

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

> TEST REPORT # 309308 LSR Job #: C-720

Compliance Testing of: Si-Flex 900 MHz

<u>Test Date(s)</u>: October 10- November 9, 2009

Prepared For: LS Research, LLC. Attn: Mr. William Steinike W66 N 220 Commerce Ct Cedarburg, WI 53012

> In accordance with: Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 210 Annex 8 Digital Modulation Transmitters (DTS) Operating in the Frequency Band 902-928 MHz

This Test Report is issued under the Authority of: Ryan Urness, EMC Lab Manager		
Signature: Date: November 13, 2009		
Test Report Reviewed by: Tested by:		
Teresa A. White, Quality Manager	Laura Bott, EMC Engineer	
Signature: Julia a. White Date: November 13, 2009	Signature: Date: November 20, 2009	

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

EXH	IBIT 1: INTRODUCTION	l i i i i i i i i i i i i i i i i i i i		
1.1	Scope			4
1.2	Normative References			4
1.3	.3 LS Research, LLC Test Facility			5
1.4	Location of Testing			5
1.5	Test Equipment Utilized	1		5
				_
EXH	BIT 2: PERFORMANCE	ASSESSMENT		
21	Client Information			6
22	Equipment Under Test	(FUT) Information		6
2.3	Associated Antenna De			6
2.0	FLIT's Technical Specif	ications		7
2.1	Product Description			8
2.0				0
EVU				
TES	ISI S. EUT OFERATING	3 CONDITIONS & CONFIGURA	TIONS DURING	
3.1	Climate Test Conditions	3		9
3.2	Applicability & Summar	y of EMC Emission Test Results		9
3.3	Modifications Incorpora	ted in the EUT for Compliance P	urposes	9
3.4	Deviations & Exclusions	s from Test Specifications		9
		·		
EXH	IBIT 4: DECLARATION	OF CONFORMITY		10
EXH	IBIT 5: RADIATED EMIS	SIONS TESTING		
	Note: Items 5.1 through	5.8 are for TRANSMIT MODE		
	Item 5.9 is for RE	CEIVE MODE		
5.1 Test Setup			11	
5.2 Test Procedure			11	
5.3	Test Equipment Utilized	1		12
5.4	Test Results	-		12
5.5 Calculation of Radiated Emissions Limits			13	
5.6.1 Transmit Mode Wire Antenna Unit			14-20	
5.6.2 Receive Mode Wire Antenna Unit			21-23	
5.6.3 Transmit Mode External Dipole Antenna		24-30		
5.6.4 receive Mode External Dipole Antenna			24 00	
565	5.6.5 Transmit Mode Chin Antenna		35_/1	
5.0.5			42.44	
EXH	IBIT 6: CONDUCTED EI	MISSIONS TEST, AC POWER L	INE	
6.1	Test Setup			45
6.2	6.2 Test Procedure			45
6.3 Test Equipment Utilized			45	
6.4 Test Results			45	
6.5 FCC Limits of Conducted Emissions at the AC Mains Ports		46		
6.6 Conducted Emissions Test Data Chart		47		
6.61	6 6 1 Test on Unit with Wire Antenna		47-49	
662	6.6.2 Test on Unit with External Dipole Antenna		50-52	
663	6.6.3 Test on Unit with Chin Antenna			53-55
Prepa	red For: LS Research, LLC	EUT: Si-Flex Module		LS Research, LLC
Kepor	1 # 309308 ob #: C-720	IVIOUEI #: LS900-SI-02 Serial #:4 5 44 83 00 05		Page 2 of 82
-0.0				

TABLE OF CONTENTS (Page 2 of 2)

EXHIBIT 7: OCCUPIED BANDWIDTH	
7.1 Limits	56
7.2 Method of Measurements	56
7.3 Test Equipment List	56
7.4 Test Data	56
7.5 Screen Captures – Occupied Bandwidth	57-59
EXHIBIT 8: BAND-EDGE MEASUREMENTS	
8.1 Method of Measurements	60
8.2 Screen Captures	61-63
EXHIBIT 9: POWER OUTPUT (CONDUCTED): 15.247(b)	
9.1 Method of Measurements	64
9.2 Test Equipment List	64
9.3 Test Data	64
9.4 Screen Captures – Power Output (Conducted)	65-66
EXHIBIT 10: POWER SPECTRAL DENSITY: 15.247(e)	
10.1 Limits	67
10.2 Test Equipment List	67
10.3 Test Data	67
10.4 Screen Captures – Power Spectral Density	67-68
EXHIBIT 11: SPURIOUS RADIATED EMISSIONS: 15.247(d)	
11.1 Limits	69
11.2 Test Equipment List	69
11.3 Test Data	69
11.4 Screen Captures – Spurious Radiated Emissions	70-72
EXHIBIT 12: FREQUENCY & POWER STABILITY OVER VOLTAGE &	73-74
EXHIBIT 14: MPE CALCULATIONS	75
APPENDICES	
APPENDIX A: TEST EQUIPMENT LIST	76-77
APPENDIX B: TEST STANDARDS – RADIO	78
APPENDIX C: UNCERTAINTY STATEMENT	79
APPENDIX D: ANTENNA SPECIFICATIONS	80-82

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 3 of 82

EXHIBIT 1. INTRODUCTION

1.1 <u>SCOPE</u>

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209	
	FCC Part 2, Section 2.1043 paragraph (b)1.	
	RSS GEN and RSS 210 Annex 8	
Title:	FCC : Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15.	
	IC: Low-power License-exempt Radio-communication Devices	
	(All Frequency Bands): Category I Equipment	
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-	
	Power License-Exempt Transmitters.	
Test Procedures:	Both conducted and radiated emissions measurements	
	were conducted in accordance with American National	
	Standards Institute ANSI C63.4 – American National	
	Standard for Methods of Measurement of Radio-Noise	
	Emissions from Low-Voltage Electrical and Electronic	
	Equipment in the Range of 9 kHz to 40 GHz and with the	
	procedures denoted in CFR 47 FCC 15.247.	
Environmental Classification:	Commercial, Industrial or Business	
	Residential	

1.2 NORMATIVE REFERENCES

Publication	Year	Title
47 CFR, Parts 0-15 (FCC)	2008-10	Code of Federal Regulations - Telecommunications
RSS 210 Annex 8	2007 June	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	2006-03 A1: 2006-09 A2: 2007-07	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	2003 A1: 2004-04 A2: 2007-07	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.
FCC Public Notice DA 00-1407	2000	Part 15 Unlicensed Modular Transmitter Approval
FCC ET Docket No. 99-231	2002	Amendment to FCC Part 15 of the Commission's Rules Regarding Spread Spectrum Devices.
FCC Procedures	2008	Measurement of Digital Transmission Systems operating under Section 15.247.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 4 of 82

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: <u>www.lsr.com</u>. Accreditation status can be verified at A2LA's web site: <u>www.a2la2.net</u>.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 <u>TEST EQUIPMENT UTILIZED</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 5 of 82

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

Manufacturer Name:	LS Research, LLC	
Address	W66 N220 Commerce Ct	
Address:	Cedarburg, WI 53012	
	Mr. William Steinike	
Contact Person:	262.421.4970	
	bsteinike@lsr.com	

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	Si-Flex
Model Number:	LS900-SI-02
Serial Number:	4, 5, 44, 83, 90, 95

2.3 ASSOCIATED ANTENNA DESCRIPTION

Wire Whip Antenna with a max gain of 3.85 dBi.

900 MHz ISM Band Straight Nearson Antenna – 467 model with a max gain of 5.34 dBi.

Note: The gain was calculated based off radiated fundamental measurements taken over a reflective ground plane.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 6 of 82

2.4 EUT'S TECHNICAL SPECIFICATIONS

Additional Information:

	006 004 MU
EUT Frequency Range (In MHZ)	906-924 MHZ
RF Power in Watts	
Minimum:	0.309 W
Maximum:	0.325 W
Conducted Output Power (in dBm)	25.13 dBm
Field Strength at 3 meters	Wire antenna: 124.21 dBµV/m (906 MHz)
	Dipole:125.7 dBµV/m (914 MHz)
	Chip: 121.4 dBµV/m (914 MHz)
Occupied Bandwidth (99% BW)	1710 kHz, 906 MHz
Type of Modulation	BPSK
Emission Designator	1M710G1D
EIRP (in mW)	1114.29 mW
Transmitter Spurious (worst case) at 3 meters	79.9 dBµV/m – wire whip antenna
Receiver Spurious (worst case) at 3 meters	28.7 dBµV/m (945.0 MHz) – wire whip antenna
Stepped (Y/N)	N
Step Value:	N/A
Frequency Tolerance %, Hz, ppm	100 ppm
Microprocessor Model # (if applicable)	ATXMega256A3
Antenna Information	
Type - Detachable/non-detachable	Wire – Non detachable
	External Dipole – Detachable
	Chip – Non detachable
Gain (in dBi) ^{Note 1}	Wire antenna: 3.85 dBi (906 MHz)
	Dipole:5.34 dBi (906 MHz)
	Chip: 1.04 dBi (914 MHz)
EUT will be operated under FCC Rule Part(s)	15.247
EUT will be operated under RSS Rule Part(s)	RSS 210
Modular Filing	Yes No
Portable or Mobile?	Portable 🛛 Mobile (per TS)

Note 1: The antenna gain was calculated from the following equation:

 $G_{antenna}$ = Fundamental Field strength (measured at 3 meters over a reflective ground plane) dBµV/m – conducted power – 95.23 dBµV/m

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	\checkmark	RF Evaluation

Controlled Use

If <u>RF Evaluation</u> checked above, test engineer to complete the following:

- Evaluated against exposure limits: General Public Use
- Duty Cycle used in evaluation: 100 %
- Standard used for evaluation: OET 65
- Measurement Distance: 3 m

RF Value:2.2168 V/m A/m Measured Co

Computed Calculated

 $\bigvee W/m^2$

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 7 of 82

2.5 PRODUCT DESCRIPTION

The LS Research SiFLEX02 module is a 900 MHz radio transceiver. The module supports a simple network protocol. The module contains the embedded firmware implementing the radio physical and data layers.

The module contains a direct sequence spread spectrum transceiver operating in the 902 - 928 MHz ISM band. The system is based on the IEEE 802.15.4-2006 standard, with 10 channels spaced at 2 MHz intervals in the ISM band. The system can operate in several modes. 1) BPSK modulation with each bit mapped by a 15-chip PN sequence at a chip rate of 600 kcps, a symbol rate of 40 ksps, and a bit rate of 40 kbps. The chip sequences are modulated onto the carrier using BPSK modulation with raised cosine pulse shaping (roll-off factor = 1). 2) OQPSK modulation with each symbol mapped by a 16-chip PN sequence at a chip rate of 1000 kcps, a symbol rate of 62.5 ksps, and a bit rate of 250 kbps. At the chip rate of 1000 kcps, half-sine pulse shaping is used. 3) OQPSK modulation with each symbol mapped by a 4-chip PN sequence at a chip rate of 1000 kcps, half-sine pulse shaping is used. The module transmits with an output power of 250 milliwatts (+24 dBm) into a 3.2" long, 22 AWG wire monopole or an external dipole antenna.

PHOTOS

Chip Antenna

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 8 of 82

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	20-25°C
Humidity:	30-60%
Pressure:	86-106 kPa

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)		
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	Yes		
FCC : 15.247(a)(2) IC : RSS 210 A8.2(a)	6 dB Bandwidth of a Digital Modulation System	Yes		
IC : RSS GEN section 4.6.1	20 dB Bandwidth	Yes		
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	Yes		
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	Yes		
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes		
FCC : 15.247(d) IC : RSS 210 A8.2(b)	Transmitted Power Spectral Density of a Digital Modulation System	Yes		
FCC : 15.247(c), 15.209 & 15.205 IC : RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	Yes		
The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC).				

3.3 <u>MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES</u> None Yes (explain below)

3.4 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS

🛛 Yes (explain below)

None

Only BPSK was tested, as it was assumed the BPSK would have exhibit the worst case transmission characteristics.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 9 of 82

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to meet the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 7 (2007), Annex 8 (section 8.2) for a Digital Spread Spectrum (DTS) Transmitter.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 10 of 82

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 <u>Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15 and ANSI C63.4-2009.

Measurements at frequencies 30 MHz – 4 GHz where taken when the EUT was placed on an 80 cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. Radiated emissions measurements were taken at a 3 meter separation distance, per FCC §15.109.

Measurements above 4 GHz were performed at a 1.0 meter separation distance in a semi-anechoic mini chamber. The calculations to determine the limits at the 1.0 meter separation distance are detailed in the following pages.

The EUT was tested in continuous modulated transmit mode. Power was supplied to the EUT by a bench type power supply. Three units were tested; each was programmed to a single channel, using internal proprietary firmware.

The test sample was operated on one of three standard channels: the lowest (906 MHz), middle (914 MHz), and highest (924 MHz), to comply with FCC § 15.31(m).

Please refer to Appendix A for a complete list of test equipment.

5.2 <u>Test Procedure</u>

Radiated Emissions measurements were taken from 30-10000 MHz. Measurements from 30 - 3000 MHz were performed a 3 meter Semi-Anechoic, FCC listed Chamber. Measurements from 3000-10000 MHz were taken at a 1 meter separation distance. The radiated RF emission levels were manually noted at discrete turntable azimuths and measurement antenna heights, corresponding to peak emission levels at various frequencies.

A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz. In transmit mode, the horn antenna was used alone between 1 GHz and 1.75 GHz, and a high pass filter was used with a low noise amplifier for frequencies above 1.75 GHz.

The maximum radiated RF emissions were found by rotating the EUT 360°, and raising and lowering the antenna between 1 and 4 meters, for measurements taken at 3 meters, and 1 and 1.8 meters for measurements taken at 1 meter, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 11 of 82

5.3 <u>Test Equipment Utilized</u>

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at a N.I.S.T. traceable site. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and a HP Agilent E4445A Spectrum Analyzer. The resulting correction factors and the cable loss factors from these calibrations were entered into the Agilent E4445A Spectrum Analyzer database. As a result, the data taken from the Agilent E4445A Spectrum Analyzer accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading.

For measurements 30 MHz – 3 GHz, the Agilent E4445A Spectrum Analyzer was used, and an Agilent E4446A Spectrum Analyzer was utilized for measurements 3 GHz – 10 GHz. An EMCO horn antenna was used for measurements between 1 GHz and 10 GHz (accompanied by a preamp for measurements over 4 GHz).

5.4 <u>Test Results</u>

The EUT was found to meet the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 7 (2007), Annex 8 for a DTS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 12 of 82

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

The maximum peak output power of an intentional radiator in the 2400-2483.5 MHz band, as specified in Title 47 CFR 15.247 (b)(3) and RSS 210 A8.4 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.2(b), shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2,2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBµV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion from field strength μ V/m to dB μ V/m: dB μ V/m = 20 log ₁₀ (100) = 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

960 MHz to 10,000 MHz 500µV/m or 54.0 dB/µV/m at 3 meters 54.0 + 9.5 = 63.5 dB/µV/m at 1 meter

For measurements made at 0.3 meter, a 20 dB correction has been invoked.

960 MHz to 10,000 MHz 500 μ V/m or 54.0 dB/ μ V/m at 3 meters 54.0 + 20 = 74 dB/ μ V/m at 0.3 meters

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 13 of 82

5.6 RADIATED EMISSIONS TEST

3 Meter Measurements of Electromagnetic Radiated Emissions

Test Standard: 47CFR, Part 15.247(DTS)

RSS 210 A8, sections 2.2, 2.6 and 2.7

Frequency Range Inspected: 30 MHz to 10000 MHz

Manufacturer:	LS Research, LLC						
Date(s) of Test:	October 10- November 9, 2009						
Test Engineer(s):	Laura	Laura Bott					
Voltage:	3.3 VI	00					
Operation Mode:	Norma	al, continuous transmit,	modu	lated.	mode		
Environmental Conditions in the Lab:	Temp Relati	Temperature: 20 – 25°C Relative Humidity: 30 – 60 %					
ELIT Dowor:		Single Phase VAC			3 Phase	_V/	AC
LOTTOWEI.		Battery		\checkmark	Other: ben	ch ty	ype power supply
EUT Placement:	\checkmark	80cm non-conductive	table		10cm Spacers		
EUT Test Location:	\checkmark	3 Meter Semi-Anechoic FCC Listed Chamber			3/10m OATS		
Measurements:		Pre-Compliance		Prelir	ninary		Final
Detectors Used:	\checkmark	Peak √		Quas	i-Peak		Average

5.6.1 Transmit Mode: Wire Antenna Unit

The following table depicts the level of significant spurious radiated RF emissions found:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
53.7	1.00	0	17.16	10.87	40.0	29.1	Horizontal	Vertical
119.2	1.00	0	19.00	12.31	43.5	31.2	Vertical	Vertical
188.9	1.00	0	21.66	15.89	43.5	27.6	Vertical	Flat
264.1	1.00	0	27.54	22.03	46.0	24.0	Horizontal	Flat
676.2	1.42	300	45.08	39.05	46.0	7.0	Horizontal	Flat

The table below shows the radiated measurements of the fundamental frequencies on channels 1, 5, and 10:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
906	1.16	116	122.2	122.1	125.0	2.9	Horizontal	Vertical
914	1.37	46	124.3	124.2	125.0	0.8	Horizontal	Side
924	1.41	259	123.5	123.4	125.0	1.7	Horizontal	Flat

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 14 of 82

Radiated Emissions Data Chart – Wire Antenna Unit (continued)

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1812	1.14	327	76.8	75.9	102.1	26.2	Vertical	Flat
2718	1.25	36	51.2	46.1	54.0	7.9	Horizontal	Side
3624	1.03	52	59.4	54.6	63.5	8.9	Vertical	Vertical
4530	1.02	321	53.6	47.1	63.5	16.4	Horizontal	Side
5436	1.07	346	53.0	45.4	63.5	18.1	Vertical	Side
6342	1.02	327	46.5	36.4	111.6	75.2	Horizontal	Side
7248	1.13	151	50.0	38.6	111.6	73.0	Horizontal	Vertical
8154	1.05	99	48.8	38.2	63.5	25.3	Vertical	Flat
9060	1.04	304	57.8	50.5	63.5	13.0	Vertical	Flat

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 1:

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 5:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1828	1.15	245	82.4	79.9	104.2	24.3	Vertical	Flat
2742	1.27	45	49.0	43.2	54.0	10.8	Horizontal	Side
3656	1.36	317	55.4	51.7	63.5	11.8	Horizontal	Side
4570	1.02	269	52.8	46.1	63.5	17.4	Horizontal	Vertical
5484	1.04	230	50.0	41.4	113.7	72.3	Horizontal	Vertical
6398	1.07	187	47.7	37.2	113.7	76.5	Horizontal	Vertical
7312	1.07	269	51.1	41.7	63.5	21.8	Vertical	Flat
8226	1.07	305	54.0	46.0	63.5	17.5	Vertical	Flat
9140	1.19	19	52.3	43.6	63.5	19.9	Vertical	Side

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 10:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1848	1.10	175	81.7	79.3	103.4	24.0	Vertical	Flat
2772	1.00	35	50.1	44.6	54.0	9.4	Horizontal	Vertical
3696	1.00	153	54.9	49.7	63.5	13.8	Vertical	Vertical
4620	1.11	243	49.8	42.2	63.5	21.3	Horizontal	Vertical
5544	1.05	322	51.0	43.4	112.9	69.5	Horizontal	Side
6468	1.03	219	49.5	40.6	112.9	72.2	Horizontal	Vertical
7392	1.06	49	48.8	38.9	63.5	24.6	Horizontal	Side
8316	1.07	301	57.2	51.0	63.5	12.5	Horizontal	Vertical
9240	1.03	304	56.0	49.6	112.9	63.3	Vertical	Flat

Notes:

1) A Quasi-Peak Detector was used in measurements below 1 GHz, and a Peak as well as an Average Detector was used in measurements above 1 GHz. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.

Measurements above 3 GHz were made at 1 meters of separation from the EUT.

2) 3) For measurements of the fundamental power, because of spectral bandwidth, the receiver was set to RBW=VBW=3 MHz.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 15 of 82

Test Setup Photo(s) – Radiated Emissions Test – Wire Antenna Unit

Vertical Orientation

Side Orientation

Flat Orientation

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 16 of 82

Screen Captures - Radiated Emissions Test - Wire Antenna Unit

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 1, 6, or 10, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Channel 6, Antenna Vertically Polarized, 30-300 MHz, at 3m

Channel 6, Antenna Vertically Polarized, 300-902 MHz, at 3m

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 17 of 82

<u>Screen Captures - Radiated Emissions Test – Wire Antenna Unit (continued)</u>

Channel 6, Antenna Vertically Polarized, 902-928 MHz, at 3m

Channel 6, Antenna Vertically Polarized, 928-1000 MHz, at 3m

Heas At Mkr EMI Peak:122.41 dBuV Presel: Emissions 924.16 MHz 0P: 121.12 dBuV Input: RF Path: Bypass 1 EMI Avg: 114.46 dBuV	Trace 2 3
Stop 1.000000000 GHz Mkr1 990.49 MHz	Clear Write
Ref 106 dBµV Atten 10 dB 49.07 dBµV ■EmiPk	Max Hold
dB/	Min Hold
Why have the first the second the second the second the second transformation of the second transformat	View
LgAv	Blank
S3 FS Start 928.00 MHz Stop 1.000 00 GHz #Res BW (CISPR) 120 kHz #VBW 300 kHz Sweep 8.258 ms (1000 pts)	More 1 of 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 18 of 82

Screen Captures - Radiated Emissions Testing – Wire Antenna Unit (continued)

Channel 1, Antenna Vertically Polarized, 1000-1750 MHz, at 3m Peak

Because the peak values were so close to the limit for frequencies in restricted bands, a video averaged sweep was observed.

Channel 1, Antenna Vertically Polarized, 1000-1750 MHz, at 3m Average

🔆 Agilent 10:46:22 Nov 3	,2009		RT	Marker
Meas At Mkr EMI QP: Emissions EMI	Peak: N/A N/A Avg: N/A	Presel: Input: RF F	^p ath: Bypass	Select Marker <u>1</u> 234
		Mkr1	1.161 4 GHz	Normal
Ref 96.99 dBµV #Atter #EmiPk Log			37.98 dBµV	Delta
dB/				Delta Pair (Tracking Ref) Ref ▲
DI 54.0 dBµV				Span Pair Span <u>Center</u>
LgAv				Off
S3 FS Start 1.000 0 GHz Res BW (CISPR) 1 MHz	#VBW 1 kHz	Stop Sweep 860.1 ms	1.750 0 GHz (1000 pts)	More 1 of 2
File Operation Status, C:	BHORN3M9.ANT f	ile loaded		

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 19 of 82

Channel 1, Antenna Vertically Polarized, EUT Vertical 1750-3000 MHz, at 3m

Channel 1, Antenna Vertically Polarized, EUT Vertical 3000-9500 MHz, at 3m

🔆 Agilent 16:03:20	Oct 10, 2009				[Marker
Ref 96.99 dB µ V Peak	#Atten 0 dB		M	kr1 6.077 46.17 d	GHz B µ V	Select Marker 1 2 3 4
Log 10 dB/						Normal
						Delta
LgAv	-antogenery monormality	1	an and an and a state of the st	Any of the following of	with the	Delta Pair (Tracking Ref) Ref <u>▲</u>
M1 S2 S3 FC A AA						Span Pair Span <u>Center</u>
ETun Marker Swp 6.077000	000 GHz-					Off
40.17 UI Start 3.000 GHz #Res BW 1 MHz	*\ *\	BW 1 MHz	Sweep 10.84) Stop 9.500 4 ms (601	GHz pts)	More 1 of 2
File Operation Stat	us, C:\0900	IPF.OTH file	loaded			

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 20 of 82

5.6.2 Receive Mode Testing - Wire Antenna Unit

Per the requirements of RSS-210, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
72.6	1.00	0	15.6	9.1	40.0	30.9	Vertical	Vertical
180.0	1.00	0	19.8	13.4	43.5	30.1	Horizontal	Vertical
220.5	1.00	0	23.5	16.2	46.0	29.8	Horizontal	Side
263.0	1.00	0	28.5	22.7	46.0	23.3	Vertical	Vertical
634.5	1.00	0	30.9	25.0	46.0	21.0	Vertical	Vertical
784.0	1.00	0	31.8	26.0	46.0	20.0	Vertical	Side
945.0	1.00	0	34.6	28.7	46.0	17.3	Horizontal	Vertical

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 21 of 82

Screen Captures - Radiated Emissions Testing on Wire Antenna Unit – Receive Mode

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 1, 5 and 10, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Channel 5, Antenna Vertically Polarized, EUT Vertical 30-300 MHz

Channel 5, Antenna Vertically Polarized, EUT Vertical 300-1000 MHz

🔆 Agilent 08:16:11 Nov 2, 2009	RT	Trace
Meas At Mkr EMI Peak:30.90 dBuV Presel: 634.50 MHz 9P: 25.03 dBuV Input: RF P Emissions EMI Avg: 18.37 dBuV Atten: 0 dB 0	Path: Filter Gain: ON	Тгасе 1 <u>2</u> 3
Marker 634.500000 MHz Mkr1	l 634.5 MHz	Clear Write
Ref 81.99 dBµV #Atten 10 dB #EmiPk Log	30.78 dBµV	Max Hold
dB/		Min Hold
2. A series a selection of the second s	an a	View
LgAv		Blank
MI 32 S3 XS Start 300.0 MHz Stop 2 Res BW (CISPR) 120 kHz •VBW 300 kHz Sweep 380.8 ms	1.000 0 GHz^ (1401 pts)	More 1 of 2
File Operation Status, C:\B03LOGV9.ANT file loaded		

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 22 of 82

<u>Screen Captures - Radiated Emissions Testing on Wire Antenna Unit – Receive Mode</u> (continued)

Channel 5, Antenna Vertically Polarized, EUT Vertical 1000-3000

Channel 5, Antenna Vertically Polarized 3000-9500

★ Agilent 14:25:01 Oct 10, 2009	Peak Search
Mkr1 8.839 GHz Ref 96.99 dB µ V #Atten 0 dB 50.16 dB µ V Peak 14	Next Peak
Marker Log 8.839000000 GHz dB/ 50.16 dBµV	Next Pk Right
	Next Pk Left
dbuv LgRv Mathematical and a state of the	Min Search
M1 S2 S3 FC A AA	Pk-Pk Search
£ (f):	Mkr → CF
Start 3.000 GHz Stop 9.500 GHz #Res BW 1 MHz #VBW 1 MHz Sweep 10.84 ms (601 pts)	More 1 of 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 23 of 82

5.6.3 Transmit Mode: External Dipole Antenna

When testing the radiated emissions characteristics of the SiFlex module with the external dipole, the middle channel fundamental and harmonic measurements were taken with the dipole in a fixed vertical position and rotated the module through three orthogonal axes, and repeated the series of measurements with the dipole in a fixed side and flat position. Measurements of the fundamental power were static when the module was rotated and the dipole remained stationary. Spurious emissions measurements were highest when the antenna was rotated in conjunction with the EUT, so final measurements on all channels were taken where the antenna rotated on the same plane as the module.

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
91.6	1.00	0	15.9	8.8	43.5	34.7	Horizontal	Flat
145.7	1.00	0	19.6	11.9	43.5	31.6	Horizontal	Side
158.1	1.00	0	20.8	13.0	43.5	30.5	Vertical	Flat
212.2	1.00	0	21.8	14.8	43.5	28.7	Vertial	Side
242.7	1.00	0	26.5	20.5	46.0	25.6	Vertical	Vertical
267.8	1.00	0	28.34	21.28	46.0	24.7	Vertical	Flat
288.4	1.00	0	27.9	22.5	46.0	23.5	Horizontal	Vertical

The following table depicts the level of spurious radiated RF emissions found:

The table below shows the radiated measurements of the fundamental frequencies on channels 1, 5, and 10:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Avg Limit (dBμV/m) ^{Note 1}	Margin (dB)	Antenna Polarity	EUT orientation
906	1.53	115	124.2	124.2	131.0	6.8	Horizontal	Flat
914	1.52	156	125.8	125.7	131.0	5.3	Horizontal	Flat
924	1.57	110	124.2	124.1	131.0	6.9	Horizontal	Flat

Note 1: The limit was derived from 15.247(b)(3) and (4), as the radiated fundamental signal strength resulting from the power delivered to the antenna and the antenna gain.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 24 of 82

RADIATED EMISSIONS DATA CHART (continued)

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1812	1.00	115	79.0	77.0	104.2	27.2	Vertical	Vertical
2718	1.13	20	50.5	45.2	54.0	8.8	Horizontal	Vertical
3624	1.03	325	61.1	56.8	63.5	6.7	Horizontal	Side
4530	1.27	327	54.2	47.6	63.5	15.9	Vertical	Flat
5436	1.03	338	52.9	45.5	63.5	18.0	Horizontal	Side
6342	1.03	32	46.5	34.9	113.7	78.7	Horizontal	Vertical
7248	1.02	135	48.3	37.0	113.7	76.7	Horizontal	Vertical
8154	1.05	71	49.0	38.8	63.5	24.7	Horizontal	Vertical
9060	1.11	305	54.2	43.8	63.5	19.7	Vertical	Flat

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 1:

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 5:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1828	1.02	183	78.2	76.3	105.7	29.4	Horizontal	Side
2742	1.06	25	55.5	51.1	54.0	2.9	Horizontal	Side
3656	1.05	349	60.3	57.8	63.5	5.7	Vertical	Vertical
4570	1.11	120	53.2	45.8	63.5	17.7	Vertical	Vertical
5484	1.09	329	56.0	48.5	115.2	66.8	Horizontal	Side
6398	1.15	254	48.7	39.0	115.2	76.2	Horizontal	Vertical
7312	1.16	175	48.2	37.7	63.5	25.8	Vertical	Side
8226	1.04	60	52.0	42.1	63.5	21.4	Vertical	Flat
9140	1.10	39	54.8	45.8	63.5	17.7	Horizontal	Vertical

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 10:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1848	1.00	0	73.9	73.1	104.1	31.1	Horizontal	Side
2772	1.00	0	54.1	49.3	54.0	4.8	Vertical	Side
3696	1.07	33	54.7	51.2	63.5	12.3	Vertical	Vertical
4620	1.03	66	51.1	44.2	63.5	19.3	Vertical	Flat
5544	1.10	8	54.5	47.8	113.6	65.8	Horizontal	Side
6468	1.08	5	51.4	44.5	113.6	69.1	Vertical	Side
7392	1.29	5	49.9	40.0	63.5	23.5	Vertical	Vertical
8316	1.13	275	56.1	48.3	63.5	15.2	Vertical	Flat
9240	1.16	115	53.8	46.0	113.6	67.6	Vertical	Flat

Notes:

1) A Quasi-Peak Detector was used in measurements below 1 GHz, and a Peak as well as an Average Detector was used in measurements above 1 GHz. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.

2) Measurements above 3 GHz were made at 1 meters of separation from the EUT.

3) For measurements of the fundamental power, because of spectral bandwidth, the receiver was set to RBW=VBW=3 MHz.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 25 of 82

Test Setup Photo(s) – Radiated Emissions Test – External Dipole

EUT on Side

EUT Flat

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 26 of 82

Screen Captures - Radiated Emissions Test External Dipole Antenna

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 1, 5, or 10, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Channel 5, Antenna Vertically Polarized, EUT on Side 30-300 MHz, at 3m,

🔆 Agilent 23:42:06 Nov 5, 2009	R	Т	Trace
Meas At Mkr EMI Peak: N/A Presel: 02: N/A Input: RE Path EMI Ava: N/A Atten: 15 dB Gai	h: Filt n: ON	:er	Trace <u>1</u> 2 3
	431.3	3 MHz	Clear Write
Ref 96.99 dBpV #Atten 10 dB 39. #EmiPk	.73 d	BµV ──	Max Hold
			Min Hold
What a construction of the second sec			View
LgAv			Blank
\$3 X5	02.0 .258	MHz^ pts)	More 1 of 2
Frequency limited between 9 kHz to 1 GHz for Presel filter	pat	1	

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 27 of 82

Screen Captures - Radiated Emissions Test External Dipole Antenna (continued)

Channel 5, Antenna Vertically Polarized, EUT Flat 902-928 MHz, at 3m

Channel 5, Antenna Vertically Polarized, EUT Flat 928-1000 MHz, at 3m

★ Agilent 23:45:02 Nov 5, 2009	Т	Trace
Meas At Mkr EMI Peak: N/A Presel: OP: N/A Inout: RE Path: Fi EMI Avg: N/A Atten: 15 dB Gain: 01	lter N	Trace <u>1</u> 23
Mkr1 943.7	'1 MHz	Clear Write
Ref 96.99 dBµV #Atten 10 dB 48.77 #EmiPk	dBµV	Max Hold
		Min Hold
Mill The cashed and the later of the cashed and the	Anne 1997 -	View
LgAv		Blank
S3 X5 Start 928.00 MHz Stop 1.000 00 •Res BW (CISPR) 120 kHz +VBW 300 kHz Sweep 40.22 ms (1258	0 GHz^ pts)	More 1 of 2
Frequency limited between 9 kHz to 1 GHz for Presel filter pat	th	

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 28 of 82

Screen Captures - Radiated Emissions Test External Dipole Antenna (continued)

Channel 5, Antenna Vertically Polarized, EUT Flat 1000-1750 MHz, at 3m

Peak

Because the peak values were so close to the limit for frequencies in restricted bands, a video averaged sweep was observed.

Channel 5, Antenna Vertically Polarized, EUT Flat 1000-1750 MHz, at 3m Average

🗱 Agilent 11:47:17 Nov 9	,2009		R	Т	Peak Search
Meas At Mkr EMI QP: Emissions EMI	Peak: N/A N/A Avg: N/A	Presel: Input: RF	Path: By	/pass	Next Peak
		Mkr1	1.738 (0 GHz	Next Pk Right
lef 107 dBµV #Atten EmiPk .og	10 dB		47.70 (∃BµV	Next Pk Left
B/					Min Search
				1	Pk-Pk Search
gAv					Mkr → CF
11 52 3 FS Start 1.000 0 GHz Res BW (CISPR) 1 MHz	#VBW 3 kHz	Stop Sweep 286.7 m	1.750 0 1s (1000	GHz pts)	More 1 of 2
ile Operation Status, C:	BHORN3M9.ANT f	ile loaded			

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 29 of 82

Screen Captures - Radiated Emissions Test External Dipole Antenna (continued)

Channel 10, Antenna Horizontally Polarized, EUT on Side 1750-3000 MHz, at 3m

Channel 10, Antenna Horizontally Polarized, EUT on Side 3000-9500 MHz, at 3m

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 30 of 82

5.6.4 <u>Receive Mode Testing External Dipole Antenna</u>

Per the requirements of RSS-210, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	QP Reading (dBµV/m)	QP Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
297.3	1.00	0	27.85	22.39	46.0	23.6	Vertical	Vertical
298.7	1.00	0	30.55	24.11	46.0	21.9	Horizontal	Vertical
299.5	1.00	0	30.54	23.98	46.0	22.0	Horizontal	Flat
970.0	1.00	0	33.29	26.15	54.0	27.9	Horizontal	Vertical
976.5	1.00	0	31.32	25.52	54.0	28.5	Vertical	Vertical
979.0	1.00	0	31.71	25.64	54.0	28.4	Vertical	Side
982.0	1.00	0	32.75	26.79	54.0	27.2	Horizontal	Side
985.5	1.00	0	32.44	26.63	54.0	27.4	Horizontal	Flat

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 31 of 82

Receive Mode

Screen Captures - Radiated Emissions Testing on External Dipole Antenna

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 1, 5 and 10, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Channel 5, Antenna Horizontally Polarized, EUT Flat 30-300 MHz

Channel 5, Antenna Horizontally Polarized, EUT Flat 300-1000 MHz

🔆 Agilent 15:29:36 Nov 9, 2009	RT	Marker Fctn
Meas At Mkr EMI Peak:32.44 dBuV Emissions 985.50 MHz 0P: 26.63 dBuV EMI Avg: 20.01 dBuV	Presel: Input: RF Path: Filter Atten: 0 dB Gain: 0N	Select Marker 2 3 4
	Mkr1 985.5 MHz	Marker Noise
Ref 63.99 dBµV #Atten 10 dB #EmiPk Log 10	32.55 dBµV	Band/Intvl Power
	يا بالمراجعة إسماد من المارية الم	
		Function Off
LgAv		Measure at Marker
M1 S2 S3 XS Start 300.0 MHz	Stop 1.000 0 GHz	
Res BW (CISPR) 120 kHz +VBW 300 kHz File Operation Status, C:\B03L0GH9.ANT f	Sweep 380.8 ms (1401 pts)	

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 32 of 82

Receive Mode

Screen Captures - Radiated Emissions Testing on External Dipole Antenna (continued)

Channel 5, Antenna Vertically Polarized, EUT Vertical 1000-3000 MHz

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 33 of 82

Receive Mode

Screen Captures - Radiated Emissions Testing on External Dipole Antenna (continued)

Channel 5, Antenna Vertically Polarized, EUT Vertical 3000-9500

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 34 of 82

5.6.5 Transmit Mode: Chip Antenna

Please note, the radiated emissions measurements for the chip antenna configuration varied slightly from the other setups. Measurements from 30 MHz to 4000 MHz were made at a 3 meter separation distance in the FCC listed semi anechoic 3 meter chamber and measurements from 4000 MHz to 10000 MHz were made at a 1 meter separation distance in a mini chamber.

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
124.05	1.00	0	18.3	12.3	43.5	31.2	Vertical	Vertical
160.54	1.00	0	19.7	12.7	43.5	30.8	Horizontal	Vertical
194.59	1.00	0	22.7	15.1	43.5	28.4	Horizontal	Flat
247.3	1.00	0	29.7	22.5	46.0	23.5	Vertical	Flat
262.16	1.00	0	28.0	22.3	46.0	23.7	Horizontal	Side
289.19	1.00	0	29.9	24.1	46.0	21.9	Vertical	Side

The following table depicts the level of spurious radiated RF emissions found:

The table below shows the radiated measurements of the fundamental frequencies on channels 1, 5, and 10:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Avg Limit (dBμV/m) ^{Note 1}	Margin (dB)	Antenna Polarity	EUT orientation
906	1.49	320	119.8	119.7	131.0	11.3	Vertical	Vertical
914	1.45	239	121.5	121.4	131.0	9.6	Horizontal	Flat
924	1.64	61	120.4	120.2	131.0	10.8	Horizontal	Flat

Note 1: The limit was derived from 15.247(b)(3) and (4), as the radiated fundamental signal strength resulting from the power delivered to the antenna and the antenna gain.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 35 of 82

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 1:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1812	1.11	27	79.5	77.7	99.7	22.0	Vertical	Flat
2718	1.44	0	47.7	42.3	54.0	11.7	Vertical	Side
3624	1.13	345	48.6	45.4	54.0	8.6	Horizontal	Side
4530	1.13	47	50.3	42.9	63.5	20.6	Vertical	Vertical
5436	1.03	39	52.2	43.7	63.5	19.8	Horizontal	Flat
6342	1.10	1	46.6	36.9	109.2	72.2	Horizontal	Side
7248	1.23	66	48.2	37.0	109.2	72.2	Vertical	Flat
8154	1.09	45	49.9	40.8	63.5	22.7	Horizontal	Vertical
9060	1.06	232	51.4	42.6	63.5	20.9	Horizontal	Vertical

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 5:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1828	1.71	12	74.7	73.3	101.4	28.1	Horizontal	Side
2742	1.03	45	46.1	41.0	54.0	13.0	Horizontal	Vertical
3656	1.07	22	48.6	43.3	54.0	10.7	Horizontal	Vertical
4570	1.08	31	56.7	50.5	54.0	3.5	Horizontal	Side
5484	1.19	355	53.1	45.2	110.9	65.7	Horizontal	Flat
6398	1.13	25	48.0	38.7	110.9	72.2	Horizontal	Side
7312	1.00	30	47.9	36.8	63.5	26.7	Horizontal	Side
8226	1.11	220	52.3	42.6	63.5	20.9	Horizontal	Vertical
9140	1.08	294	53.5	43.8	63.5	19.7	Vertical	Flat

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 10:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1848	1.00	17	66.7	65.8	100.2	34.4	Horizontal	Side
2772	1.00	131	48.3	43.6	54.0	10.4	Horizontal	Vertical
3696	1.00	109	51.3	47.7	54.0	6.3	Vertical	Flat
4620	1.03	32	54.2	48.0	54.0	6.0	Horizontal	Side
5544	1.26	346	51.8	43.9	109.7	65.9	Vertical	Vertical
6468	1.11	4	54.4	47.5	109.7	62.2	Horizontal	Vertical
7392	1.15	40	50.1	40.3	63.5	23.2	Vertical	Side
8316	1.04	42	53.8	45.3	63.5	18.2	Horizontal	Vertical
9240	1.17	215	53.3	44.3	109.7	65.5	Horizontal	Flat

Notes:

A Quasi-Peak Detector was used in measurements below 1 GHz, and a Peak as well as an Average Detector was used in measurements above 1 GHz. 1) The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.

Measurements above 4 GHz were made at 1 meters of separation from the EUT.

2) 3) For measurements of the fundamental power, because of spectral bandwidth, the receiver was set to RBW=VBW=3 MHz.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 36 of 82
Test Setup Photo(s) – Radiated Emissions Test – Chip Antenna

EUT Vertical

EUT Flat

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 37 of 82

Screen Captures - Radiated Emissions Test - Chip Antenna

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 1, 5, or 10, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Channel 5, Antenna Vertically Polarized, EUT Vertical 30-300 MHz, at 3m,

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 38 of 82

<u>Screen Captures - Radiated Emissions Test - Chip Antenna</u> Channel 5, Antenna Vertically Polarized, EUT Flat 902-928 MHz, at 3m

Channel 5, Antenna Vertically Polarized, EUT Flat 928-1000 MHz, at 3m

🔆 Agilent 14:21:39 No	iv 16, 2009		R T Marker
Meas At Mkr Emissions	EMI Peak: N/A QP: N/A EMI Avg: N/A	Presel: Input: RF Path Atten: 10 dB Gain	Filter ON Select Marker 1 2 3 4
	4.4.15	Mkr1 92	9.72 MHz
Кеf91.99 dВµV #At #EmiPk Log 10	ten 10 dB	52.	Delta
dB/			Delta Pair (Tracking Ref) Ref ▲
and there are an an other and a second	Manta daga panga kanana na pang kanang na pang kan Ing pang kanang kanan	الاله، الاربية (معيدة عاديم رعية روي وحيف أمير من الير الاله، الاربية (معيدة عاديم روي وحيف أمير من اليربية ال	Span Pair Span <u>Center</u>
LgAv			Off
MI S2 S3 XS Start 928.00 MHz #Res BW (CISPR) 120 kH	Iz #VBW 300 kHz	Stop 1.000 Sweep 40.19 ms (12	000 GHz [*] More 257 pts)
Sweep points are inc	reased to match the	sweep time setting	

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 39 of 82

Screen Captures - Radiated Emissions Test - Chip Antenna (continued)

Peak Agilent 21:29:23 Nov 18, 2009 R T Freq/Channel Center Freq 1.37500000 GHz Meas At Mkr EMI Peak: N/A OP: N/A s EMI Avg: N/A Presel: Input: RF Path: Bypass Emissions Start Freq 1.00000000 GHz Mkr1 1.725 2 GHz 51.85 dBµV Ref 96.99 dB**µ**V #EmiPk #Atten 0 dB Stop Freq 1.75000000 GHz Log 10 dB/ **CF Step** 75.0000000 MHz <u>Auto</u> Man <u>Auto</u> FreqOffset 0.00000000 Hz Signal Track .aAv 0n Off \$2 F\$ Stop 1.750 0 GHz Start 1.000 0 GHz #VBW 1 MHz Sweep 1.732 ms (1000 pts) es BW (CISPR) 1 MHz File Operation Status, C:\AHORN39.ANT file loaded

Channel 10, Antenna Vertically Polarized, EUT Flat 1000-1750 MHz, at 3m

Because the peak values were so close to the limit for frequencies in restricted bands, a video averaged sweep was observed.

Channel 10, Antenna Vertically Polarized, EUT Flat 1000-1750 MHz, at 3m Average

		U		
🔆 Agilent 21:33:35 Nov	18,2009		RT	Trace
Meas At Mkr EM P Emissions EM	II Peak: N/A : N/A II Avg: N/A	Presel: Input: RF	Path: Bypass	Trace 1 <u>2</u> 3
		Mkr1	. 1.723 7 GHz	Clear Write
Ref 96.99 dB µ V #Att #EmiPk Log 10	en 0 dB		40.66 dBµV	Max Hold
				Min Hold
			1 \$	View
LgAv				Blank
S3 FS Start 1.000 0 GHz Res BW (CISPR) 1 MHz	#VBW 1 kHz	Stor z Sweep 860.1 i	o 1.750 0 GHz ns (1000 pts)	More 1 of 2
File Operation Status, C	:\AHORN39.ANT	file loaded		

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 40 of 82

Screen Captures - Radiated Emissions Test - Chip Antenna (continued)

Channel 10, Antenna Vertically Polarized, EUT Flat 1750-4000 MHz, at 3m

Channel 5, Antenna Horizontally Polarized, EUT on Side 4000-9500 MHz, at 3m

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 41 of 82

5.6.6 Receive Mode Testing Chip Antenna

Per the requirements of RSS-210, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
171.6	1.00	0	20.5	14.3	43.5	29.2	Vertical	Side
211.6	1.00	0	23.0	16.2	43.5	27.3	Horizontal	Side
271.9	1.00	0	29.9	23.5	46.0	22.5	Vertical	Flat
298.1	1.00	0	31.6	25.9	46.0	20.1	Horizontal	Vertical
491.0	1.00	0	29.3	22.9	46.0	23.2	Vertical	Side
562.5	1.00	0	29.0	22.6	46.0	23.4	Vertical	Vertical
718.0	1.00	0	33.2	27.0	46.0	19.1	Horizontal	Vertical
810.5	1.00	0	33.4	27.0	46.0	19.0	Horizontal	Flat
984.0	1.00	0	35.9	30.0	54.0	24.0	Horizontal	Side

Measurement data and screen captures from the receive tests are presented below:

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 42 of 82

Receive Mode

Screen Captures - Radiated Emissions Testing on Chip Antenna

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 1, 5 and 10, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Channel 5, Antenna Horizontally Polarized, EUT on Side 30-300 MHz

Channel 5, Antenna Horizontally Polarized, EUT Flat 300-1000 MHz

🔆 Agilent 23:12:	:14 Nov 18, 2009	R	T Trace
Meas A 810.5 Emissions	t Mkr EMI Peak:33.44 dBuV 50 MHz QP: 27.03 dBuV EMI Avg: 20.42 dBuV	Presel: Input: RF Path: Fi Atten: 0 dB Gain: 01	Iter 1 2 3
		Mkr1 810.	Clear Write 5 MHz
Ref 81.99 dBµV #EmiPk Log	#Atten 10 dB	32.23	dBµV Max Hold
dB/			Min Hold
and in such that for the second	ففالمعلولي بالمعاردين تصانب فاجت فاطلب المرصان أسمعون	L La Cara and an international sector of the	View
LgAv			Blank
S3 XS Start 300.0 MHz Res BW (CISPR) 1	120 kHz #VBW 300 kHz	Stop 1.000 (Sweep 380.8 ms (1401	0 GHz [°] More pts) 1 of 2
File Operation S	Status, C:\B03L0GH9.ANT	file loaded	

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 43 of 82

Receive Mode

Screen Captures - Radiated Emissions Testing on Chip Antenna (continued)

Channel 5, Antenna Vertically Polarized, EUT Vertical 1000-4000 MHz

Channel 5, Antenna Horizontally Polarized, EUT Flat 4000-9500 MHz

Mkr1 8.492 GHz Peak 50.61 dBµV Log 10 10 dB/ 10 10 DI 10 10 G3.5 10 10 Min Sear 10	🔆 Ag	jilent 15:16:15	Oct 13, 2009					Peak Search
Log 10 10 B/ B/ Next Pk Rig DI Next Pk Lie 63.5 B/ B/ Min Sear Min Sear Pk-Pk Sear	Ref 96 Peak	6.99 dB µ V ↔	#Atten 0 dB		M	kr1 8.492 50.61 d	2 GHz JB µ V	Next Peak
DI 63.5 dBµV LgAv Min Sear S3.5 FC S3.5 FC S3.5 FC S3.5 FC S3.5 FC S3.5 FC S3.5 FC S3.5 FC S3.5 FC S4.5 FC S5.5 FC	Log 10 dB/							Next Pk Right
Min Sear	DI 63.5					1		Next Pk Left
M1 S2 S3 FC C	dB µ V LgAv	Nolaina naaroo aniyon ta	almost with the other haden by a	-	wether the section of	L. Summer of	all lines	Min Search
	M1 S2 S3 FC A AA							Pk-Pk Search
Image: State of the	£(f): FTun Swp	Marker 8.492000	000 GHz-					Mkr → CF
Start 4.000 GHz Stop 9.500 GHz Mo #Res BW 1 MHz #VBW 1 MHz Sweep 9.2 ms (601 pts) 1 or	Start 4 #Res B	4.000 GHz 8W 1 MHz	<u>ר את</u> א#	BW 1 MHz	Sweep 9.2	∣ Stop 9.500 2 ms (601	∣GHz pts)	More 1 of 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 44 of 82

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE:

6.1 <u>Test Setup</u>

The test area and setup are in accordance with ANSI C63.4-2009 and with Title 47 CFR, FCC Part 15, Industry Canada RSS-210 and RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50 Ω (ohm), 50/250 μ H Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided inside the 3 Meter Semi-Anechoic Chamber via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the HP 8546A EMI Receiver. The EMCO LISN used has the ability to terminate the unused port with a 50 Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 <u>Test Procedure</u>

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

6.3 <u>Test Equipment Utilized</u>

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter are traceable to N.I.S.T. All cables are calibrated and checked periodically for conformance. The emissions are measured on the HP 8546A EMI Receiver, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.4 <u>Test Results</u>

The EUT was found to meet the Conducted Emission requirements of FCC Part 15.207 Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 45 of 82

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B Limits (dBµV)		Measuring	
(MHz)	Quasi-Peak	Average	Bandwidth	
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz	
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP	
5.0 - 30	60	50	VBW = 1 Hz for Average	
* The limit decrea				
logarithm of the fre	equency in this ra	ange.		

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 46 of 82

CONDUCTED EMISSIONS TEST DATA CHART

Frequency Range inspected: 150 KHz to 30 MHz Test Standard: FCC 15.207 Class B IC RSS GEN 7.2.2

Manufacturer:	LS Research, LLC					
Date(s) of Test:	Oct	ober 19, and Noven	nber 3	3, 2009		
Test Engineer:	Lau	ra Bott				
Voltage:	3.3	VDC				
Operation Mode:	Nor	Normal, continuous transmit, modulated. mode				
Environmental	Temperature: 20 – 25° C					
Conditions in the Lab:	Relative Humidity: 30 – 60 %					
Test Location:	\checkmark	Bench Test Area				Chamber
		40cm from Vertical Ground Plane 10cm Spacers				10cm Spacers
		80cm above Ground Plane Other:			Other:	
Measurements:		Pre-Compliance		Preliminary		Final
Detectors Used:		Peak	\checkmark	Quasi-Peak		Average

6.6.1 Test on Unit with Wire Antenna

Test Data

Frequency (MHz)	Line	Q-Peak Reading	Q-Peak Limit	Margin	Average Reading	Average Limit	Margin
0.157	1	30.40	65.65	35.25	11.10	55.65	44.55
0.303	1	25.60	60.16	34.56	14.70	50.16	35.46
1.065	1	25.30	56.00	30.70	0.80	46.00	45.20
0.180	2	32.00	64.47	32.47	27.10	54.47	27.37
0.619	2	32.70	56.00	23.30	30.60	46.00	15.40
1.106	2	24.70	56.00	31.30	1.40	46.00	44.60

Notes:

1) All other emissions were better than 20 dB below the limits.

2) The EUT exhibited similar emissions in transmit and receive modes, and across the Low, Middle and High channels tested.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 47 of 82

6.6

Test Setup Photo(s) for Test with Wire Antenna

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 48 of 82

Screen Captures – Conducted Emissions Test with Wire Antenna

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

The signature scans shown here are from channel 5, chosen as a good representative of channels.

Channel 5, 914 MHz, Line 1

Channel 5, 914 MHz, Line 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 49 of 82

6.6.2 Test on Unit with External Dipole Antenna

Test Data

Frequency (MHz)	Line	Q-Peak Reading	Q-Peak Limit	Margin	Average Reading	Average Limit	Margin
0.195	1	29.90	63.83	33.93	4.60	53.83	49.23
1.025	1	26.20	56.00	29.80	0.60	46.00	45.40
4.001	1	33.60	56.00	22.40	32.20	46.00	13.80
0.159	2	33.00	65.53	32.53	16.70	55.53	38.83
0.417	2	22.90	57.51	34.61	3.20	47.51	44.31
1.085	2	25.70	56.00	30.30	1.40	46.00	44.60

Notes:

1) All other emissions were better than 20 dB below the limits.

2) The EUT exhibited similar emissions in transmit and receive modes, and across the Low, Middle and High channels tested.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 50 of 82

Test Setup Photo(s) for Test with External Dipole Antenna

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 51 of 82

Screen Captures – Conducted Emissions Test with External Dipole Antenna

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

The signature scans shown here are from channel 5, chosen as a good representative of channels.

Channel 5, 914 MHz, Line 1

Channel 5, 914 MHz, Line 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 52 of 82

6.6.3 Test on Unit with Chip Antenna

Test Data

Frequency (MHz)	Line	Q-Peak Reading	Q-Peak Limit	Margin	Average Reading	Average Limit	Margin
0.178	1	31.20	64.60	33.40	24.30	54.60	30.30
1.105	1	26.40	56.00	29.60	1.70	46.00	44.30
4.000	1	36.20	56.00	19.80	34.90	46.00	11.10
0.152	2	31.20	65.91	34.71	8.80	55.91	47.11
0.924	2	26.00	56.00	30.00	2.10	46.00	43.90
4.001	2	36.00	56.00	20.00	34.80	46.00	11.20

Notes:

1) All other emissions were better than 20 dB below the limits.

2) The EUT exhibited similar emissions in transmit and receive modes, and across the Low, Middle and High channels tested.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 53 of 82

Test Setup Photo(s) for Test with Chip Antenna

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 54 of 82

Screen Captures – Conducted Emissions Test with Chip Antenna

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

The signature scans shown here are from channel 5, chosen as a good representative of channels.

Channel 5, 914 MHz, Line 1

Channel 5, 914 MHz, Line 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 55 of 82

EXHIBIT 7. OCCUPIED BANDWIDTH:

7.1 Limits

For a Digital Modulation System, the 6 dB bandwidth shall be at least 500 kHz.

7.2 Method of Measurements

Refer to ANSI C63.4 (2009) and FCC Procedures (2008) for Digital Transmission Systems operating under 15.247.

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 100 kHz RBW and VBW=300 kHz.

The bandwidth requirement found in FCC Part 15.247(a)(2) and RSS 210 A8.2(a) requires a minimum -6dBc occupied bandwidth of 500 kHz. In addition, Industry Canada (IC RSS GEN 4.6.1) requires the measurement of the -20dBc occupied bandwidth. For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to the HP E4446A spectrum analyzer. The loss from the cable was added on the analyzer from a correction factor file, thereby allowing direct measurements, without the need for any further corrections. A Hewlett Packard model E4407B spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

7.3 Test Equipment List

Please refer to Appendix A for a list of equipment used for this test.

7.4 Test Data

Channel	Center Frequency (MHz)	Measured -6 dBc Occupied Bandwidth (kHz)	Minimum - 6 dBc Limit (kHz)	Measured -20 dBc Occupied Bandwidth (kHz)
1	906	710	500	1710
5	914	715	500	1700
10	924	700	500	1392

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 56 of 82

7.5 Screen Captures - OCCUPIED BANDWIDTH

Channel 1 -6 dBc Occupied Bandwidth

Channel 1 -20 dBc Occupied Bandwidth

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 57 of 82

Channel 5 -6 dBc Occupied Bandwidth

🔆 Agi	ent 🤅	11:47:1	1 Oct	26,200	19						Marker
								Mkr	1 & 1.	70 MHz	
Ref 32	.5 dBm		Atten	45 dB	Ext PG	6 - 0.5	dB		0.1	75 dB	Select Marker
Peak Log										*	<u>1</u> 2 3 4
5 dB/					1						Normal
					7						
	Mau		. /		/			$\overline{\}$			Delta
4.9	-riar	Ker 1		1				<u> </u>			
dBm	1.7	0000	ИМН	Z_/			$ \rangle$.		\mathbf{X}		Delta Pair
	0.	175 d	βB	1R Ø			\$				(Tracking Ref)
		/		(\rightarrow				Kef <u>Delta</u>
V1 M2 S3 FC										\sim	Span Pair
A AA			\sim					Ν			Span <u>Center</u>
	$\overline{\langle}$								\sum		Off
									<u>∖</u>	\sim	
	01.4 M								<u> </u>		More
uenter ≢Res B	914 M W 300	нz kHz		VB	W 300 I	kHz	Sv	veep 5	აpan ms (40	วศHz 1 pts)	1 of 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 58 of 82

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 59 of 82

EXHIBIT 8. BAND-EDGE MEASUREMENTS

8.1 <u>Method of Measurements</u>

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902-928 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

The Lower Band-Edge limit, in this case, would be -20 dBc with respect to the fundamental level.

The Upper Band-Edge limit, in this case, would be + 54 dBµV/m at 3m.

8.2 Screen Captures

Screen Capture Demonstrating Compliance at the Low Band-Edge BPSK

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 60 of 82

Screen Capture Demonstrating Compliance at the High Band-Edge BPSK Wire Antenna

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 61 of 82

Screen Capture Demonstrating Compliance at the Low Band-Edge BPSK Dipole Antenna

Screen Capture Demonstrating Compliance at the High Band-Edge BPSK Dipole Antenna

ዡ Agilent 16:38:53 Nov 6, 2009	Trace
Meas At Mkr EMI Peak: N/A Presel: 0P: N/A Input: RF Path: Filter Emissions EMI Avg: N/A Attent: 0 dB Gain: 0 FF	Trace <u>1</u> 2 3
Mkr1 943.92 MH	Clear Write
Ref 96.99 dBµV #Atten 10 dB 46.32 dBµV #EmiPk Log	Max Hold
	Min Hold
Martin and and a second	View
LgAv	Blank
*Kart 928.00 MHz Start 928.00 MHz Start 928.00 MHz *Res BW (CISPR) 120 kHz *VBW 300 kHz Sweep 17.98 ms (1000 pts)	More 1 of 2
File Operation Status, C:\B03LOGH9.ANT file loaded	

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 62 of 82

Screen Capture Demonstrating Compliance at the Low Band-Edge BPSK Chip Antenna

Screen Capture Demonstrating Compliance at the High Band-Edge BPSK Chip Antenna

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 63 of 82

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

9.1 Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable connected to the spectrum analyzer. The loss from the cable was added on the analyzer via correction factor files. The unit was configured to run in a continuous modulated transmit mode. The spectrum analyzer was used with resolution and video bandwidths set to 3 MHz, and a span of 10 MHz, with measurements from a peak detector presented in the chart below.

9.2 Test Equipment List

Test Equipment	Manufacturer	Model No.	Serial No.
Spectrum Analyzer	Agilent	E4446A	US45300564

9.3 Test Data

Channel	Center Frequency (MHz)	Measured Power (dBm)	Limit (dBm)	Margin (dB)	Calculated EIRP (dBm)	EIRP Limit (dBm)	Calculated EIRP (mw)
0	906	25.13	30	4.87	30.47	36.0	1114.29
5	914	25.13	30	4.87	30.47	36.0	1114.29
10	924	24.91	30	5.09	30.25	36.0	1059.25

⁽¹⁾ EIRP Calculation:

EIRP = (Peak power at antenna terminal in dBm) + (EUT Antenna gain in dBi)

Rated RF power output (in watts): 0.316 W

Measured RF Power Output (in Watts): 0.325 W Declared RF Power Output (in Watts): 0.316 W

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 64 of 82

9.4 Screen Captures – Power Output (Conducted)

Channel 1

11:43:24 Oct 26, 2009 🔆 Agilent Peak Search 913.83 MHz 25.13 dBm Mkr1 Ref 34 dBm Atten 45 dB Ext PG -0.5 dB Meas Tools Peak Log 5 dB/ 1 \$ Next Peak Next Pk Right Marker 913.830000 MHz 29.13 dBm Next Pk Left M1 S2 S3 FC A AA Min Search Pk-Pk Search More 1 of 2 Center 914 MHz #Res BW 3 MHz Span 10 MHz Sweep 4 ms (401 pts) VBW 3 MHz

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 65 of 82

Channel 5

🔆 Agi	lent 🔅	3:51:4	8 Oct	26,200	09						Book Soorah
								Cntr1	923.85	01 MHz	Feak Sear CIT
Ref 30 Peak Log	dBm		Atten	40 dB	Ext PG	-0.5	dB		24.9	1 dBm	Meas Tools
5 dB/											Next Pea
	Mar	ker									Next Pk Righ
	92: 22	3.850 .91 (1000 1130 m	MHz							Next Pk Lef
M1 S2 S3 FC A AA	r										Min Searcl
											Pk-Pk Searcl
Center #Res B	924 M ⊌3 MF	Hz z		 #\	 /ВМ З М	 Hz	s	weep 4	Span 1 ms (40	L0 MHz 1 pts)	Mor 1 of

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 66 of 82

EXHIBIT 10. **POWER SPECTRAL DENSITY: 15.247(e)**

10.1 Limits

For digitally modulate systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e) and RSS 210 A8.2(b), the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings performed as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed using the utility built into the HP Analyzer. The resultant density was then corrected to a 3 kHz bandwidth.

10.2 **Test Equipment List**

Test Equipment	Manufacturer	Model No.	Serial No.
Spectrum Analyzer	Agilent	E4446A	US45300564

10.3 Test Data

Channel	Center Frequency (MHz)	Measured Channel Power (dBm/1Hz)	3 kHz Correction (dB)	Corrected Power Measurement (dBm/3kHz)	Limit (dBm)	Margin
1	906	-29.92	34.77	4.85	8.0	3.2
5	914	-30.37	34.77	4.40	8.0	3.6
10	924	-30.6	34.77	4.17	8.0	3.8

10.4 Screen Captures – Power Spectral Density

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 67 of 82

Channel 1

Channe	110
--------	------------

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 68 of 82

EXHIBIT 11. SPURIOUS CONDUCTED EMISSIONS: 15.247(d)

11.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

For data from the radiated measurements, please refer to section 5.6 of this report.

FCC Part 15.247(d) requires a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable. The cable calibration file was loaded into the spectrum analyzer to compensate for the loss of the cable between the antenna port of the EUT to the spectrum analyzer. A Hewlett Packard model E4446A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

No significant emissions could be noted within -50 dBc of the fundamental level for this product.

11.2 Test Equipment List

Test Equipment	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	Agilent	E4446A	US45300564	To 44 GHz

11.3 Test Data

	Channel 1	Channel 5	Channel 10
Fundamental	+ 20.52 (dBm)	+ 20.71 (dBm)	+ 23.51 (dBm)
2 nd Harmonic	- 13.32 (dBm)	- 11.06 (dBm)	- 12.03 (dBm)
3 rd Harmonic	- 42.33 (dBm)	- 42.00 (dBm)	Note (1)
4 th Harmonic	Note (1)	Note (1)	Note (1)
5 th Harmonic	Note (1)	Note (1)	Note (1)
6 th Harmonic	Note (1)	Note (1)	Note (1)
7 th Harmonic	Note (1)	Note (1)	Note (1)
8 th Harmonic	Note (1)	Note (1)	Note (1)
9 th Harmonic	Note (1)	Note (1)	Note (1)
10 th Harmonic	Note (1)	Note (1)	Note (1)

Notes:

(1) Measurement at system noise floor.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 69 of 82

11.4 Screen Captures – Spurious Radiated Emissions

Channel 1, shown from 30 MHz up to 1000 MHz

Channel 1, shown from 1000 MHz up to 10000 MHz

🔆 Agi	lent (12:41:5	8 Oct 2	26,200	9						Marker
								М	kr1 2.	71 GHz	
Ref 20	dBm		Atten	30 dB	Ext PG	6 -0.5	dB		-42.3	3 dBm	Select Marker
reak Log											<u>1</u> 2 3 4
10											
dB/											Normal
											Delta
	Mar	ker									Denta
	2.7	1000	0000	GHz							Delta Pair
	-42	2.33	dBm								(Tracking Ref) Ref <u>Delta</u>
M1 S2								~			Spon Boir
\$3 FC	التحصير	when	a marine	m			-ar-1844	mm	Marria a	month	Span Center
н нн											·
											Off
											More
Start 1 #Res B	L GHz W 100	kHz		VBI	N 100	kHz	Swe	ep 1.16	Stop 1 5 s (40	LØ GHz 1 pts)	1 of 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 70 of 82

🔆 Ag	ilent 03:20:3	0 Oct 6,200	9						Peak Search
Ref 26 Peak	dBm	Atten 40 c	B			Mk	r1 914 20.7	4.3 MHz 1 dBm ♦	Next Peak
Log 10 dB/								1	Next Pk Right
	-Marker-								Next Pk Left
LgAv	914.300 20.71	0000 <u>MHz</u> dBm) 	Min Search
M1 S2 S3 FC A AA							لمسرون	h.	Pk-Pk Search
£ (f): FTun Swp		njitz-Vitanderunghitan	det the markets	Mpc,and sold	<u>ta interest</u>	and a strain of the	JW00/11/11		Mkr → CF
Start 3 #Res B	30.0 MHz W 100 kHz	•	 •VBW 100	kHz	Swee	Stop 9p 117) 1.000 ms (60	0 GHz 1 pts)	More 1 of 2
File O	peration St	atus, A:\SCI	REN027.G	IF file	saved				

Channel 5, shown from 30 MHz up to 1000 MHz

Channel 5, shown from 1000 MHz up to 10000 MHz

📯 Ag	ilent :	11:51:0	9 Oct 2	26,200	19			м	kr1 2	72 CU-	Marker
Ref 10 Peak Log	6.5 dBm		Atten	30 dB	Ext PG	6 -0.5	dB		-2 2	12 dBm	Select Marker
10 dB/											Norma
	Mar	ker									Delta
	2.7	3000 -42 4	10000 dBm	GHz							Delta Pair (Tracking Ref) Ref <u>Delta</u>
M1 S2 S3 FC A AA	أحسا	man	Anner	man	~~~~~		Jum		m	and the second	Span Pair Span <u>Cente</u> r
											Of
Start : #Res E	1 GHz 3W 100	kHz		VB	W 100	 kHz	 Swe	 ep 1.10	Stop Sis (40	10 GHz 11 pts)	More 1 of 2

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 71 of 82

🔆 Ag	ilent 03:22:0	95 Oct 6,	2009		• · · ·					Peak Search
Ref 26 Peak	dBm	Atten	40 dB				Mk	r1 924 20.7	1.0 MHz 4 dBm ♦	Next Peak
Log 10 dB/									1	Next Pk Right
	-Marker-									Next Pk Left
LgAv	924.001 20.74	2000_M dBm	Hz							Min Search
M1 S2 S3 FC A AA								الله د د .		Pk-Pk Search
£ (f): FTun Swp	unperson la marcia	pad duroth damas	and the second	h-lash-Willow	an a	Name Andre	Lander Mary Mary Mary	d'onne en	~~~~~	Mkr → CF
Start 3 #Res B	30.0 MHz W 100 kHz		#VB	W 100	 kHz	Swee	Stop Stop Stop) 1.000 ms (60	0 GHz 1 pts)	More 1 of 2
File Op	peration S	tatus, A:	SCREN	028.G	IF file	saved				

Channel 10, shown from 30 MHz up to 1000 MHz

Channel 10, shown from 1000 MHz up to 10000 MHz

Peak Search	86 GHz	1kr1 1	м			19	26,200	4 Oct 2	14:29:1	ent 1	🔆 Agil
Meas Tool	03 dBm	-12.0		dB	6 -0.5	Ext PG	30 dB	Atten		dBm	Ref20 Peak _og
Next Pea											10 187
Next Pk Righ									ker_		
Next Pk Le							GHz	0000 dBm	6000 2.03	1.8 -12	
Min Searc	n hann	historia	mm	www	nom	Martin	~~~~~		yhonn		11 S2 53 FC AA
Pk-Pk Searc											
Mor 1 of	10 GHz 01 pts)	Stop : 6 s (40	ep 1.1	Swi	kHz	W 100	VBI		kHz	GHz W 100) tart 1 #Res B

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 72 of 82
EXHIBIT 12. FREQUENCY & POWER STABILITY OVER VOLTAGE & TEMPERATURE VARIATIONS

The stability of the device was examined as a function of the input voltage available to the EUT.For measurements of the frequency and voltage stability, the transmitter was placed inside a temperature controlled environmental chamber (Thermotron S-8C). A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was place inside a temperature chamber, with the transmitter portion of the EUT placed in CW modulated continuous transmit mode. Power was supplied by an external bench-type variable power supply, and the frequency of operation was monitored via a conducted measurement. The spectrum analyzer was placed outside of the thermal chamber and an sma cable was fed through a porthole on the side of the chamber and connected to the module.

A spectrum analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was placed in continuous transmit CW mode. Power to the EUT was supplied by an external bench-type variable power supply. The frequency of operation was monitored using the spectrum analyzer with RBW=VBW=1 kHz settings while the voltage was varied.

	Frequency in MHz							
U	Channel 1	906.008900	906.008800	906.009170				
20°	Channel 5	914.008200	914.008700	914.008670				
	Channel 10	924.008570	924.007730	924.008700				
C)	Channel 1	906.003550	906.003330	906.003830				
2°	Channel 5	914.002930	914.003320	914.003380				
7	Channel 10	924.003350	924.003700	924.003570				
()	Channel 1	905.994830	905.994930	905.995130				
Ω°	Channel 5	913.994570	913.994800	913.994970				
ы	Channel 10	923.994100	923.994700	923.995030				

2.8 VDC	3.3 VDC	3.8 VD0

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 73 of 82

The RF Power Output of the EUT was also monitored in a separate test, also using a Spectrum Analyzer with RBW=VBW=3 MHz setting while the voltage was varied.

		2.8 VDC	3.3 VDC	3.8 VDC
			Power in dBm	
U	Channel 1	21.58	22.47	23.08
20°	Channel 5	21.57	22.32	22.91
	Channel 10	21.41	22.19	22.71
U	Channel 1	21.34	22.22	22.91
.2°	Channel 5	21.33	22.11	22.70
0	Channel 10	21.22	21.96	22.49
U U	Channel 1	20.94	21.79	22.39
5° (Channel 5	20.92	21.68	22.29
ы	Channel 10	20.81	21.57	22.10

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characterizes were well behaved, and the system returned to the same state of operation as before the power cycle.

At the extreme temperature settings, a wide frequency sweep was also investigated, with minimum and maximum input voltages, to ensure that no unexpected anomalies have occurred.

No anomalies were noted, in the measured transmit power, during the voltage variation tests.

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 74 of 82

EXHIBIT 13. MPE CALCULATIONS

The following MPE calculations are based on a Nearson dipole antenna, with a measured ERP of 125.7 dB μ V/m, at 3 meters, and conducted RF power of +25.13 dBm as presented to the antenna. The calculated gain of this antenna, based on the ERP measurements is 5.34 dBi.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	25.13 (dBm)
Maximum peak output power at antenna input terminal:	325.837 (mW)
Antenna gain(typical):	5.34 (dBi)
Maximum antenna gain:	3.420 (numeric)
Prediction distance:	20 (cm)
Prediction frequency:	900 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.6 (mW/cm^2)
Power density at prediction frequency:	0.221682 (mW/cm^2)
Maximum allowable antenna gain:	9.7 (dBi)
Margin of Compliance at 20 cm =	4.3 dB

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 75 of 82

APPENDIX A

_								
	Date	: 16-Oct-2009	Type Test	Radiated Er	nissions		Job #	<u>C-720</u>
Prepared By: L Bott			Customer :	LSR			Quote	#: <u>309308</u>
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	12/23/2008	12/23/2009	Active Calibration
2	AA 960077	Bicon Antenna	EMCO	93110B	9702-2918	11/24/2008	11/24/2009	Active Calibration
3	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/20/2008	10/20/2009	Active Calibration
4	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	3/7/2009	3/7/2010	Active Calibration
5	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	3/17/2009	3/17/2010	Active Calibration
6	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	7/2/2009	7/2/2010	Active Calibration

Ĺ	Equi	ipment Calibration						
	Date	: 16-Oct-2009	Type Test	Band-Edge			Job #	C-720
	Prepared By	/ L Bott	Customer :	LSR			Quote	# 309308
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/20/2008	10/20/2009	Active Calibration
2	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	3/7/2009	3/7/2010	Active Calibration
3	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	3/17/2009	3/17/2010	Active Calibration
4	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	7/2/2009	7/2/2010	Active Calibration

	SEARCH LLC						
Date :	16-Oct-2009	Type Test	Occupied Ba	andwidth (6dB & 20d	В)	Job #	<u>C-720</u>
Prepared By:	L Bott	Customer :	LSR			Quote #	≠. <u>309308</u>
lo. Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/17/2009	9/17/2010	Active Calibration

	SEARCH LLC ^{s Product Development} pment Calibration						
Date :	16-Oct-2009	Type Test	Conducted	Power Output		Job #	≠ : <u>C-720</u>
Prepared By:	L Bott	Customer :	LSR			Quote :	#: 309308
No. Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1 EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/17/2009	9/17/2010	Active Calibration

	SEARCH LLC Product Development prment Calibration						
Date ;	16-Oct-2009	Type Test	Power Spec	tral Density		Job #	: <u>C-720</u>
Prepared By:	L Bott	Customer :	LSR			Quote ;	#. 309308
No. Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1 EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/17/2009	9/17/2010	Active Calibration

LS RESEARCH LLC Wireless Product Development Equipment Calibration							
Date : 16-Oct-2009	Type Test	Spurious Er	missions		Job #	C-720	
Prepared By: L Bott	Customer :	LSR			Quote #	t 309308	
No. Asset # Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status	
1 EE 960073 Spectrum Analyzer	Agilent	E4446A	US45300564	9/17/2009	9/17/2010	Active Calibration	
Prepared For: LS Research, LLC	EUT: Si-F	lex Mod	ule				LS Research, LLC
Report # 309308	Model #:	LS900-S	61-02				
LSR Job #: C-720	Serial #:4	, 5, 44, 8	33, 90, 95				Page 76 of 82

LS RESEARCH LLC Wireless Product Development Equipment Calibration Date : 16-Oct-2009 Type Test : Radiated Emissions (109) Job # : C-720 Customer : LSR Prepared By: L Bott Quote #: 309308 No. Asset # 1 AA 960007 Manufacturer Model # Serial # Cal Date Cal Due Date Equipment Status Description Double Ridge Horn Antenna EMCO 3115 9311-4138 12/23/2008 12/23/2009 Active Calibration AA 960077 Bicon Antenna 93110B 93146 2 EMCO 9702-2918 9701-4855 11/24/2008 10/20/2008 11/24/2009 Active Calibration AA 960078 Log Periodic Antenna EMCO 3 10/20/2009 Active Calibration EE 960156 100kHz-1GHz Analog Signal Generator Agilent N5181A MY49060062 3/7/2009 3/7/2010 Active Calibration 4 EE 960157 3Hz-13.2GHz Sp EE 960158 RF Preselecter 3Hz-13.2GHz Spectrum Analyzer Agilent E4445A MY48250225 3/17/2009 3/17/2010 Active Calibration N9039A MY46520110 7/2/2010 Agilent 7/2/2009 Active Calibration

	Equi							
	Date	16-Oct-2009	Type Test :	Conducted Emiss	ions		Job # :	<u>C-720</u>
	Prepared By:	L Bott	Customer :	LSR			Quote #:	309308
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960013	EMI Receiver	HP	8546A System	3617A00320;3448A	9/17/2009	9/17/2010	Active Calibration
2	EE 960014	EMI Receiver-filter section	HP	85460A	3448A00296	9/17/2009	9/17/2010	Active Calibration
3	AA 960031	Transient Limiter	HP	11947A	3107A01708	9/15/2009	9/15/2010	Active Calibration
4	AA 960075	LISN	EMCO	3810/2NM	9612-1710	9/16/2009	9/16/2010	Active Calibration

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 77 of 82

APPENDIX B TEST STANDARDS - CURRENT PUBLICATION DATES RADIO

		TEST	<u>STANDARDS –</u>
STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
ANSI C63.10	2009		
CISPR 11	2009-05		
CISPR 12	2007-05		
CISPR 14-1	2005-11	2008-11	
CISPR 14-2	2001-11	2001-11	2008-05
CISPR 16-1-1 Note 1	2006-03	2006-09	2007-07
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2007-05		
EN 55014-1	2006		
EN 55014-2	1997		
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05		
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05		
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4	2007-02		
	I		

STANDARD #	DATE	Am. 1	Am. 2
IEC 61000-4-4	2004-07		
IEC 61000-4-5	2005-11		
IEC 61000-4-6	2008-10		
IEC 61000-4-8	2009-09		
IEC 61000-4-11	2004-03		
IEC 61000-6-1	2005-03		
IEC 61326-1	2006-06		
ISO 14982	1998-07		
MIL Std. 461E	1999-08		
RSS GEN	2007-06		
RSS 119	2007-06		
RSS 123	1999-11		
RSS 125	2000-03		
RSS 131	2003-07		
RSS 136	2002-10		
RSS 137	2009-02		
RSS 210	2007-06		
RSS 213	2005-12		
RSS 243	2005-11		
RSS 310	2007-06		
FCC 47 CFR, Parts 0- 15, 18, 90, 95	2008		
00-1407	2000		
FCC ET Docket # 99- 231	2002		
FCC Procedures	2007		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 003	2004-02		
IEC 60601-1-2 Note 1	2007-03		
IEC 61000-3-2	2005-11	2008-03	2009-02
IEC 61000-3-3	2008-06		
IEC 61000-4-2	2008-12		
IEC 61000-4-3	2008-04	incl in 2006	

Note 1: Test not on LSR Scope of Accreditation. Updated on 10-21-09

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 78 of 82

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 79 of 82

Appendix D

Antenna Specification(s)

Nearson Dipole

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 80 of 82

Helical SMD-Antenna

ISM 900MHz

Typical performance (testboard size 100 × 40 mm, PWB ground clearance area 6.00 × 11.00 mm)

Freque	ency Range	Max Gain	Efficiency	Return loss	Impedance	Operating
[MHz]	[dBi]	[%] / [dB]	min. [dB]	[Ω]	Temperature [°C]
90:	2 – 928	0.9 (peak) -0.3 (band edges)	67 / -1.7 (peak) 50 / -3 (band edges)	-10	50	-40 to +85

_____€8лн ______€8лн Typical Electrical Characteristics (T=25 °C) Typical Return Loss S11/ impedance, measured on the 100 x 40 mm test board with matching circuit Dualband WLAN Dualband WLAN 1. 92.414 Ω 0.4141 Ω 902.000 MHz 2. 29.924 Ω -3.8193 Ω 44.904 pF 928.000 000 MHz 3.Aug 2006 12:16:23 CH Markers 1. -10.616 dB 902.000 MHz 2. -11.740 dB 928.000 000 MHz 3.Aug 2006 1 2:22:57 CH1 S11 LOG 5 dB/REF 0 dB CH1 S11 1 U FS PRm Del PRm Del Cor Cor START 600.000 000 MHz STOP 1 200.000 000 MHz START 600.000 000 MHz STOP 1 200.000 000 MHz

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 81 of 82

Prepared For: LS Research, LLC	EUT: Si-Flex Module	LS Research, LLC
Report # 309308	Model #: LS900-SI-02	
LSR Job #: C-720	Serial #:4, 5, 44, 83, 90, 95	Page 82 of 82