

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

TEST REPORT # 312143 BT LSR Job #: C-1493

<u>Compliance Testing of</u>: 2.4 GHz Bluetooth Radio

<u>Test Date(s)</u>: July 24-26, August 3, 6, October 2, 2012

Prepared For: LS Research, LLC W66N220 Commerce Ct. Cedarburg, WI 53012

> In accordance with: Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 210 Annex 8 Frequency Band 2400-2483.5 MHz

 This Test Report is issued under the Authority of:

 Peter Feilen, EMC Engineer

 Signature:
 Date: 11/6/12

 Test Report Reviewed by:
 Tested by:

 Khairul Aidi Zainal, Senior EMC Engineer
 Peter Feilen, EMC Engineer

 Signature:
 Date: 11/6/12

 Signature:
 Date: 11/6/12

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	.4
1.1 - Scope	.4
1.2 – Normative References	.4
1.3 - LS Research, LLC Test Facility	.5
1.4 – Location of Testing	.5
1.5 – Test Equipment Utilized	.5
EXHIBIT 2. PERFORMANCE ASSESSMENT	.6
2.1 – Client Information	.6
2.2 - Equipment Under Test (EUT) Information	.6
2.3 - Associated Antenna Description	.6
2.4 - EUT'S Technical Specifications	.7
2.5 - Product Description	.7
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	.8
3.1 - Climate Test Conditions	.8
3.2 - Applicability & Summary Of EMC Emission Test Results	.8
3.3 - Modifications Incorporated In The EUT For Compliance Purposes	.8
3.4 - Deviations & Exclusions From Test Specifications	.8
EXHIBIT 4. DECLARATION OF CONFORMITY	.9
EXHIBIT 5. RADIATED EMISSIONS TEST1	10
5.1 - Test Setup1	10
5.2 - Test Procedure1	10
5.3 - Test Equipment Utilized1	11
5.4 - Test Results1	11
5.5 CALCULATION OF RADIATED EMISSIONS LIMITS1	12
5.6 RADIATED EMISSIONS TEST DATA CHART1	13
5.7 RADIATED EMISSIONS DATA CHARTS1	14
5.8 - RECEIVE MODE1	16
EXHIBIT 6. OCCUPIED BANDWIDTH	23
6.1 - Method of Measurements2	23
6.2 - Test Data2	23
6.3 - Screen Captures - Occupied Bandwidth	
EXHIBIT 7. BAND EDGE MEASUREMENTS	
7.1 - Method of Measurements2	27

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 2 of 53

EXHIBIT 8. POWER OUTPUT (CONDUCTED)	4
8.1 - Method of Measurements	
8.2 - Test Data	
8.3 - Screen Captures – Power Output (Conducted)	
EXHIBIT 9. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)	
9.1 - Limits	8
9.2 – Conducted Harmonic And Spurious RF Measurements	8
9.3- Screen Captures – Spurious Radiated Emissions	8
EXHIBIT 10. CHANNEL PLAN AND SEPARATION4	0
10.1 Channel Separation4	0
10.2 Screen Captures4	0
EXHIBIT 11. CHANNEL OCCUPANCY4	5
11.1 Screen Capture4	5
EXHIBIT 12. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE4	
EXHIBIT 13. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH4	7
APPENDIX A – Test Equipment List4	8
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO4	9
APPENDIX C - Uncertainty Statement	0
APPENDIX D – Duty Cycle Justification5	

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 3 of 53

EXHIBIT 1. INTRODUCTION

<u> 1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 8
Title:	 FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low- Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or Business Residential

<u>1.2 – Normative References</u>

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210 Annex 8	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.
FCC Public Notice DA 00-705	Part 15 Unlicensed Modular Transmitter Approval

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 4 of 53

<u>1.3 - LS Research, LLC Test Facility</u>

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. Accreditation status can be verified at A2LA's web site: <u>www.a2la2.net</u>.

<u>1.4 – Location of Testing</u>

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Compact Chamber Semi-Anechoic Chamber Open Area Test Site (OATS)

<u>1.5 – Test Equipment Utilized</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 5 of 53

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 - Client Information

Manufacturer Name:	LS Research, LLC
Address:	W66N220 Commerce Ct
Contact Name:	Bill Steinike

2.2 - Equipment Under Test (EUT) Information

The following information has been supplied by the applicant.

Product Name:	2.4 GHz Bluetooth Radio
Model Number:	TIWI-uB2
Serial Number:	311201, 281301

2.3 - Associated Antenna Description

Ceramic chip antenna (maximum gain of +1.3 dBi) and a reverse-gendered, SMA connection articulating dipole antenna (maximum gain of +2.0 dBi) have been tested in conjunction with this module.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 6 of 53

2.4 - EUT'S Technical Specifications

EUT Frequency Range (in MHz)	2402-2480 MHz
Maximum Conducted Output Power (in dBm)	11.0 dBm
Minimum Conducted Output Power (in dBm)	9.8 dBm
Maximum Conducted Output Power (in W)	0.0126 W
Minimum Conducted Output Power (in W)	0.0095 W
Maximum Occupied Bandwidth (99% BW)	1.24 MHz
Type of Modulation	FSK
Emission Designator	1M24FXD
Maximum EIRP (in mW)	19.95 mW
Transmitter Spurious (worst case) at 3 meters	50.8 dBuV/m @ 3m @ 4960 MHz
Receiver Spurious (worst case) at 3 meters	47.2 dBuV/m @ 3m @ 19.515 GHz
Receiver Sensitivity	GFSK: -92 dBm
	EDR2: -91 dBm
	EDR3: -82 dBm
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model # (if applicable)	CC2564
Antenna Information	
Detachable/non-detachable	Detachable and non-detachable
Туре	Articulating Dipole and Ceramic Chip
Gain, maximum (in dBi)	+2.0 dBi (dipole), +1.3 dBi (chip)
From data sheet	
EUT will be operated under FCC Rule Part(s)	15.247
EUT will be operated under RSS Rule Part(s)	RSS 210
Modular Filing	🖂 Yes 🗌 No
Portable or Mobile?	Portable

RF Technical Information:

Type of	Х	SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)		RF Evaluation

Between 2.2GHz and 3.0GHz the limit is 20 mW before SAR testing is required. This device has a maximum EIRP of 19.95 mW. As 19.95 mW is below the limit of 20 mW, no SAR testing is required.

2.5 - Product Description

The TiWi-uB2 Module is a radio module that implements a dual mode Bluetooth (BT) and Bluetooth Low Energy (BLE) transceiver. A Texas Instruments CC2564 (System on Integrated Circuit) has one transceiver that can operate in either BT or BLE mode.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 7 of 53

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	15-35 °C
Humidity:	30-60%
Pressure:	645-795 mmHg

3.2 - Applicability & Summary Of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.247 (a)(1)(i) IC : RSS 210 A8.1 (a)	20 dB Bandwidth (FHSS)	YES
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	YES
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	YES
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	YES
FCC:15.247 (a)(1)(i) IC: RSS 210 (b)	Carrier Frequency Separation	YES
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Number of hopping channels	YES
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Time of occupancy (Dwell Time)	YES
FCC : 15.247(c), 15.209 & 15.205 IC : RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	YES

<u>3.3 - Modifications Incorporated In The EUT For Compliance Purposes</u>

🛛 None

Yes (explain below)

<u>3.4 - Deviations & Exclusions From Test Specifications</u>

🖂 None

Yes (explain below)

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 8 of 53
		-

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 8 (2010), Annex 8 for a Frequency Hopping Spread Spectrum (FHSS) Transmitter.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 9 of 53

EXHIBIT 5. RADIATED EMISSIONS TEST

<u>5.1 - Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4-2003. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous modulated transmit mode for final testing using power as provided by a bench DC supply.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (2402), middle (2440) and high (2480) to comply with FCC Part 15.31(m). The channels and operating modes were set via laptop computer using proprietary software.

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Bi-conical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 25 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 10 of 53

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 8 (2010), Annex 8. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 11 of 53

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

The maximum peak output power of an intentional radiator in the 2400-2483.5 MHz band, as specified in Title 47 CFR 15.247 (b)(3) and RSS 210 A8.4 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.2(b), shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2,2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion from field strength μ V/m to dB μ V/m: dB μ V/m = 20 log ₁₀ (100) = 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

> 960~MHz 500 μ V/m or 54.0 dB/ μ V/m at 3 meters 54.0 + 9.5 = 63.5 dB/ μ V/m at 1 meter

Sample Calculation using correction factors from the device

Raw Receiver Data + Antenna Factor + Cable Factor + = Reported Value

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 dBµV

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 12 of 53

5.6 RADIATED EMISSIONS TEST DATA CHART

3 Meter Measurements of Electromagnetic Radiated Emissions Test Standard: 47CFR, Part 15.205 and 15.247(DTS) RSS 210 A8, sections 2.2, 2.6 and 2.7 Frequency Range Inspected: 30 MHz to 25000 MHz

Manufacturer:	LS Research, LLC				
Date(s) of Test:	Ju	ly 24-26, August 3, 2012			
Project Engineer:	Pe	ter Feilen			
Test Engineer(s):	Pe	ter Feilen, Adam Alger			
Voltage:	3.6	SVDC (nominal)	-		
Operation Mode:	Cc	Continuous modulated transmit mode			
Environmental	Те	Temperature: 71°F			
Conditions in the Lab:	Re	lative Humidity: 32 %			
EUT Power:		Single PhaseVAC			3 Phase VAC
LOT FOWER.		Battery		Х	Other: Bench DC Supply
EUT Placement:	Х	80cm non-conductive tab	le		10cm Spacers
EUT Test Location:		3 Meter Semi-Anechoic 3/10m OATS		3/10m OATS	
		FCC Listed Chamber			
Measurements:		Pre-Compliance			Preliminary X Final
Detectors Used:	Х	Peak)	<	Quasi-Peak X Average

Duty cycle relaxation was used at certain times when measuring radiated spurious emissions.

The duty cycle justification can be found in Appendix D of this report.

A total amount of 14 dB is applied. This 14 dB is subtracted from the peak value of any measurement applied to, and this adjusted value is compared to the 15.209 limit, which compares to an average value for frequencies above 1 GHz.

A peak and average measurement are recorded for each frequency measured. If the average value exceeds the limit, the peak value with duty cycle relaxation is considered, to determine a pass or fail result for the measurement.

Example: An average value of 66.8 dBuV/m is recorded at a given frequency. This exceeds the limit of 63.5 dBuV/m by 4.8 db. Then, the peak value measured for the same frequency is considered. If the peak value is measured at 68.3 dBuV/m, then reduced by 14.0 dB to 54.3 dBuV/m and compared to the limit, a passing result is obtained using duty cycle relaxation. 54.3 dBv/m as compared to the limit of 63.5 dBuV/m is less yielding a passing result.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 13 of 53
		-

5.7 RADIATED EMISSIONS DATA CHARTS

DIPOLE ANTENNA

Duty cycle relaxation was utilized to adjust spurious emissions values. Please reference Appendix D for duty cycle explanation.

The following table depicts the level of significant radiated harmonic emissions seen on Channel Low, 1 MBPS:

Frequency (MHz)	Height (m)	Azimuth (degree)	Реаk Reading (dBµV/m)	Avg Reading (dBμV/m)	Duty-Cycle Amount (dB)	Duty-Cycle Corrected Average Measurement (dBµV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4804	1.11	301	68.3	66.8	14.0	54.3	63.5	9.2	Horizontal	Side
12010	1	218	63.0	56.2	14.0	49.0	63.5	14.5	Vertical	Flat
19216	1	67	69.9	57.8	14.0	55.9	63.5	7.6	Horizontal	Side

The following table depicts the level of significant radiated harmonic emissions seen on Channel Middle, 1 MBPS:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Duty-Cycle Amount (dB)	Duty-Cycle Corrected Average Measurement (dBuV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4880	1.05	198	72.3	71.2	14.0	58.3	63.5	5.2	Horizontal	Vertical
7320	1.00	207	61.9	59.2	14.0	47.9	63.5	15.6	Horizontal	Side
12200	1.04	115	63.7	57.2	14.0	49.7	63.5	13.8	Horizontal	Side
19520	1.00	71	73.3	61.2	14.0	59.3	63.5	4.2	Horizontal	Side

The following table depicts the level of significant radiated harmonic emissions seen on Channel High, 1 MBPS:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Duty-Cycle Amount (dB)	Duty-Cycle Corrected Average Measurement	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4960	1.05	196	70.9	69.7	14.0	56.9	63.5	6.6	Horizontal	Vertical
7440	1.00	327	59.9	56.9	14.0	45.9	63.5	17.6	Horizontal	Side
12400	1.00	127	67.2	61.4	14.0	53.2	63.5	10.3	Horizontal	Side
19840	1.00	71	67.8	56.4	14.0	53.8	63.5	9.7	Horizontal	Side
22320	1.00	347	59.1	48.0	14.0	45.1	63.5	18.4	Horizontal	Vertical

Notes:

- 1. A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.
- 2. Measurements above 4 GHz were made at 1 meters of separation from the EUT. Limits have been corrected to reflect the change in measurement distance.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 14 of 53
		-

CHIP ANTENNA

The following table depicts the level of significant radiated harmonic emissions seen on Channel Low:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Duty Cycle Correction Amount (dB)	Corrected Average Reading (dBuV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4804	1.10	260	73.3	72.2	14.0	58.2	63.5	5.3	Vertical	Vertical
12010	1.00	133	59.3	52.6	14.0	38.6	63.5	24.9	Horizontal	Flat

The following table depicts the level of significant radiated harmonic emissions seen on Channel Middle:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Duty Cycle Correction Amount (dB)	Corrected Average Reading (dBuV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4880	1.00	239	74.3	73.3	14.0	59.3	63.5	4.2	Vertical	Vertical
7320	1.21	115	60.0	56.0	14.0	42.0	63.5	21.5	Vertical	Side
12200	1.18	342	63.3	55.7	14.0	41.7	63.5	21.9	Horizontal	Vertical

The following table depicts the level of significant radiated harmonic emissions seen on Channel High:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Duty Cycle Correction Amount (dB)	Corrected Average Reading (dBuV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4960	1.02	236	75.2	74.3	14.0	60.3	63.5	3.2	Vertical	Vertical
7440	1.00	150	57.3	52.2	14.0	38.2	63.5	25.3	Horizontal	Flat
12400	1.07	13	61.0	51.9	14.0	37.9	63.5	25.6	Horizontal	Side

Notes:

1. A Quasi-Peak Detector was used in measurements below 1 GHz. A peak detector with video averaging was used for measurements above 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used.

 Measurements above 4 GHz were made at 1 meter separation from the EUT. Limits have been corrected to reflect the change in measurement distance.

The following table depicts the level of significant spurious radiated RF emissions found (other than the fundamentals and its harmonics):

Frequency (MHz)	Height (m)	Azimuth (degree)	Field Strength Reading (dBµV/m)	Field Strength Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1862.4	1.00	0	39.6	54.0	14.4	н	F
3931.0	1.00	0	49.1	54.0	4.9	Н	F
83.2	1.00	107	26.7	40.0	13.3	V	V
82.8	1.00	121	25.6	40.0	14.4	V	F
72.1	4.00	0	19.1	40.0	20.9	н	F
72.1	4.00	0	19.3	40.0	20.7	Н	S
83.0	1.00	122	26.3	40.0	13.7	V	S

Note:

1. H: Horizontal, V: Vertical, F: Flat, S: Side

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 15 of 53

5.8 - RECEIVE MODE

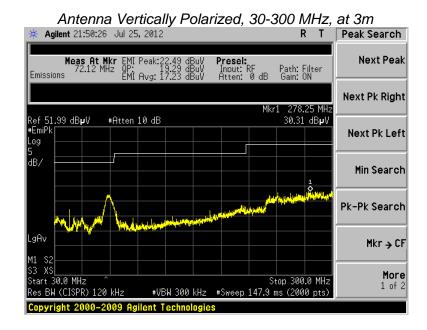
Setup follows that specified in sections 5.1 - 5.3.

Measurement data from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
82.5	1.00	161	24.0	40.0	16.0	V	V

Frequency (GHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
9.605	1.04	58	53.6	58.0	63.5	5.5	Horizontal	Flat
4.802	1.01	97	57.6	54.5	63.5	9.0	Vertical	Side
19.835	1.00	149	58.1	54.3	63.5	9.2	Horizontal	Side
19.515	1.04	146	59.8	56.4	63.5	7.1	Vertical	Side
19.211	1.07	147	58.1	53.3	63.5	10.3	Vertical	Side

Note: Emissions are a not function of the antenna and similar emissions were demonstrated regardless of the channel specified

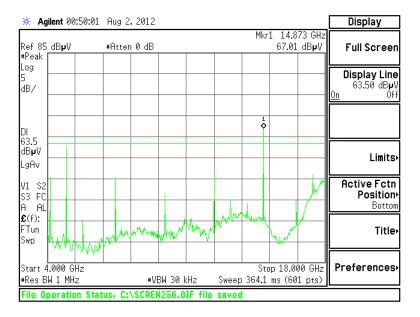

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 16 of 53

Screen Captures

TRANSMIT MODE

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 2402 MHz, 2440 MHz, or 2480 MHz, 1 MBPS data rate, with the sense antenna both in vertical and horizontal polarity for worst case presentations.


Antenna Horizontally Polarized, 3	300-1000 MHz	i, at 3m
NY	р т 🗆	T

Trace	RT		2	Aug 3, 2012	nt 19:12:01	🔆 Agile
Trace 1 <u>2</u> 3	Path: Filter Gain: ON	Presel: Input: RF Atten: 0 dB	N/A N/A N/A	r EMI Peak: OP: EMI Avg:	Meas At Mki	Emissions
Clear Write	kr1 999.6 MHz					
Max Hold	34.77 dBµV/m		3	Atten 10 dB	3 µ V∕m #f	Ref 60 d #EmiPk Log 5
Min Hold						dB/
View	1 جريباريون دوابيول يوجون	الحريطة ماريد المريطين	a dan di alaya di siya	فاسترج والمتحافظ والمتحاط		
Blani					ing the state of the second	LgAv Å M1 S2
More 1 of 2	p 1.000 0 GHz ms (2000 pts)		/BW 300	kHz #V	.0 MHz CISPR) 120 k	S3 XS Start 300
		le loaded	LGV12.A	us, C:\B03L	ration Statu	File Ope

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 17 of 53

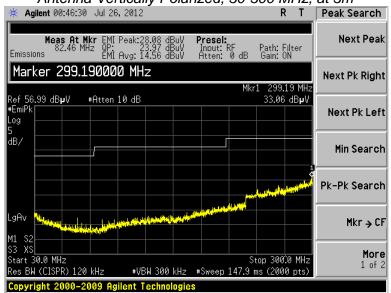

Peak Search	R T	F					, 2012	i Jul 24	3:25:56	gilent 2	👫 Aç
Next Peak		sed	Not U:	Presel:	BuV BuV BuV	1.66 d 7.39 d 9.56 d	Peak:5 4 Avg: 3	Ikr EMI z QP: EMI	as At M 86 GH:	Me 1 ions	Emissi
Next Pk Right	6 9 GHz	2.20	ML=1						2.296		Mar
	о э он∠ 0 dB µ V		MKLT.				n Ø dB	#Atte	ЗµУ	6.99 di	lef 96
Next Pk Left											EmiPk .og
Min Search											.0 IB7
Pk-Pk Search		e			*****		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and the second secon		<u>)</u>	
Mkr → Ci											.gÂv
Mana											11 S2
More 1 of 2	10 GHz 00 pts)			Sweep	 1Hz	BW 1 №	 #V	Hz	GHz PR)1 M	1.000 W (CIS	

Note: The restricted band frequency ranges 2310-2390 MHz and 2483.5-2500 MHz is in the Band-edge section.

Antenna Vertically Polarized, 4000-18000 MHz, at 1m

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 18 of 53
		-

Antenna Vertically Polarized, 18000-25000 MHz, at 1m

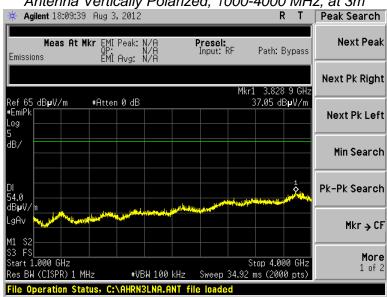

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 19 of 53

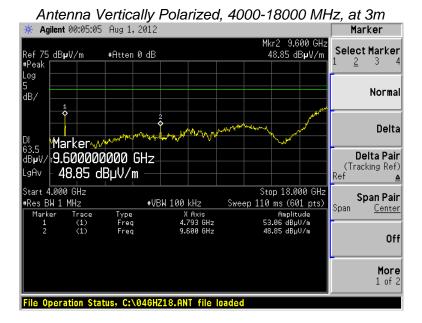
Screen Captures

RECEIVE MODE

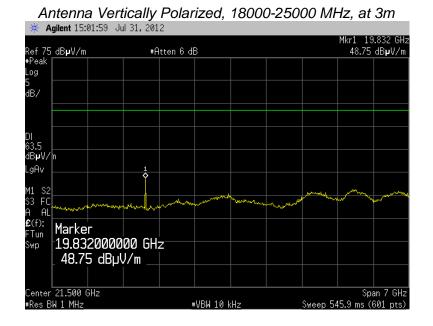
These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 2402 MHz, 2440 MHz, or 2480 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.


Antenna Vertically Polarized, 30-300 MHz, at 3m


Peak Search	RT			Aug 3, 2012	ent 18:59:59	🔆 Agilen
Next Peak	Path: Filter Gain: ON	Presel: Input: RF Atten: 0 dB	N/A N/A N/A	(r EMI Peak: OP: EMI Avg:	Meas At M	Emissions
Next Pk Right	<r1 968.8="" mhz<="" td=""><td>MI</td><td></td><td>Ŭ</td><td></td><td></td></r1>	MI		Ŭ		
Next Pk Left	35.55 dBµV/m			Atten 10 dB	BµV∕m	Ref 60 dE #EmiPk Log 5
Min Search						, dB/
Pk-Pk Search		مهريز وماية المثالية الإخاصية. معالي إوامية المثالية الإخاصية		مارام والتقاريق محار		
Mkr → CF				Nites in the second second	nangya diriya diriya	
More 1 of 2	o 1.000 0 GHz ms (2000 pts)		BW 300 kHz	×Hz #V	0.0 MHz (CISPR) 120	M1 S2 S3 XS Start 300 Res BW (C
		e loaded	GH12.ANT f	us, C:\B03L	eration Sta	File Oper

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 20 of 53


Screen Captures - Radiated Emissions Testing – Receive Mode (continued)

Antenna Vertically Polarized, 1000-4000 MHz, at 3m

Prepared For: LS Research, LLC EUT: TiWi-uB2 LS Research, LLC Report # 312143 B Model #: TIWI-uB2 LSR Job #: C-1493 Serial#: 311201, 281301 Page 21 of 53

Screen Captures - Radiated Emissions Testing – Receive Mode (continued)

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 22 of 53

EXHIBIT 6. OCCUPIED BANDWIDTH

6.1 - Method of Measurements

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using RBW=30 kHz and VBW=300 kHz.

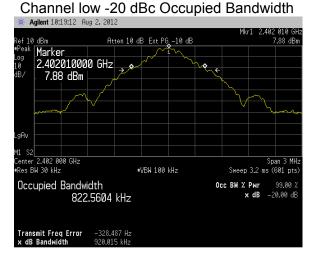
For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peakhold mode while measurements were made, as presented in the chart below.

<u>6.2 - Test Data</u>

GFSK						
Channel	Frequency	EBW 20dB	EBW 99 %			
Channel	(MHz)	(kHz)	(kHz)			
0	2402	920.0	822.6			
19	2440	948.5	849.3			
39	2480	956.7	871.1			

EDR2

OFON

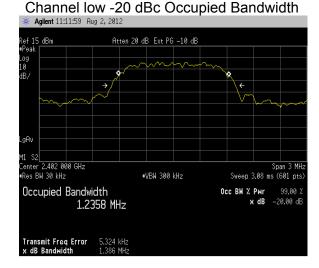

Channel	Frequency (MHz)	EBW 20dB (MHz)	EBW 99 % (MHz)
0	2402	1.4	1.2
19	2440	1.4	1.2
39	2480	1.4	1.2

EDR3

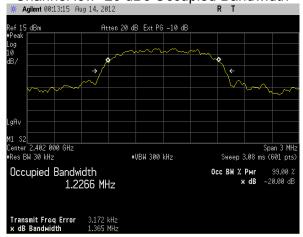
Channel	Frequency (MHz)	EBW 20dB (MHz)	EBW 99 % (MHz)
0	2402	1.4	1.2
19	2440	1.4	1.2
39	2480	1.4	1.2

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 23 of 53

<u>6.3 - Screen Captures - Occupied Bandwidth</u> GFSK




Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 24 of 53



Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 25 of 53

EDR2

Channel low -20 dBc Occupied Bandwidth

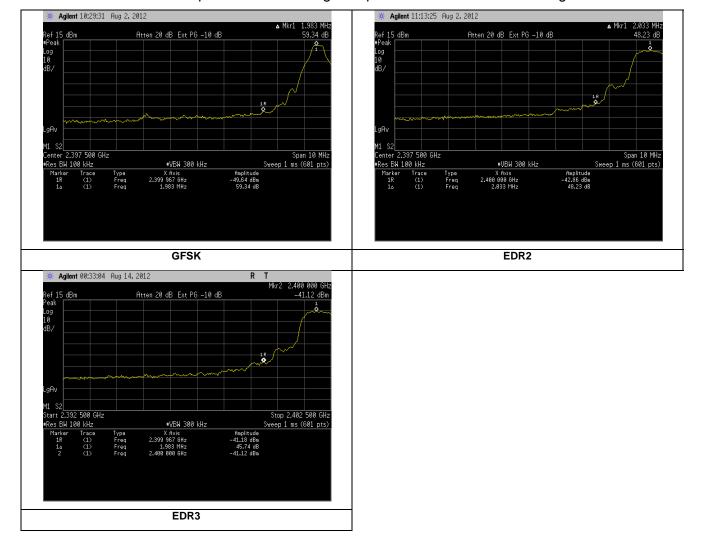
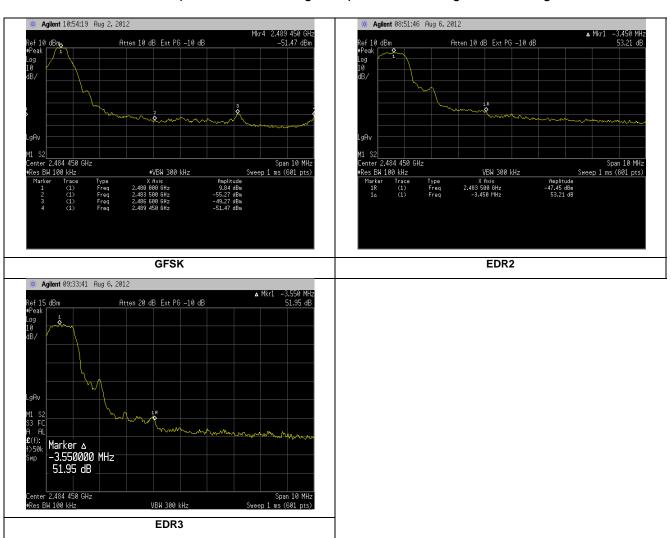
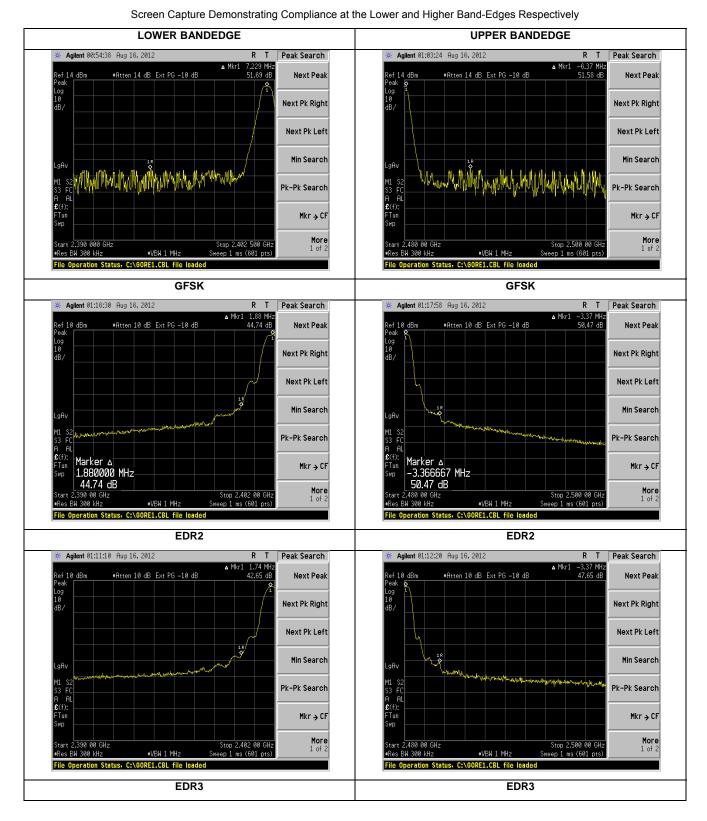

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 26 of 53

EXHIBIT 7. BAND EDGE MEASUREMENTS

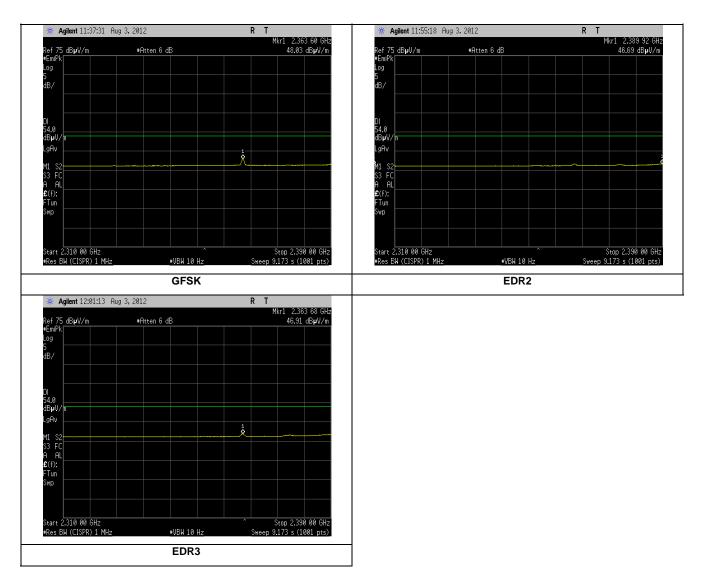
7.1 - Method of Measurements


FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 2400 MHz to 2483.5 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

CONDUCTED MEASUREMENTS WHEN SINGLE-CHANNEL, NON-HOPPING MODE IS ENABLED:


Screen Capture Demonstrating Compliance at the Lower Band-Edge

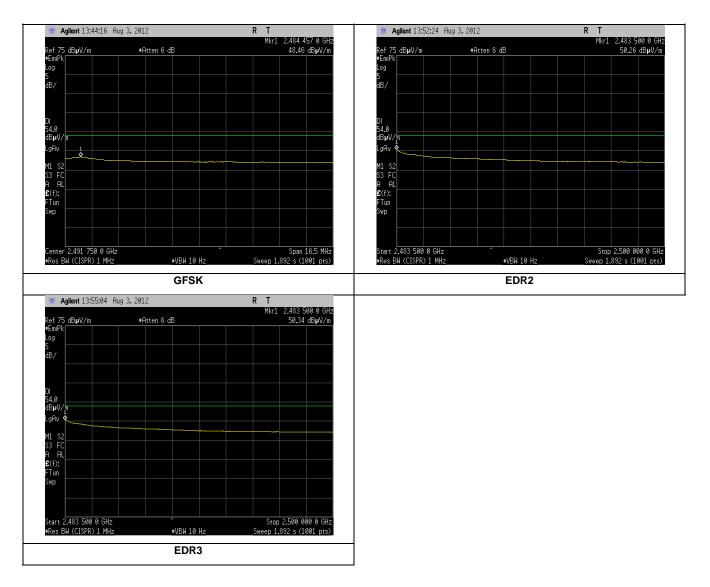
Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 27 of 53



.CONDUCTED MEASUREMENTS WHEN SINGLE-CHANNEL, NON-HOPPING MODE IS ENABLED: Screen Capture Demonstrating Compliance at the Higher Band-Edge

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 28 of 53

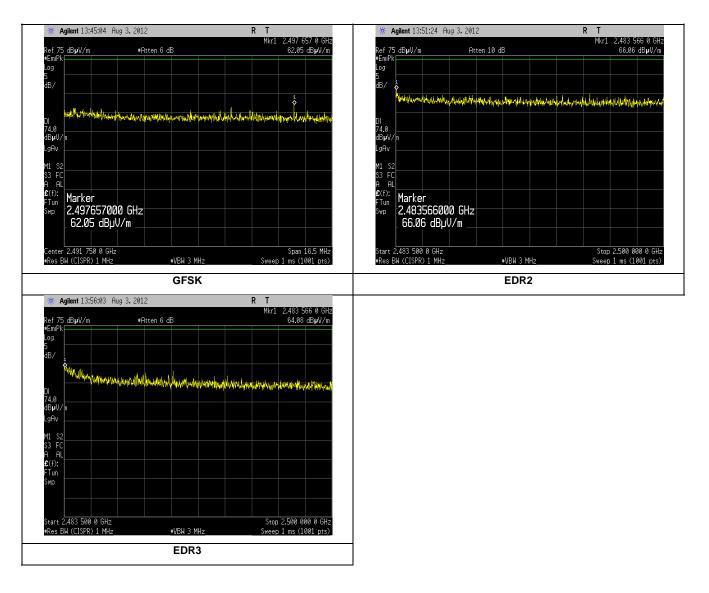
CONDUCTED MEASUREMENTS WHEN HOPPING MODE IS ENABLED:


Radiated Measurements: Lower Bandedge Screen Captures – Average Measurements

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 30 of 53

Radiated Measurements: Lower Bandedge Screen Captures – Peak Measurements

₭ Agilent 11:38:45 Aug 3, 2012	<u></u>	R T Mkr1 2.382 00 GHz	🔆 Agilent 11:55:46 Aug	J, 2012	R T Mkr1 2.357 68 GHz
lef75 dBµV/m ⊯A EmiPk	tten 6 dB	59.79 dBµV/m	Ref 75 dB µ V/m #EmiPk	#Atten 6 dB	59.28 dBµV/m
			#EmiPk		
og			Log 5		
iB/			dB/		
DI pring has been been and her a	ytoponissisti yyddin ywarastyliw tariw tarihitaki było	er ander in ingehalder affet affet affet affet affet af a fer affet affet affet affet affet affet affet affet a	DI 74.0 dBµV/n	Window Mandralan Andrew And	househallon yaya dhalan ini anda malayo kanoo nakanoo
74.0 18µV/n			dBµV/n		
.gAv			LgAv		
11 52			M1 S2		
11 S2 S3 FC A AL			\$3 FC		
			A AL		
			M1 S2 S3 FC A AL £(f): FTun A ATTCORRES		
2.382000000 GHz			Swp [2.35/680000		
59.79 dBµV/m			59.28 dBµV/	m	
Start 2.310 00 GHz		Stop 2.390 00 GHz	Start 2.310 00 GHz		Stop 2.390 00 GHz
Res BW (CISPR) 1 MHz	#VBW 3 MHz	Sweep 1 ms (1001 pts)_	#Res BW (CISPR) 1 MHz	VBW 8 MHz	Sweep 1 ms (1001 pts)_
	GFSK			EDR2	
🔆 Agilent 12:01:40 Aug 3, 2012	2	R T			
Ref75.dB u V/m ⊯A	tten 6 dB	Mkr1 2.389 04 GHz 62.60 dB µ V/m			
*EmiPk					
og					
iB/					
		1			
DI MANYANAMANANANANANANANANANANANANANANANAN	Madaderskaad tall yn waraid af adwlaniaeg maw	and a first a start of the star			
dBµV/n					
.gAv					
11 52					
11 S2 33 FC A AL					
2.389040000 GHz					
62.60 dBµV/m					
_ 62.60 dBµV/m					
Start 2.310 00 GHz		Stop 2.390 00 GHz			
	#VBW 3 MHz	Stop 2.390 00 GHz Sweep 1 ms (1001 pts)			


Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 31 of 53

Radiated Measurements: Upper Bandedge Screen Captures – Average Measurements

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 32 of 53

Radiated Measurements: Upper Bandedge Screen Captures – Peak Measurements

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 33 of 53

EXHIBIT 8. POWER OUTPUT (CONDUCTED)

8.1 - Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with RBW=3 MHz, VBW=50 MHz and a span of 5 MHz for Bluetooth, and RBW=3 MHz, VBW=50 MHz and a span of 5 MHz for Bluetooth and RBW=3 MHz, VBW=50 MHz and a span of 5 MHz for Bluetooth.

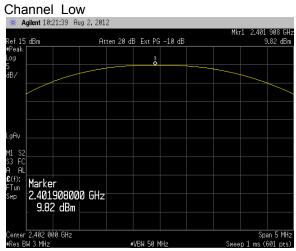
8.2 - Test Data

GFSK

Channel	Frequency (MHz)	Power (dBm)
0	2402	9.8
19	2440	10.0
39	2480	10.0

EDR2

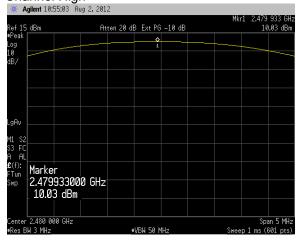
Channel	Frequency (MHz)	Power (dBm)
0	2402	10.0
19	2440	10.1
39	2480	10.1


EDR3

Channel	Frequency (MHz)	Power (dBm)
0	2402	10.8
19	2440	11.0
39	2480	10.9

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 34 of 53

8.3 - Screen Captures - Power Output (Conducted)


GFSK:

Channel Middle

🔅 Agilent 10:33:27 Aug 2, 20	12			
	ltten 20 dB Ext PG -	10 dB) 850 GHz 0.03 dBm
*Peak	♦			
Log 10	1			
dB/				
LgAv				
M1 S2 S3 FC				
A AL				
£(f): ETun Marker				
FTun 2.439850000 GHz	2			
10.03 dBm				
Center 2.440 000 GHz				an 5 MHz
≢Res BW 3 MHz	#VBW 50 MHz	2	Sweep 1 ms (601 pts)

Channel High

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 35 of 53

EDR2:

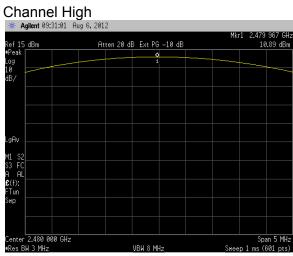
Channel Low

🔅 Agilent 11:09:27 Aug 2, 2012	2	
		Mkr1 2.402 042 GHz
	en 20 dB Ext PG -10 dB	9.97 dBm
*Peak	0	
Log	1	
10 dB/		
LgAv		
M4 60		
M1 S2 S3 FC		
A AL		
6 (0):		
_{FTun} Marker		
Swp 2.402042000 GHz		
9.97 dBm		
5.51 dbii		
Center 2.402 000 GHz		Span 5 MHz
*Res BW 3 MHz	#VBW 50 MHz	Sweep 1 ms (601 pts)_

Channel Middle

📯 Agilent 11:32:34 Hug 2, 2012	2			
			Mki	
	ten 20 dB Ext P	'G –10 dB		10.07 dBm
•Peak		\$		
Log		1		
10 dB/				
dB/				
LgAv				
M1 S2 S3 FC				
A AL				
A (())				
FTun Marker				
Swp 2.440075000 GHz				
10.07 dBm				
Center 2.440 000 GHz				Span 5 MHz
#Res BW 3 MHz	#VBW 50	MHz	Swee	p 1 ms (601 pts)_

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 36 of 53


EDR3:

Channel Low

🔆 Agilent 09:15:09 Aug	6,2012				1 0 404	040.00
Ref 15 dBm	Atten 20 dE	B Ext PG	–10 dB	MKL	1 2.401 10	942 GH .78 dBm
*Peak Marker	incent 20 de	> Line i o	10 00			in or abili
L ⁰⁹ 0 404 0 40000	GH-7	1		 		
¹⁰ 52.401942000 d ^{B/} 10.78 dBm	UIIZ					
LgAv						
M1 S2						
S3 FC						
A AL						
FTun						
Swp						
Center 2.402 000 GHz					Spa	an 5 MHz
≢Res BW 3 MHz		VBW 8 MH	z	Swee	p 1 ms (6	

Channel Middle

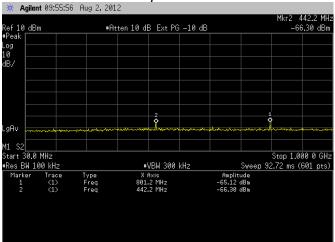
	0.		р. <u>г</u> ро	10 10	Mkr	1 2.439	
ef 15 dBm Peak	Ht	ten 20 a	B Ext PG			16	0.95 dBi
og			\$		 		
ő Landar							
0 B/							
gAv							
1 \$2							
3 FC							
AL							
(f):							
Tun							
wp							
enter 2.440 000 GH	7					Sn	an 5 Mi
Res BW 3 MHz			VBW 8 M	-	\$ HAA	p1ms(

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 37 of 53

EXHIBIT 9. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

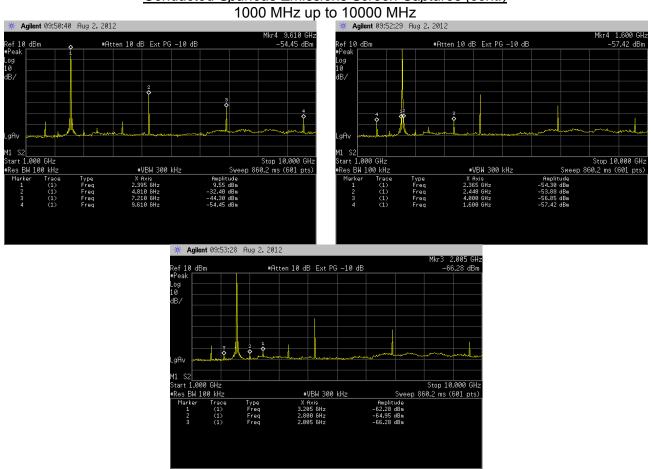
<u>9.1 - Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

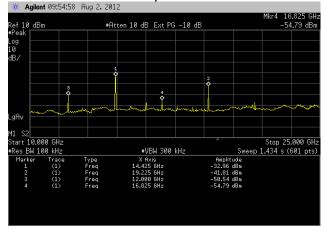

9.2 - Conducted Harmonic And Spurious RF Measurements

FCC Part 15.247(d) and IC RSS 210 A8.5 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

9.3- Screen Captures – Spurious Radiated Emissions


The following captures are representative of the product. Three Bluetooth modes (GFSK, EDR2, EDR3) were active and the 30-25000MHz range was scanned.

Bluetooth - GFSK


30 MHz up to 1000 MHz

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 38 of 53

Conducted Spurious Emissions Screen Captures (cont.)

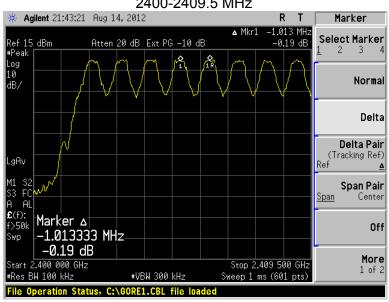
THREE CAPTURES OF THE 1000-10000MHZ RANGE ARE PRESENTED TO DEMONSTRATE MULTIPLE SPURIOUS EMISSIONS INCLUDING HARMONICS OF THE FUNDAMENTAL. SIMILAR RESULTS ARE OBSERVED REGARDLESS OF FUNDMENTAL FREQUENCY SELECTED

10000 MHz up to 25000 MHz

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 39 of 53

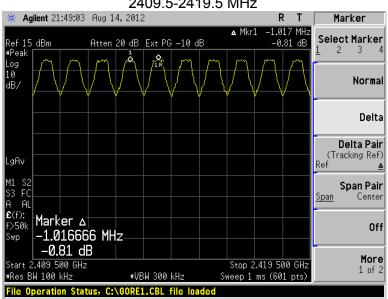
EXHIBIT 10. CHANNEL PLAN AND SEPARATION

This parameter is met in accordance with the 802.11 Bluetooth® standard.

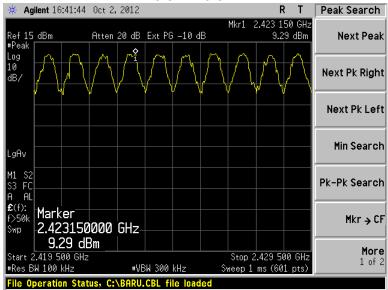

10.1 Channel Separation

Total number of channels = 79

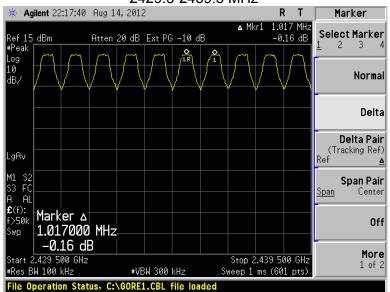
RANGE (MHz)	NUMBER OF CHANNELS PER CAPTURE	Max separation (Hz)
2400 - 2409.5	8	1013
2409.5 - 2419.5	10	1017
2419.5-2429.5	10	1067
2429.5-2439.5	10	1017
2439.5-2449.5	10	1000
2449.5-2459.5	10	1017
2459.5-2469.5	10	1017
2469.5-2483.5	11	1003


Total Channels	79
Max separation	1067 Hz
Min Separation	967 Hz

10.2 Screen Captures

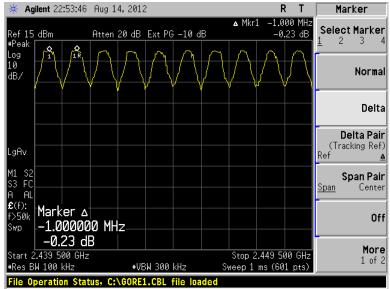

2400-2409.5 MHz

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 40 of 53

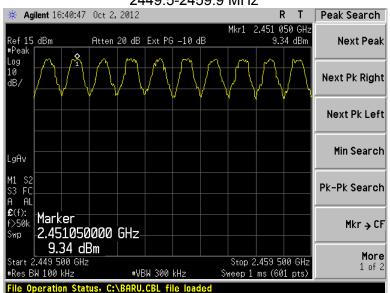


2409.5-2419.5 MHz

2419.5-2429.5 MHz

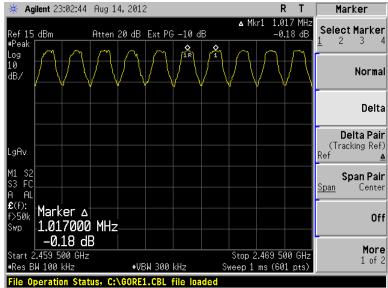


Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 41 of 53

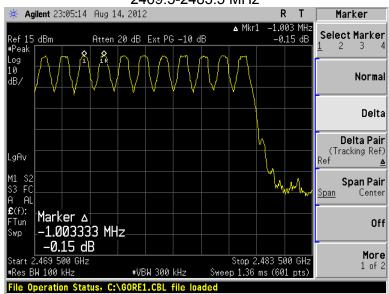


2429.5-2439.5 MHz

2439.5-2449.5 MHz



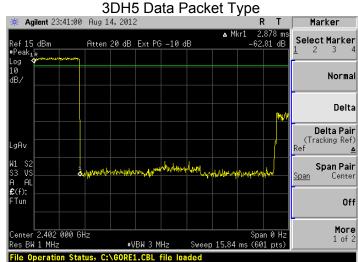
Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 42 of 53



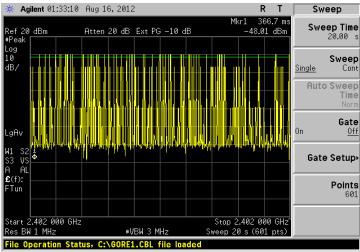
2449.5-2459.9 MHz

2459.5-2469.5 MHz

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 43 of 53


2469.5-2483.5 MHz

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 44 of 53


EXHIBIT 11. CHANNEL OCCUPANCY

This parameter is met in accordance with this radio using 802.11 Bluetooth® standard and meets the requirements of CFR 47 Part 15 Section 247.

11.1 Screen Capture

Maximum on-time, 2.878ms, demonstrated with 3DH5 Data Packet Type enabled

A 20 sec screen captures shows 52 transmissions

Total on-time allowable is 400ms*Number of channels Given the EUT has 79 channels, maximum allowable on-time is 400ms*79 = 31.6 sec

A 20 second screen capture demonstrates a pro-rated number of transmissions 31.6 sec / 20 sec = 1.58

52 transmissions in 20 sec equates to 82 transmissions in 31.6 sec (52 * 1.58 = 82)

Each transmission maximum on-time is 2.88 ms. In 31.6 sec, total on-time = 82*2.88ms = 236.16 ms Total on-time of 236.16 ms is less than the maximum allowable on-time of 400ms

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 45 of 53

EXHIBIT 12. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.

By virtue of being an IEEE 802.15 Bluetooth device, the EUT is inherently compliant to the requirements.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 46 of 53

EXHIBIT 13. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.

By virtue of being an IEEE 802.15 Bluetooth device, the EUT is inherently compliant to the requirements.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 47 of 53

<u> APPENDIX A – Test Equipment List</u>

Date	: 20-Jun-2012	Type Test	Radiated Band-E	idge		Job #	≠ : <u>C-1493</u>	
Prepared B	y: Peter	Customer :	LSR			Quote	#: _312143	
Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status	
E 960013	EMI Receiver	HP	8546A System	3617A00320;3448A	11/22/2011	11/22/2012	Active Calibration	
E 960014	EMI Receiver-filter section	HP	85460A	3448A00296	11/22/2011	11/22/2012	Active Calibration	
AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	5/16/2012	5/16/2013	Active Calibration	
C)ate : 20-Jun-2012	Type Teet	: Rad spurious En	nieeione		lob # :	C-1493	
	ate . 20-301-2012		I	113310113			0-1400	
Prepare		Customer :	I	113310113		Quote #:		
Prepare			I	Serial #	Cal Date	Quote #:		
Prepare	d By:	Customer :	LSR		Cal Date 6/6/2011	Quote #:	312143	
Prepare	d By: Description	Customer : Manufacturer	LSR Model#	Serial #		Quote #:	312143 Equipment Status	
Prepare . Asset # EE 960156	By: Description 100kHz-1GHz Analog Signal Generator	Customer : Manufacturer Agilent	LSR Model# N5181A	Serial # MY49060062 MY48250225	6/6/2011	Quote #: Cal Due Date 6/6/2012 6/6/2012	312143 Equipment Status Calibration Due	
Prepare . Asset # EE 960156 EE 960157	d By: Description 100KH2-1GH2 Analog Signal Generator 3H2-13.2GH2 Spectrum Analyzer	Customer : Manufacturer Agilent Agilent	LSR Model # N5181A E4445A	Serial # MY49060062 MY48250225 MY46520110	6/6/2011 6/6/2011	Quote #: Cal Due Date 6/6/2012 6/6/2012 6/11/2012	312143 Equipment Status Calibration Due Calibration Due	
Prepare . Asset # EE 960156 EE 960157 EE 960158	d By: Description 100kHz-1GHz Analog Signal Generator 3Hz-13.2GHz Spectrum Analyzer RF Preselecter	Customer : Manufacturer Aglient Aglient Aglient	LSR Model # N5181A E4445A N9039A	Serial # MY49060062 MY48250225 MY46520110 9601-2280	6/6/2011 6/6/2011 6/11/2011	Quote #: Cal Due Date 6/6/2012 6/6/2012 6/11/2012	312143 Equipment Status Calibration Due Calibration Due Calibration Due	
Prepare . Asset # EE 960156 EE 960157 EE 960158 AA 960005	Description 100kHz-1GHz Analog Signal Generator 3Hz-13.2GHz Spectrum Analyzer RF Preselecter Biconical Antenna	Customer : Manufacturer Aglient Aglient Aglient EMCO	LSR Model # N5181A E4445A N9039A 93110B	Serial # MY49060062 MY48250225 MY46520110 9601-2280	6/6/2011 6/6/2011 6/11/2011 6/10/2011	Quote #: Cal Due Date 6/6/2012 6/6/2012 6/11/2012 6/10/2012	312143 Equipment Status Calibration Due Calibration Due Calibration Due Calibration Due	
Prepare 0. Asset # EE 960156 EE 960157 EE 960158 AA 960005 AA 960078	d By: Description 100kHz-1GHz Analog Signal Generator 3Hz-13.2GHz Spectrum Analyzer RF Preselecter Biconical Antenna Log Periodic Antenna	Customer : Manufacturer Aglient Aglient Aglient EMCO EMCO	LSR N5181A E4445A N9039A 93110B 93146	Serial # MY49060062 MY48250225 MY46220110 9601-2280 9701-4855	6/6/2011 6/6/2011 6/11/2011 6/10/2011 11/15/2011	Quote #: Cal Due Date 6/6/2012 6/6/2012 6/11/2012 6/10/2012 11/15/2012	312143 Equipment Status Calibration Due Calibration Due Calibration Due Calibration Due Active Calibration	
Prepare 0. Asset # EE 960156 EE 960157 EE 960158 AA 960005 AA 960078 AA 96007 EE 960147	d By: Description 100kHz-1GHZ Analog Signal Generator 3HZ-13.2GHZ Spectrum Analyzer RF Preselecter Biconical Antenna Log Periodic Antenna Double Ridge Horn Antenna	Customer : Manufacturer Aglient Aglient Aglient EMCO EMCO EMCO	LSR Model # N5181A E4445A N9039A 93110B 93146 3115	Serial# MY49060062 MY48250225 MY46520110 9601-2280 9701-4855 9311-4138	6/6/2011 6/6/2011 6/11/2011 6/10/2011 11/15/2011 5/16/2012	Quote #: Cal Due Date 6/6/2012 6/10/2012 6/11/2012 6/10/2012 11/15/2012 5/16/2013	312143 Equipment Status Calibration Due Calibration Due Calibration Due Calibration Due Active Calibration Active Calibration	

		Prepared By:	Peter	Customer :	LSR			Quote #:	312143
	No. /	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	1)	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/1/2011	6/1/2013	Active Calibration
1	2	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	5/9/2012	5/9/2013	Active Calibration

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 48 of 53

APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 16-1-1	2010-01		
CISPR 16-1-2	2003	2004-04	2006-07
FCC 47 CFR, Parts 0-15,			
18, 90, 95	2009		
FCC Public Notice DA 00-			
705	2000		
RSS GEN	2007-06		
RSS 210	2010-08		

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 49 of 53

APPENDIX C - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64°/2.88 %RH

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 50 of 53

APPENDIX D – Duty Cycle Justification

PDU Type b ₃ b ₂ b ₁ b ₀	Packet Name
0000	ADV_IND
0001	ADV_DIRECT_IND
0010	ADV_NONCONN_IND
0011	SCAN_REQ
0100	SCAN_RSP
0101	CONNECT_REQ
0110	ADV_SCAN_IND
0111-1111	Reserved

Table D1: Advertising channel PDU Header's PDU Type field encoding

ADV_IND = 37 octets (47) ADV_DIRECT_IND= 12 octets (22) DV_NONCONN_IND=37 octets (47) ADV_SCAN_=37 octets (47) SCAN_REQ=12 octets (22) SCAN_RSP = 37 octets (47) CONNECT_REQ=34 octets. (44)

(Plus 1 octet for preamble. Plus 4 octets for adress. Plus 2 octets for PDU header. Plus 3 octets for CRC.)

47 octets is 376 bits, stated as worst case length packet.

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 51 of 53

Undirected Advertising Events

For all undirected advertising events, the time between the start of two consecutive advertising events (*T_advEvent*) is computed as follows for each advertising event:

T_advEvent = advInterval + advDelay

The *advInterval* shall be an integer multiple of 0.625 ms in the range of 20 ms to 10.24 s. If the advertising event type is either a scannable undirected event type or a non-connectable undirected event type, the *advInterval* shall not be less than 100 ms. If the advertising event type is a connectable undirected event type, the *advInterval* can be 20 ms or greater.

The *advDelay* is a pseudo-random value with a range of 0 ms to 10 ms generated by the Link Layer for each advertising event.

As illustrated in Figure D1, the advertising events are perturbed in time using the advDelay.

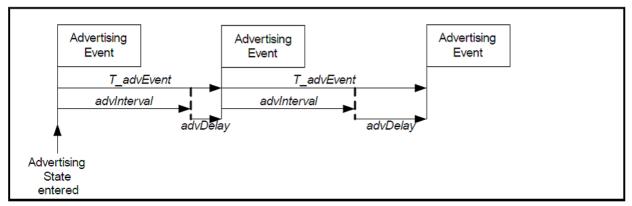


Figure D1: Advertising events perturbed in time using advDelay

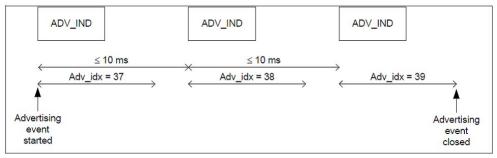


Figure D2: Connectable undirected advertising event with only advertising PDUs

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 52 of 53

Duty Factor for Connectable Undirected Advertising Event, per advertising channel:

ADV_IND = 376 uS duration. (ON channel 37) IFS = 150 uS (OFF) ADV_IND = 376 uS duration (OFF channel 38) IFS =150 uS (OFF) ADV_IND = 376 uS duration (OFF Channel 39). Adv Internal (min) = 20 mS.

DF = 376 /(376*3+150*2+20000)=0.0175

Relaxation factor =-min(20*log10 (DF),-20 dB) =-min(-35.119 ,-20) = 20 dB

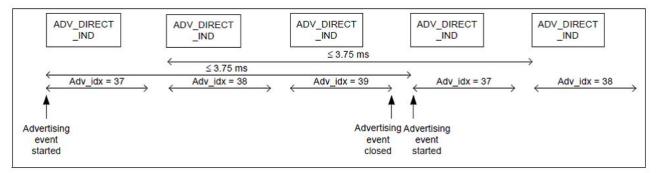


Figure D3: Connectable directed advertising event type with only advertising PDUs

Duty Factor for Connectable Directed Advertising Event, per advertising channel

ADV_DIRECT_IND = 176 uS duration. (22 octets) (ON channel 37) IFS = 150 uS (OFF) ADV_IND = 176 uS duration (OFF channel 38) IFS =150 uS (OFF) ADV_IND = 176 uS duration (OFF Channel 39). IFS=150 uS (OFF)

Time from open to close of advertising event = 3*176 + 3*150 =978 uS

DF = 176/(978)= 0.179

Relaxation factor =-min(20*log10 (DF),-20 dB) =-min(-14.9 ,-20) = 14.9 dB

Prepared For: LS Research, LLC	EUT: TiWi-uB2	LS Research, LLC
Report # 312143 B	Model #: TIWI-uB2	
LSR Job #: C-1493	Serial#: 311201, 281301	Page 53 of 53