low (903.0 MHz), middle (914.6 MHz) and high (926.4) MHz were tested. Numerical data for all three channels is presented. Exemplary screen captures are presented in section 10.3.

Fundamental			
Frequency (fo)	903.0 MHz	914.6 MHz	926.4 MHz
fo	18.5	18.2	18.6
2fo	-32.5	-36.1	-44.6
3fo	-26.8	-28.4	-27.7
4fo	-84.0	NF	NF
5fo	NF	NF	NF
6fo	NF	NF	-69.4
7fo	NF	NF	NF
8fo	NF	NF	NF
9fo	NF	NF	NF
10fo	NF	NF	NF

Conducted harmonics:

Note: All measurements contained in this table provided in dBm

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC	
Report # 311256 A	Model #: SiFLEX01		
LSR Job #: C-1283	Serial #:	Page 31 of 45	

Conducted spurious emissions:

Freq(MHz)	Chan	Level (dBm)
900	Middle	-48.68
1825.00	Middle	-35.29
2740.00	Middle	-57.31
1810.00	Low	-32.18
2710.00	Low	-58.24
929.08	Low	-45.71
901.00	High	-42.2
928	High	-28.93
1855	High	-34.78
-2770	High	-63.24

10.3- Screen Captures – Spurious Conducted Emissions

🔆 Agilent 0	2:02:00	Nov 4	, 2011							Peak Search
Ref0dBm Peak		#Atten	10 dB	Ext PG	-10.5	dB	Mkr1		00 MHz 9 dBm	Next Peak
Log 10 dB/										Next Pk Right
										Next Pk Left
gAv										Min Search
11 S2 3 FC	University	Annonen	- Carrow	- Web Marke	/wyakthan wyant	an a	matridaeau	holiputtini		Pk-Pk Search
		000 M	lHz—							Mkr → CF
_ / _ Start 30.00 #Res BW 100	MHz	_ חסג		W 100	kHz	Sweep	Sto 32.56		00 MHz 1 pts)	More 1 of 2

Sample Screen Captures as presented on middle channel

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 32 of 45

Agilent 02:0	1:23 Nov 4,	2011			Peak Searc
10 dBm	#Atten	14 dB Ext PG	-10.5 dB	Mkr1 900.0 M -48.68 dE	
					Next Pk Rig
					Next Pk Lo
v					Min Sear
S2 FC					Pk-Pk Sear
î [Marke	r 00000 M		har and an and an and a strength of the state of the stat	and a star of a	Mkr →
rt 300.0 MHz s BW 100 kH		#VBW 100	kHz Sweer	Stop 902.0 M 72.6 ms (601 pt	

928 MHz up to 1000 MHz

🔆 Agil	lent 02:03:16	Nov 4,	2011							Peak Search
Ref0d Peak [IBm	#Atten 1	L4 dB	Ext PG	-10.5	dB	Mkr:		92 MHz 2 dBm	Next Peak
Log 10 dB/										Next Pk Right
										Next Pk Left
LgAv	1									Min Search
M1 S2 S3 FC A		hail and a start and a start and a start a star	ur Marhael	an a	olemanter (with the same of	Whenkhaller	-hullon	Pk-Pk Search
Swp -	Marker 932.9200		Hz—							Mkr → CF
Start 9	-47.52 c 28.00 MHz 100 kHz	18m	#VB	W 100	kHz	Swee	Stop p 8.72		00 GHz 1 pts)	More 1 of 2
File Op	eration Sta	tus, A:\	SCREN	879.6	IF file	saved				

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 33 of 45

Agilent 02:03:4			,	000 MHz	_	Peak Search
0 dBm	#Atten 14	dB Ext PG	-10.5 dB	Mkr1 1.8 -35.5	25 GHz 4 dBm	Next Pea
/						Next Pk Righ
						Next Pk Lef
iv 👘						Min Search
S2 FC	malliment	motellesen	mentreter	with a starting	mont	Pk-Pk Search
	30000 GH	łz				Mkr → Ci
rt 1.000 GHz BW 100 kHz	dBm	#VBW 100 k	Hz Swee	Stop 10.00 p 1.085 s (60		More 1 of 2

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 34 of 45

EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

For measurements of the frequency and power stability FCC Public Notice DA 00-705 was observed for measurement procedure. The transmitter was powered by an external bench-type variable power supply. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers and also the output power at the antenna port.

2	.8VDC	3.3VDC				
Power	Frequency	Power	Frequency	Power	Frequency	
(dBm)	(MHz)	(dBm)	(MHz)	(dBm)	(MHz)	Channel
18.6	903.108000	18.5	903.108000	18.4	902.883000	low
18.2	914.550000	18.2	914.550000	18.2	914.542000	middle
18.5	926.733000	18.5	926.733000	18.5	926.733000	high

Channel	max	min	freq drift (Hz)
low	903.108	902.883	0.225
middle	914.550	914.542	0.008
high	926.733	926.733	0

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characterizes were well behaved, and the system returned to the same state of operation as before the power cycle.

The maximum shift in frequency is **0.225 Hz** which is better than 100 ppm in the 902 MHz to 928 MHz band.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 35 of 45

EXHIBIT 12. CHANNEL PLAN AND SEPARATION

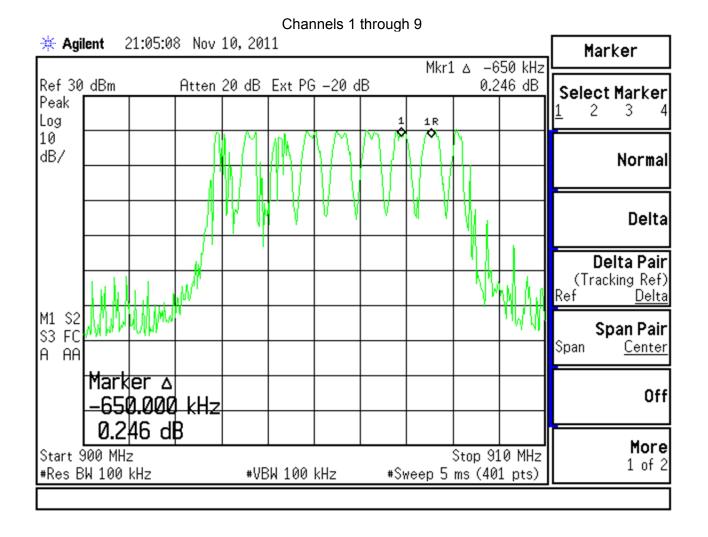
A spectrum analyzer was used with a resolution bandwidth of 100 kHz to measure the channel separation of the EUT which was measured in a RF conducted fashion.

The minimum and maximum channel-separations measured for this device are 650 kHz and 3.56 MHz respectively. The maximum occupied bandwidth of the device, as reported in the previous section is 468 kHz.

The minimum channel separation limit as stated in FCC CFR 47 15.247 and IC RSS210 is 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

The minimum number of channels limit as stated in FCC CFR 47 15.247 and IC RSS210 is 50 channels for channel bandwidth less than 250 kHz and 25 channels for channel bandwidth greater than 250 kHz.

The following plots describe this spacing, and also establish the channel separation and plan.

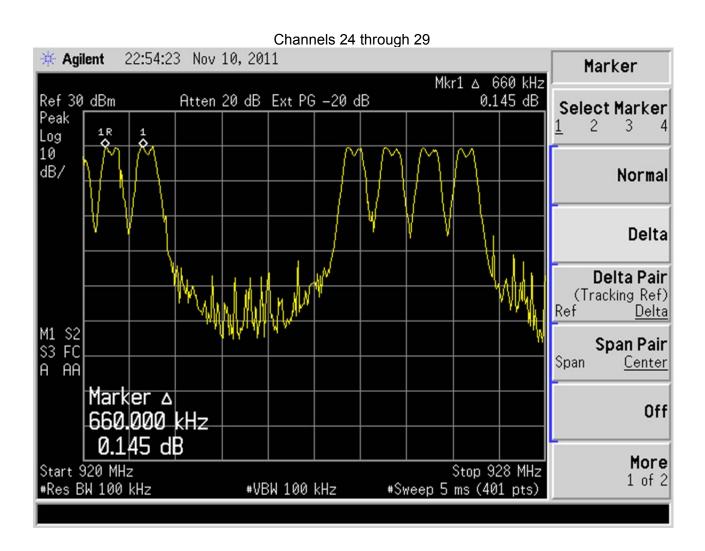

RANGE (MHz)	NUMBER OF CHANNELS PER CAPTURE	Max separation (Hz)
900 - 910	9.0	65000
910 - 920	14.0	65000
920 - 930	6.0	3560000

Total Channels	29
Max separation	3560000 Hz
Min Separation	65000 Hz

Total number of channels = 29

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 36 of 45

<u>12.1 - Screen Captures – Channel Separation</u>



Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 37 of 45

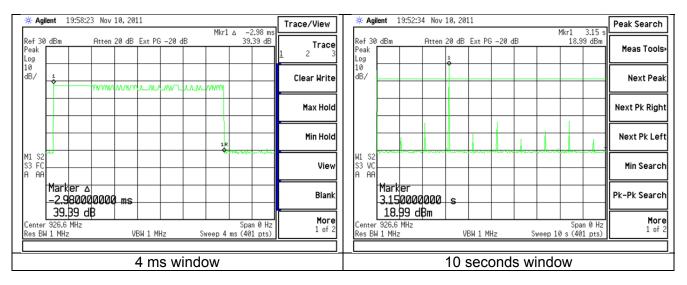
		1 24	through							
Marker					.1	10,201	1 Nov	21:33:0	lent 2	🔆 Agi
Select Marker	1 ∆ 650 kHz -0.053 dB	Mkr	B	-20 d	Ext PG	20 dB	Atten		dBm	Ref 30
<u>1</u> 2 3 4		1 R								Peak Log
Normal	MMM	ΜM	M	Мſ	1 M			M		10 dB/
	V M V		$\{V_{i}\}$		$\langle \rangle$		\mathbb{N}	(1)		
Delta	V V V	' V		Ŋ	1		ry			
Delta Pair		ļ	'							
(Tracking Ref) Ref <u>Delta</u>						٩			M	
Span Pair									ur	M1 S2 S3 FC
Span <u>Center</u>									bd 1	A AA
Off								er ∆ 000		
More							В	53 d		
1 of 2	Stop 920 MHz ms (401 pts)		#Sv	kHz	W 100	#VB				Start 9 #Res B

Channels 10 through 24

Prepared For: LS Research, LLC	EUT: SIFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 38 of 45

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 39 of 45

EXHIBIT 13. CHANNEL OCCUPANCY


Part 15.247(a)(1) requires a channel occupancy, for this device, of no more than 400 milliseconds in a 10 second window. The channel occupancy for this EUT was measured using a spectrum analyzer, set to zero-span at the frequency of interest. With the analyzer in peak-hold mode, the transmission lengths can be measured by adjusting the sweep rate of the analyzer. A suitable sweep rate was used to measure the channel occupancy at the low, mid and high channels.

The longest time any transmission will occur on a single channel is 3.48 milliseconds. In a 10 second window, each channel has 3 transmission cycles. The maximum occupancy in a 10 second window is calculated by multiplying 3 transmission cycles by 3.48 milliseconds transmission duration per cycle, to arrive at 10.44 milliseconds total occupancy. This means the device is within tolerance, transmitting 10.44 ms, which is less than the maximum allowable of 400 ms in 10 second period.

Greatest Occupancy Observed

Channel	Frequency (MHz)	Total Occupancy in 10 seconds	Occupancy in 400 ms window
Channel		(ms)	(ms)
High	926.6	8.94	2.98

Plots of Greatest Channel Occupancy

Channel High Occupancy

Note: High channel data provided as an example. Low, middle and high channels are similar.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 40 of 45

EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.

This system uses the spread spectrum technique of frequency hopping. The carrier frequency changes many times per second. As required by the FCC, each channel is guaranteed not be used more than 400 ms in a 10 second window. Also all channels are used equally by the system and every device within the system. For this reason at 29 channels are used and all devices must channel hop.

The channel sets implemented are a list of channels a radio will cycle through as part of its frequency hopping. Each channel set available consists of the same 29 channels in pseudo-random order. The sets are created as orthogonal as possible to minimize the amount of interference between radios using different channel sets. The channel set used by a gateway is determined by the least significant byte of the 2 byte identifier (configured via the gateway GUI). The gateway forwards the channel set to the sensors when they join the gateway's system via the Network Initialization Vector (NIV). The channel gets implemented are defined in the following table.

{0, 3, 20, 5, 4, 22, 19, 18, 13, 11, 23, 12, 16, 2, 1, 8, 15, 27, 9, 24, 10, 26, 28, 14, 6, 7, 17, 25, 21} {10, 22, 16, 17, 24, 3, 2, 27, 13, 26, 6, 23, 9, 8, 7, 25, 18, 20, 28, 21, 11, 15, 4, 5, 12, 14, 0, 1, 19} {12, 15, 2, 26, 4, 1, 10, 19, 9, 27, 25, 6, 28, 17, 16, 20, 18, 21, 3, 7, 8, 5, 24, 14, 13, 22, 11, 23, 0} {18, 5, 22, 14, 3, 24, 2, 9, 10, 23, 19, 12, 16, 25, 1, 13, 4, 8, 0, 28, 7, 21, 17, 20, 27, 6, 26, 15, 11} 3, 13, 1, 27, 25, 7, 15, 5, 14, 28, 24, 23, 10, 19, 8, 17, 2, 12, 21, 9, 26, 4, 18, 6, 20, 0, 16, 22, 11 {17, 7, 1, 16, 24, 3, 6, 9, 25, 0, 11, 2, 10, 21, 28, 5, 23, 8, 14, 18, 19, 4, 20, 22, 13, 27, 26, 15, 12} {2, 9, 22, 19, 5, 13, 24, 18, 4, 7, 27, 23, 16, 10, 12, 25, 6, 11, 14, 8, 15, 28, 20, 0, 3, 17, 21, 1, 26} {0, 22, 4, 11, 18, 21, 8, 12, 3, 6, 5, 28, 1, 2, 17, 25, 15, 16, 20, 19, 26, 7, 24, 14, 9, 13, 23, 27, 10} {16, 23, 24, 19, 22, 25, 10, 8, 26, 11, 20, 6, 21, 1, 9, 7, 17, 5, 0, 13, 12, 15, 28, 14, 2, 18, 3, 27, 4} {1, 2, 5, 19, 23, 16, 4, 22, 21, 8, 11, 0, 14, 15, 26, 25, 20, 3, 28, 10, 7, 9, 12, 17, 27, 6, 24, 18, 13} 14, 8, 12, 7, 20, 18, 3, 10, 5, 25, 1, 0, 4, 15, 2, 13, 17, 28, 24, 22, 19, 6, 16, 9, 27, 11, 23, 21, 26 {26, 28, 22, 24, 3, 11, 13, 27, 7, 25, 16, 8, 15, 10, 6, 19, 4, 14, 20, 23, 17, 1, 21, 5, 2, 12, 18, 0, 9} {6, 10, 20, 16, 1, 19, 9, 25, 21, 15, 27, 22, 12, 5, 26, 14, 3, 18, 4, 17, 13, 8, 7, 28, 23, 24, 0, 2, 11} {22, 10, 11, 7, 18, 27, 19, 3, 6, 1, 24, 20, 25, 2, 23, 4, 16, 5, 14, 26, 17, 21, 13, 28, 15, 9, 0, 12, 8} *{*6, 10, 28, 0, 17, 19, 9, 7, 23, 13, 14, 12, 8, 1, 22, 4, 5, 16, 26, 3, 2, 15, 24, 11, 21, 20, 27, 18, 25*}* {10, 19, 21, 3, 1, 26, 22, 28, 27, 6, 23, 4, 15, 24, 16, 7, 2, 25, 8, 12, 14, 9, 13, 5, 20, 0, 11, 17, 18}

Note: The information in this section is provided by the manufacturer.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 41 of 45

EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.

Sensors will resynchronize with the gateway once every second. They will synchronize to the gateway via the beacon message sent out on regular intervals by the gateway. The synchronization will be done just before the sensor is to transmit data to the gateway. This will ensure that the open communication window between the gateway and sensors will be as closely coordinated as possible.

To achieve this all sensors are put into a sleep mode in a systematic way within the communication protocol. By synchronizing the duty cycle which the radios in the battery powered sensors are turned on, the system can limit the power used by allowing the whole system to sleep in a coordinated manner. This is implemented first by keeping tight timing as described above. All devices can then sleep during the time periods where no communication is taking place, wake up on a time based interval, re-synchronize to the Gateway Beacon and TX/RX any data that needs to pass within the system. On each beacon message interval the channel used for communications is changed by incrementing the index of the channel selector to the next channel in the hop channel set selected for this network.

Note: The information in this section is provided by the manufacturer.

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 42 of 45

<u> APPENDIX A – Test Equipment List</u>

	Prepared By	r: Peter	Customer :	LSR			Quote #	311256	
lo. As	sset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status	
EE	960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/7/2010	6/7/2011	Active Calibration	
EE EE	960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration	
3 EE	960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration	
4 AA	A 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration	
5 AA	A 960081	Double Ridge Horn Antenna	EMCO	3115	6907	12/22/2009	12/22/2010	Active Calibration	
6 AA	A 960150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration	
7 EE	E 960147	Pre-Amp	Adv. Micro	WLA612	123101	12/28/2009	12/28/2010	Active Calibration	
8 EE	E 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration	
9 AA	A 960156	900MHz High Pass Filter	KWM	HPF-L-14185	unknown	6/4/2010	6/4/2011	Active Calibration	
		: 30-Aug-2011		: Conducted Rad	lio		Job #	: <u>C-1283</u>	
	Prepared By	n	Customer :	LSR			Quote #	± <u>311256</u>	
_	Prepared By			LSR Model #	Serial #	Cal Date	_		
_	Prepared By	n	Customer :	LSR		Cal Date 9/22/2010	Quote #	± <u>311256</u>	
No. As	Prepared By EE 960073 LS RE Wireles Equ Date	Description	Customer : Manufacturer Agilent Type Test	LSR Model # E4446A : Conducted Em	Serial # US45300564	1	Quote # Cal Due Date 9/22/2011 Job #	: 311256 Equipment Status	
	Prepared By sset # EE 960073 LS RE Equ Date Prepared By	Contract of the second	Customer : Manufacturer Aglient Type Test Customer :	LSR Model # E4446A : Conducted Em LSR	Serial # US45300564 issions	9/22/2010	Quote # Cal Due Date 9/22/2011 Job # Quote #	: <u>311256</u> Equipment Status Active Calibration : <u>C-1283</u> : <u>311256</u>	
1	Prepared By sset # EE 960073 USE Equ Date Prepared By sset #		Customer : Manufacturer Agilent Type Test Customer : Manufacturer	LSR Model # E4446A : <u>Conducted Em</u> LSR Model #	Serial # U\$45300554 issions Serial #	9/22/2010 Cal Date	Quote # Cal Due Date 9/22/2011 Job # Quote # Cal Due Date	<u>311256 Equipment Status Active Calibration : C-1283 : 311256 Equipment Status </u>	
1 No. As 1 AA	Prepared By sset # EE 960073 LS RE Figure Date Prepared By sset # A 960072	Contract Calibration Contract	Customer : Manufacturer Agilent Type Test Customer : Manufacturer HP	LSR Model # E4448A : Conducted Emi LSR Model # 11947A	Serial # US45300564 issions Serial # 3107A02515	9/22/2010 Cal Date 9/20/2012	Quote # Cal Due Date 9/22/2011 Job # Quote # Cal Due Date 9/20/2013	: 311256 Equipment Status Active Calibration : C-1283 : 311256 Equipment Status Active Calibration	
No. AS 1 AA 2 AA	Prepared By sset # EE 960073 LS RE Equ Date Prepared By sset # A 960072 A 960008	Control Contr	Customer : Manufacturer Agilent Type Test Customer : Manufacturer HP EMCO	LSR Model # E4446A : Conducted Emi LSR Model # 11947A 3816/2NM	Serial # US45300564 issions Serial # 3107A02515 9701-1057	9/22/2010 Cal Date 9/20/2012 1/3/2012	Quote # Cal Due Date 9/22/2011 Job # Quote # (Cal Due Date 9/20/2013 1/3/2013	: 311256 Equipment Status Active Calibration : C-1283 : 311256 Equipment Status Active Calibration Active Calibration Active Calibration Active Calibration	
No. As 1 AA 2 AA 3 EE	Prepared By sset # EE 960073 LS RE Equ Date Prepared By sset # A 960072 A 960073 S 960013	Control Contr	Customer : Manufacturer Agilent Type Test Customer : Manufacturer HP EMCO HP	LSR Model # E4446A : Conducted Em LSR Model # 11947A 3816/2MM 8546A System	Serial # US45300564 issions Serial # 3107A02515 9701-1057 3617A00320;3448A	9/22/2010 Cal Date 9/20/2012 1/3/2012 11/22/2011	Quote # Cal Due Date 9/22/2011 Job # Quote # Cal Due Date 9/20/2013 1/3/2013 1//22/2012	: 311256 Equipment Status Active Calibration : C-1283 : 311256 Equipment Status Active Calibration Active Calibration Active Calibration Active Calibration Active Calibration Active Calibration	
No. As AA AA 3 EE 4 EE	Prepared By sset # EE 960073 LS RE Equ Date Prepared By sset # A 960072 A 960008	Control Contr	Customer : Manufacturer Agilent Type Test Customer : Manufacturer HP EMCO	LSR Model # E4446A : Conducted Emi LSR Model # 11947A 3816/2NM	Serial # US45300564 issions Serial # 3107A02515 9701-1057	9/22/2010 Cal Date 9/20/2012 1/3/2012	Quote # Cal Due Date 9/22/2011 Job # Quote # (Cal Due Date 9/20/2013 1/3/2013	: 311256 Equipment Status Active Calibration : C-1283 : 311256 Equipment Status Active Calibration Active Calibration Active Calibration Active Calibration	

Project Engineer:_____leter Fielen

Quality Assurance:

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 43 of 45

APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2003		
ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 16-1-1 Note 1	2010-01		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2009		
FCC 47 CFR, Parts 0-15, 18, 90, 95	2009		
FCC Public Notice DA 00- 1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 003	2004-02		
RSS GEN	2007-06		
RSS 210	2007-06		

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 44 of 45
		_

APPENDIX C - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64°/2.88 %RH

Prepared For: LS Research, LLC	EUT: SiFLEX01	LS Research, LLC
Report # 311256 A	Model #: SiFLEX01	
LSR Job #: C-1283	Serial #:	Page 45 of 45