

W66 N220 Commerce Court • Cedarburg, WI 53012 Phone: 262.375.4400 • Fax: 262.375.4248

www.lsr.com

TEST REPORT # 316050 FHSS LSR Job #: C-2391

Compliance Testing of:

Sterling-LWB

<u>Test Date(s)</u>: February 12th to April 18th and May 5th, 2016

Prepared For: Attention: Josh Bablitch LSR W66 N220 Commerce Court Cedarburg, WI 53012

This Test Report is issued under the Authority of: Coty Hammerer, EMC Engineer					
Signature:	Coty Hommerer			Date: 4/20/16	
Test Report	Reviewed by:		Project En	gineer:	
Adam Alger,	Quality Systems	s Engineer – Test	Coty Ham	merer, EMC Engin	eer.
Services	AL Aller	-			
Signature:	Haum O Mye	Date: 4-20-16	Signature:	Coty Hammerer	Date: 4/20/16

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	4
1.1 - Scope	4
1.2 – Normative References	4
1.3 - LS Research, LLC Test Facility	5
1.4 – Location of Testing	5
1.5 – Test Equipment Utilized	5
EXHIBIT 2. PERFORMANCE ASSESSMENT	6
2.1 – Client Information	6
2.2 - Equipment Under Test (EUT) Information	6
2.3 - Associated Antenna Description	6
2.4 - EUT'S Technical Specifications	7
2.5 - Product Description	8
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TE	STS9
3.1 - Climate Test Conditions	9
3.2 - Applicability & Summary Of EMC Emission Test Results	9
3.3 - Modifications Incorporated In The EUT For Compliance Purposes	9
3.4 - Deviations & Exclusions From Test Specifications	9
EXHIBIT 4. DECLARATION OF CONFORMITY	10
EXHIBIT 5. RADIATED EMISSIONS TEST	11
5.1 - Test Setup	11
5.2 - Test Procedure	11
5.3 - Test Equipment Utilized	12
5.4 - Test Results	12
5.5 - Calculation of Radiated Emissions Limits and reported data	13
5.6 - Radiated Emissions Test Data Chart	14
5.7 – Screen Captures.	15
EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE	19
6.1 Test Setup	19
6.2 Test Procedure	19
6.3 Test Equipment Utilized	19
6.4 Test Results	19
EXHIBIT 7. OCCUPIED BANDWIDTH	24

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29	Page 2 of 50
	Conducted: 26	

7.1 - Limits	24
7.2 - Method of Measurements	24
7.3 - Test Data	25
7.4 – Screen Captures	26
EXHIBIT 8. BAND EDGE MEASUREMENTS	29
8.1 - Method of Measurements	29
8.2. Band-Edge captures	30
EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)	34
9.1 - Method of Measurements	34
9.2 - Test Data	34
EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)	38
10.1 - Limits	38
10.2 – Conducted Harmonic And Spurious RF Measurements	38
10.3 - Test Data	39
EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	42
EXHIBIT 12. CHANNEL PLAN AND SEPARATION	43
12.1 - Screen Captures	44
EXHIBIT 13. CHANNEL OCCUPANCY	45
13.1 Time occupancy captures.	45
EXHIBIT 14. EQUAL CHANNEL USAGE	46
APPENDIX A – Test Equipment List	47
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	48
APPENDIX C - Uncertainty Statement	49
APPENDIX D –Bluetooth and WLAN Coexistence	50

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 3 of 50

EXHIBIT 1. INTRODUCTION

<u> 1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.247 RSS GEN issue 4 and RSS 247 issue 1
Title:	FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE- LAN) Devices
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Radiated Measurements were conducted in accordaAmerican National Standards Institute ANSI C63.4 –Test Procedures:National Standard for Methods of Measurement of Ra Emissions from Low-Voltage Electrical and Electronic in the Range of 9 kHz to 40 GHz.	

<u> 1.2 – Normative References</u>

Publication	Year	Title
47 CFR, Parts 0-15 (FCC)	2016	Code of Federal Regulations - Telecommunications
RSS 247 Issue 1	2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI 63.10	2013	American National Standard For Testing Unlicensed Wireless devices.
FCC DA 00-705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.
RSS-GEN Issue 4	2014	General Requirements and Information for the Certification of Radio Apparatus

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #:	Page 4 of 50
	Radiated: 29	
	Conducted: 26	

<u>1.3 - LS Research, LLC Test Facility</u>

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) as conforming to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

<u>1.4 – Location of Testing</u>

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Semi-Anechoic Chamber

<u> 1.5 – Test Equipment Utilized</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated by a calibration laboratory accredited to the requirements of ISO/IEC 17025, and traceable to the SI standard.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 5 of 50

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 - Client Information

Manufacturer Name:	LSR
Address:	W66 N220 Commerce Court, Cedarburg, WI 53012
Contact Name:	Josh Bablitch

2.2 - Equipment Under Test (EUT) Information

The following information has been supplied by the applicant.

Product Name:	Sterling-LWB
Model Number:	Sterling-LWB
Carial Number	Radiated: 29
Senai Number:	Conducted: 26

2.3 - Associated Antenna Description

The antennas associated with the EUT are:

- 1. Johanson Technology high frequency ceramic chip antenna, part number 2450AT18D0100. The chip antenna has a peak gain of 1.5dBi.
- 2. LSR 2.4 GHz FlexPIFA antenna. Part number 001-0014 with a peak antenna gain of 2.0 dBi.
- 3. LSR 2.4 GHz FlexNotch antenna. Part number 001-0015 with peak antenna gain of 2.0 dBi.
- 4. LSR 2.4 GHz Dipole antenna. Part number 001-0010 with peak antenna gain of 2.0 dBi.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 6 of 50

2.4 - EUT'S Technical Specifications

EUT Frequency Range (in MHz)	2402 MHz to 2480MHz			
RF Power in Watts	Conducted Measurement			
Minimum(Watts):	GFSK = 0.0063Watts EDR 2 = 0.0035Watts EDR 3 = 0.0038Watts			
Maximum(Watts):	GFSK = 0.0078Watts EDR 2 = 0.0042Watts EDR 3 = 0.0044Watts			
Occupied Bandwidth (99% and 20dB)	20dB (kHz): GFSK = 855.9 EDR 2 = 1333.0 EDR3 = 1262.0 99%(kHz): GFSK = 911.8 EDR 2 = 1207.5 EDR3 = 1207.2			
Type of Modulation	GFSK, QPSK			
Transmitter Spurious (worst case radiated) at 3 meters	42.3dBµV/m at 4803.8MHz, Peak			
Stepped (Y/N)	Ν			
Step Value:	N/A			
Frequency Tolerance %, Hz, ppm Better than 100 ppm				
Antenna Information				
Antenna Information Detachable/non-detachable	Non-detachable			
Antenna Information Detachable/non-detachable Type	Non-detachable Ceramic chip antenna			
Antenna Information Detachable/non-detachable Type Gain	Non-detachable Ceramic chip antenna 1.5 dBi peak			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable Dipole antenna			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable Dipole antenna 2.0 dBi peak			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable Dipole antenna 2.0 dBi peak Detachable			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable Dipole antenna 2.0 dBi peak Detachable FlexPIFA antenna			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable Dipole antenna 2.0 dBi peak Detachable FlexPIFA antenna 2.0 dBi peak			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable	Non-detachableCeramic chip antenna1.5 dBi peakDetachableDipole antenna2.0 dBi peakDetachableFlexPIFA antenna2.0 dBi peakDetachableFlexPIFA antenna2.0 dBi peakDetachableFlexPIFA antenna2.0 dBi peakDetachableFlexPIFA antenna			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable Dipole antenna 2.0 dBi peak Detachable FlexPIFA antenna 2.0 dBi peak Detachable FlexNotch antenna			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain	Non-detachableCeramic chip antenna1.5 dBi peakDetachableDipole antenna2.0 dBi peakDetachableFlexPIFA antenna2.0 dBi peakDetachableFlexNotch antenna2.0 dBi peakDetachableFlexNotch antenna2.0 dBi peakTitle 47 part 15 247			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable	Non-detachableCeramic chip antenna1.5 dBi peakDetachableDipole antenna2.0 dBi peakDetachableFlexPIFA antenna2.0 dBi peakDetachableFlexNotch antenna2.0 dBi peakDetachableFlexNotch antenna2.0 dBi peakTitle 47 part 15.247PSS 247			
Antenna Information Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain Detachable/non-detachable Type Gain EUT will be operated under FCC Rule Part(s) EUT will be operated under RSS Rule Part(s)	Non-detachable Ceramic chip antenna 1.5 dBi peak Detachable Dipole antenna 2.0 dBi peak Detachable FlexPIFA antenna 2.0 dBi peak Detachable FlexNotch antenna 2.0 dBi peak Title 47 part 15.247 RSS 247			

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 7 of 50

2.5 - Product Description

The Sterling-LWB is a multi-standard module with support for WLAN (802.11 b/g/n), and Bluetooth V2.1 and Bluetooth 4.0 & 4.1 with multiple antenna options.

Chip Antenna: Johanson Part # 2450AT18D0100 Peak Gain 1.5 dBi

U.FL Antenna port utilizes the following antenna options:

LSR 2.4 GHz Dipole Antenna 2dBi LSR 2.4 GHz FlexPifa 2dBi LSR 2.4 GHz FlexNotch 2dBi

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #:	Page 8 of 50
	Radiated: 29	
	Conducted: 26	

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	70-71° F
Humidity:	33-38%
Pressure:	726-742mmHg

3.2 - Applicability & Summary Of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.207 IC : RSS GEN sect. 8.8	Power Line Conducted Emissions Measurements	Yes
FCC : 15.247 (a)(1) 2.1049 IC : RSS 247 section 5.1	20 dB Bandwidth	Yes
FCC : 15.247(b) & 1.1310 2.1046 IC : RSS 247 section 5.4	Maximum Output Power	Yes
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	Yes
FCC :15.247(d) IC : RSS 247 section 5.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
FCC:15.247 (a)(1)(iii) IC: RSS 257 Section 5.1	Carrier Frequency Separation	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 247 Section 5.1	Number of hopping channels	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 247 Section 5.1	Time of occupancy (Dwell Time)	Yes
FCC : 15.247(d), 15.205, 15.209, 2.1053 IC : RSS GEN	Transmitter Radiated Emissions in the restricted bands	Yes

<u>3.3 - Modifications Incorporated In The EUT For Compliance Purposes</u>

🖂 None

Yes (explain below)

<u>3.4 - Deviations & Exclusions From Test Specifications</u>

🛛 None

Yes (explain below)

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #:	Page 9 of 50
	Radiated: 29	
	Conducted: 26	

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-247, Issue 1.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC		
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template		
LSR Job #: C-2391	Serial #:	Page 10 of 50		
	Radiated: 29			
	Conducted: 26			

EXHIBIT 5. RADIATED EMISSIONS TEST

<u>5.1 - Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.10-2013. The EUT was placed on an 80cm high non-conductive pedestal below 1 GHz and 150cm above 1 GHz with absorbers lining the chamber floor, centered on a flush mounted turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous transmit mode for final testing using power as provided by an AC to DC Lab power supply.

The applicable limits apply at a 3 meter distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels to comply with FCC Part 15.31(m).

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 200 MHz, and a Log Periodic Antenna was used to measure emissions from 200 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz while a standard gain horn antenna was used in the 18 GHz to 25 GHz range while maintaining the cone of radiation for testing above 1 GHz. The maximum radiated RF emissions between 30MHz to 25 GHz were found by raising and lowering the sense antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The EUT was positioned in 3 orthogonal orientations.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 11 of 50

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at a calibration laboratory accredited to ISO 17025, and are traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 1.2 MHz) using quasi-peak detector, and a bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of 3 MHz) for Peak measurements using a Peak detector. Average measurements were performed using an average detector using 1MHz bandwidth (video bandwidth of 3MHz)

<u>5.4 - Test Results</u>

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-247, Issue 1, for an FHSS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC		
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template		
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 12 of 50		

5.5 - Calculation of Radiated Emissions Limits and reported data

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement $(dB\mu V/m)$ + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dBµV/m).

As specified in 15.247 (d), radiated emissions that fall within the restricted band described in 15.205(c), must comply with the general emissions limit.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS GEN.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m): To convert 100 μ V/m to dB μ V/m,

 $dB\mu V/m = 20 \log_{10} (100) = 40 dB\mu V/m (from 30-88 MHz)$

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #:	Page 13 of 50
	Radiated: 29	
	Conducted: 26	

5.6 - Radiated Emissions Test Data Chart

Manufacturer:	LS	LSR				
Date(s) of Test:	Fe	February 12 th – April 18 th 2016				
Project Engineer(s):	Сс	Coty Hammerer				
Test Engineer(s):	Сс	ty Hammerer/Kimberly Bay				
Voltage:	3.6	SVDC				
Operation Mode:	Continuous transmit, modulated					
Environmental Conditions in the Lab:	Temperature: 70-71°F Relative Humidity: 33-38%					
EUT Dowor:		Single Phase 120VAC		3 Phase VA	NC	
EUT FOWEI.		Battery	Х	Other: Bench D	C si	upply
EUT Placement:	x	80cm non-conductive pedestal	Х	150cm non-conductive pedestal		
EUT Test Location:	X	3 Meter Semi-Anechoic FCC Listed Chamber		3/10m OATS		
Measurements:		Pre-Compliance		Preliminary	Χ	Final
Detectors Used:	Χ	Peak	Х	Quasi-Peak	Χ	Average

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi-Peak Reading (dBµV/m)	Average Reading (dBµV/m)	Peak Limit (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Peak Margin (dB)	Quasi-Peak Margin (dB)	Average Margin (dB)	Antenna Polarity	Antenna	Mode	EUT orientation
76.40	1.00	296.80	N/A	29.8	N/A	N/A	40.0	N/A	N/A	10.2	N/A	v	Dipole	GFSK	Vertical
4804.00	1.00	0.00	42.0	N/A	36.9	74.0	N?A	54.0	32.0	N/A	17.1	н	FlexPIFA	GFSK	Vertical
4804.00	3.20	353.00	41.6	N/A	36.3	74.0	N/A	54.0	32.4	N/A	17.7	v	Chip	GFSK	Vertical
4804.00	2.60	295.80	42.0	N/A	37.3	74.0	N/A	54.0	32.0	N/A	16.7	н	Chip	GFSK	Vertical
4804.00	2.10	188.50	41.7	N/A	35.9	74.0	N/A	54.0	32.3	N/A	18.1	v	Chip	GFSK	Side
4804.00	1.80	333.50	42.3	N/A	38.0	74.0	N/A	54.0	31.7	N/A	16.0	н	Chip	GFSK	Side
7440.00	1.00	53.50	40.0	N/A	33.3	74.0	N/A	54.0	34.0	N/A	20.7	н	Chip	GFSK	Flat

Notes:

- Chip antenna showed highest emissions above 1 GHz.
 Refer to exhibit 5.5 on explanation of how data is reported.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 14 of 50

5.7 – Screen Captures.

The screen captures below are those using the Peak detector of the analyzer. In addition, the screen captures presented are those which were deemed to be an appropriate representation of the spectrum scan.

30 to 200 MHz, 3m distance.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #:	Page 15 of 50
	Radiated: 29	
	Conducted: 26	

200 to 1000 MHz, 3m distance.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29	Page 16 of 50
	Conducted. 20	

1000 to 2400 MHz, 3m distance.

Notes:

1. The plot above taken when EUT was in basic rate mode and represents worst case. EDR2 and EDR3 modes were tested and found to be lower in emission.

2. Table below shows points on the plot of the maximum emission:

Peak Frequency (MHz)	Cy Peak Peak Limit Peak M (dBμV/m) (dBμV/m) (dB		Peak Margin (dB)	Average Frequency (MHz)	Average (dBµV/m)	Average Limit (dBµV/m)	Average Margin (dB)	
2733.2	54.214	74	19.786	2364.64	42.042	54	11.958	

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29	Page 17 of 50
	Conducted: 26	
X	•	·

2500 to 4000 MHz (Reduced bandwidth), 3m distance.

Note: The range 2483.5 to 2500 MHz is in section 8 of this report (Band-edges).

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 18 of 50

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

6.1 <u>Test Setup</u>

The test area and setup are in accordance with ANSI C63.4 and with Title 47 CFR, FCC Part 15, Industry Canada RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The power supply was then plugged into a 50 Ω (ohm), Line Impedance Stabilization Network (LISN). An "off the shelf" AC-DC adapter provided a 3.3VDC supply via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to an EMI receiver System. The Com-Power LISN used has the ability to terminate the unused port with a 50 Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 <u>Test Procedure</u>

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

6.3 <u>Test Equipment Utilized</u>

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. All cables are calibrated and checked periodically for conformance. The emissions are measured on the EMI System, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.4 <u>Test Results</u>

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 and RSS GEN 7.2.4 for Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 19 of 50

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B I	_imits (dBµV)	Measuring		
(MHz)	Quasi-Peak	Average	Bandwidth		
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz		
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP		
5.0 - 30	60	50	VBW = 1 Hz for Average		
* The limit decrea					
logarithm of the fre					

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 20 of 50

6.6 CONDUCTED EMISSIONS TEST DATA CHART

Manufacturer:	LSF	LSR							
Date(s) of Test:	3/14	3/14/16							
Project Engineer:	Cot	y Hammerer							
Test Engineer:	Cot	y Hammerer							
Voltage:	120	120VAC (120VAC to 3.3 VDC)							
Operation Mode:	Cor	Continuous transmit, modulated							
Environmental	Ten	nperature: 71°F							
Conditions in the Lab:	Rel	ative Humidity: 40%	, 0						
Test Location:	Х	AC Mains Test are	a			Chamber			
	Х	40cm from Vertical Ground Plane				10cm Spacers			
EUT Placed Off.	Х	80cm above Ground Plane				Other:			
Measurements:		Pre-Compliance		Preliminary	Х	Final			
Detectors Used:		Peak	Х	Quasi-Peak	Х	Average			

3.3VDC

Line	Frequency (MHz)	Q-Peak Reading (dBµV)	Q-Peak Limit (dBµV)	Quasi- Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBµV)	Average Margin (dB)	Notes
1	0.15	40.50	66.00	25.50	28.30	56.00	27.70	Тх
1	0.63	33.60	56.00	22.40	25.50	46.00	20.50	Tx
1	0.16	39.80	65.42	25.62	28.70	55.42	26.72	Тх
2	0.62	34.00	56.00	22.00	24.90	46.00	21.10	Tx
2	0.16	33.00	65.73	32.73	19.90	55.73	35.83	Тх
2	0.16	34.70	65.47	30.77	21.60	55.47	33.87	Тх

Notes:

1) The emissions listed are characteristic of the power supply used and not that of the transmitter. Changing transmit channels did not change the emissions.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC	
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template	
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 21 of 50	

6.7 <u>Test Setup Photo(s) – Conducted Emissions Test</u>

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC		
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template		
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 22 of 50		

6.8 <u>Screen Captures – Conducted Emissions Test</u>

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC		
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template		
LSR Job #: C-2391	Serial #:	Page 23 of 50		
	Radiated: 29			
	Conducted: 26			

EXHIBIT 7. OCCUPIED BANDWIDTH

<u>7.1 - Limits</u>

For an FHSS system operating in the 2400 to 2483.5 MHz band, there are no limits for 20dB bandwidth.

7.2 - Method of Measurements

Industry Canada (IC RSS GEN 4.6.1) requires the measurement of the 99% bandwidth while CFR 47 part 15.247 requires the measurement of the 20dB bandwidth. For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings there by allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. A bandwidth measurement function that is built into the spectrum analyzer was used to measure the bandwidths.

Measurement procedure: FCC DA 00-705

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC	
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template	
LSR Job #: C-2391 Serial #: Radiated: 29		Page 24 of 50	
	Conducted: 26		

<u> 7.3 - Test Data</u>

Packet Type	Channel	Frequency (MHz)	20dB EBW (kHz)	99% EBW (kHz)
	0	2402	855.9	903.8
GFSK	39	2440	854.9	908.7
	79	2480	854.3	911.5
	0	2402	1324.0	1204.6
EDR2	39	2440	1331.0	1206.4
	79	2480	1330.0	1207.5
	0	2402	1261.0	1206.6
EDR3	39	2440	1259.0	1206.6
	79	2480	1262.0	1207.2

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC	
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template	
SR Job #: C-2391 Serial #:		Page 25 of 50	
	Radiated: 29		
	Conducted: 26		

7.4 – Screen Captures A. GFSK

Channel 2402MHz Conter Free 2.40000000 GHz ALION AUTO 1612139 MH232,202 Trig: Free Run Arrgitoddo-1610 SAtten: 30 dB Ext Gain: -10.00 dB Radio Device: 815 Mixr1 2.40027147 GH 7.3877 GB1 Peak Search Center Freq 2.402000000 GHz Ref 20.00 dBm enter 2.402 GH; Res BW 20 kHz Span 2 MHz Sweep 4.667 ms VBW 200 kHz Occupied Bandwidth 903.75 kHz 16.2 dBm Total Power 17.682 kHz Transmit Freq Error OBW Power 99.00 % 855.9 kHz -20.00 dB dB Bandwidth x dB

Channel 2480MHz

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC		
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template		
LSR Job #: C-2391	Serial #:	Page 26 of 50		
	Radiated: 29			
	Conducted: 26			

B. EDR2

Channel 2402MHz

Channel 2440MHz 03:03:42 PN Mar 04, 2016 Radio Std: None Instant Radio Stat: meno 00000 GHz Radio Stat: meno AvgHold:>1010 Radio Device: BTS Ext Gain: -10.00 dB Radio Device: BTS Mkr1 2,440024 GH -0.31423 dBt -0.31423 dBt Peak Sear to Trig Level -25.00 dBm Center Freq: 2.441 Trig: Free Run #Atten: 30 dB Ref 55.00 dBm ¢1 Center 2.44 GHz #Res BW 20 kHz Span 2 MHz Sweep 6 ms VBW 200 kHz Occupied Bandwidth 1.2064 MHz Total Power 10.1 dBm Transmit Freq Error 17.867 kHz % of OBW Power 99.00 % x dB Bandwidth 1.331 MHz x dB -20.00 dB

Channel 2480MHz

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC	
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template	
LSR Job #: C-2391	Serial #:	Page 27 of 50	
	Radiated: 29		
	Conducted: 26		

C. EDR3

Channel 2402MHz

Channel 2440MHz

Channel 2480MHz

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC	
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template	
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 28 of 50	

EXHIBIT 8. BAND EDGE MEASUREMENTS

8.1 - Method of Measurements

FCC 15.247 requires a measurement of spurious emission levels at the restricted band to be compliant to the general emissions limit, in particular at the Band-Edges where the intentional radiator operates. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

The Band-edge measurements were performed radiated and conducted. The conducted measurement of band-edge was performed to satisfy FCC 15.247(d). The radiated measurements were performed to satisfy the conditions of 15.205 restricted bands.

For radiated measurements, the EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 1.2 MHz) using quasi-peak detector, and a bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of 3 MHz) for Peak measurements using a Peak detector. Average measurement was performed using a Peak detector with 1MHz resolution bandwidth and 10Hz video bandwidth.

Conducted measurements of the spurious emission were performed with a measurement bandwidth of 100kHz while radiated measurements were performed with a measurement bandwidth of 1MHz.

For both conducted and radiated measurements, correction factors and the cable loss factors were entered into the EMI Receiver database. <u>As a result, the plots taken from the EMI Receiver</u> <u>accounts for all applicable correction factor as well as cable loss, and can therefore be entered into the database as a corrected meter reading.</u>

Measurement procedure:

- 1. Conducted measurement: FCC DA 00-705
- 2. Radiated measurements: ANSI C63.10

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC		
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template		
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 29 of 50		

<u>8.2. Band-Edge captures.</u> Radiated Band-edge restricted band (2483.5 to 2500 MHz):

Data:

A. GFSK (Basic rate)

Peak Frequency (MHz)	Peak (dBμV/m)	Peak Limit (dBµV/m)	Peak Margin (dB)	Average Frequency (MHz)	Average (dBµV/m)	Average Limit (dBµV/m)	Average Margin (dB)
2483.5	59.0	74.0	15.0	2483.5	42.8	54.0	11.2

B. EDR2 (2MBPS)

Fi	Peak requency (MHz)	Peak (dBµV/m)	Peak Limit (dBµV/m)	Peak Margin (dB)	Average Frequency (MHz)	Average (dBµV/m)	Average Limit (dBµV/m)	Average Margin (dB)
	2483.8	54.8	74.0	19.2	2483.5	42.3	54.0	11.7

C. EDR3 (3MBPS)

Peak Frequency (MHz)	Peak (dBµV/m)	Peak Limit (dBµV/m)	Peak Margin (dB)	Average Frequency (MHz)	Average (dBµV/m)	Average Limit (dBµV/m)	Average Margin (dB)
2488.2	54.8	74.0	19.2	2483.5	42.3	54.0	11.7

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 30 of 50

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29	Page 31 of 50
	Conducted: 26	

Conducted Band-edge:

GFSK

EDR2

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 32 of 50

Hopping mode:

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 33 of 50
	Conducted. 20	

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

9.1 - Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings there by allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with the appropriate resolution bandwidth, with measurements from a peak detector presented in the chart below.

Measurement procedure: FCC DA 00-705

Packet Type	Channel	Frequency (MHz)	Output Power (dBm)	Output power limit (dBm)	Margin (dB)
	0	2402	8.9	21.0	12.1
GFSK	39	2440	8.5	21.0	12.5
	79	2480	8.0	21.0	13.0
	0	2402	6.2	21.0	14.8
EDR2	39	2440	5.6	21.0	15.4
	79	2480	5.4	21.0	15.6
	0	2402	6.4	21.0	14.6
EDR3	39	2440	5.9	21.0	15.1
	79	2480	5.8	21.0	15.2

9.2 - Test Data

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29	Page 34 of 50
	Conducted: 26	

9.3 – Screen Captures

Low Channel (2402 MHz)

nter 2.402000 GHz		a a la ana a su d	20400 - 00.0 C - 24 - 24		
				Span 6.620 MHz	1 of 2
					More
					Mkr→RefLvl
					MRI-CP
					10.00
					Marker Delta
		<u> </u>			Next Pk Left
					Next Pk Right
Bidiv Ref 33.00 dE	3m		Mkr1 2.4	01 905 44 GHz 6.212 dBm	NextPeak
rker 1 2.40190544	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 54 dB	Avg Type: Log-PWP Avg/Hold:>100/100 Ext Gain: -10.00 dB	TYPE M	Next Deak
NF 50.0	DC CORREC	SENSE OUT	ALIGN ALTO	01:09:27 PM May 05, 2016	Peak Search

EDR3

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 35 of 50

Middle Channel (2440 MHz)

EDR3

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 36 of 50

High Channel (2480 MHz)

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 37 of 50

EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

<u> 10.1 - Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.2 – Conducted Harmonic And Spurious RF Measurements

FCC Part 15.247(d) requires a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

Measurement procedure: FCC DA 00-705

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 38 of 50

10.3 - Test Data

Note: Testing was performed on all modes but only data on GFSK (Basic rate) presented below representing the worst case among the modes

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 39 of 50

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 40 of 50

Prepared For: LSR	EUT [.] Sterling-LWB	
T TOPUTOUT OF. LOT		
Report # 316050 B	Model # [.] Sterling-I WB	Template: 15 247 FHSS template
	meder //: eterning Emb	
LSR Job #: C-2391	Serial #:	Page 41 of 50
	Radiated: 29	, i i i i i i i i i i i i i i i i i i i
	Conducted: 26	

EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

The power and frequency stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the power and frequency at the appropriate frequency markers. Power was supplied by an external bench-type DC power supply and was varied from the minimum and maximum operating voltages because $\pm 10\%$ of the nominal is outside the operating voltages of the module.

BT	3.0 VDC	3.3 VDC	3.6 VDC	
Channel	Frequency (Hz)	Frequency (Hz)	Frequency (Hz)	Frequency Drift (Hz)
2402	2402012348	2402012326	2402012253	95
2440	2440016742	2440016691	2440016676	66
2480	2480021597	2480021567	2480021521	76

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 42 of 50

EXHIBIT 12. CHANNEL PLAN AND SEPARATION

A spectrum analyzer was used with a resolution bandwidth of 1% of the span to measure the channel separation of the EUT.

Measurement procedure: FCC DA 00-705

The channel separation measured for this device **1000.0 kHz** which is greater than 2/3 of the 20dB bandwidth. The maximum 20dB bandwidth of the device, as reported in the previous section is 1331 kHz, therefore 2/3 of the 20dB bandwidth = 887.3 kHz. The following plots describe this spacing, and also establish the channel separation and plan.

This EUT also satisfies the minimum number of hopping channels which is 15.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29	Page 43 of 50
	Conducted: 26	

12.1 - Screen Captures

Number of channels

RBW 300 kHz	PNO: Fant G	Stree But Trig: Free Run #Atten: 20 dB	Avg Type: Log-Pwr Avg[Hold>100/100 Ext Gain: -11.50 dB	02:10:07 PM Mar 07, 2016 TRACE 12:00 PM TRACE TYPE DET 12:00 PM TRACE	BW Res BW	Stop	Freq 2.48	3500000	PNO: Fast G	Stree Run #Atten: 20 dB	Aug Type: Log-Pur Avg Type: Log-Pur Avg[Hold>100/100 Ext Gain: -11.50 dB	02:12:02 PM Mar 07, 2016 TRACE 12:02 4 TYPE 14:00 CET 14:00 2016	Trace/Detector
10 dB/div Ref 21.50 dBm					300 kHz Auto Man	10 dB	div Ref 2	21.50 dBm					1,
11.5					Video BW 1.0 MHz Auto Man	11.5							Clear Write
4:50	<u>AAAAAAA</u>	<u> </u>	MANA MAN	MMMMM	VBW:3dB RBW 10.0 Auto Man	n 50 -0 50	WW	WW	WWW	WWW	mmm	MMM	Trace Average
28.5					Span:3dB RBW 106 Auto Man	-18.5 -							Max Hold
32.5					RBW Control (Gaussian,-3 dB)	-38.6						- ·	Min Hold
and the strange and the						48.5							View Blank Trace On
Start 2.39000 GHz #Res BW 300 kHz	#VBW	1.0 MHz	Sweep 1	Stop 2.44050 GHz 1.000 ms (1001 pts)		Start #Res	2.44050 G BW 300 ki	Hz Hz	#VBW	1.0 MHz	Sweep 1	Stop 2.48350 GHz 1.000 ms (1001 pts)	More 1 of S
50	239	90 – 24	41 MH	Z		MSG			244	1 – 248	83.5 MI	Hz	

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 44 of 50

EXHIBIT 13. CHANNEL OCCUPANCY.

Measurement procedure: FCC DA 00-705

Part 15.247(a)(1)(i) requires an average channel occupancy, for this device, of no more than 400 milliseconds in a 31.6 second window .The channel occupancy for this EUT was measured using a spectrum analyzer, set to zero-span at the frequency of interest. With the analyzer in peak-hold mode, the transmission lengths can be measured by adjusting the sweep rate of the analyzer. A suitable sweep rate was used to measure the channel occupancy at the low, mid and high channels. The longest time a single transmission will occur on a single channel is **2.742 ms**. The number of occurrences in a **10 seconds** window is **37.** In a 31.6 seconds window, there will be **116.92** occurrences. Therefore the total time occupancy in a 31.6 seconds window is

116.92 x 2.742ms = <u>320.6ms</u>

<u>13.1 Time occupancy captures.</u>

(The captures shown are from EDR3 mode which is worst case, lowest channel)

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 45 of 50

EXHIBIT 14. EQUAL CHANNEL USAGE

The transceiver implemented in the EUT is a Bluetooth core specification V2.1 + EDR hence satisfies this requirement.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 46 of 50

<u> APPENDIX A – Test Equipment List</u>

D	late : <u>12-Feb-2016</u>		Type Test :	Radiated Mea	surements			Job #	C-2391
Prepared	d By: Coty Hammerer		Customer:	LSR			Quote #: 316050		
lo. Asset #	Description	Description		Model #	Serial #	(Cal Date	Cal Due Date	Equipment Status
AA 960153 EE 960159 AA 960158 AA 960158 AA 960158 EE 960085 EE 960085 EE 960095 AA 960005 AA 960073 O Bental	2.4GH2 High Pass Filter 0.8 - 21GH2 LNA Double Ridge Horn Antenna Phaseflex EM Series Cable N9038A MXE 26.5GH2 Receiver DC Power Supply Biconical Antenna Log Periodic Antenna Horn Antenna 18-40 GH2		KWM Mini-Cirouits ETS Lindgren Gore MegaPhase Agilent GW Instek EMCO EMCO AH Systems, Inc	HPF-L-14186 ZVA-213X-S+ 3117 EKD01D010720 EM26-S151-120 N9038A GPS-3030DD 3310B 33146 SAS-574	7272-04 40201429 109300 5800373 120243010 MY512101 E.810521 9601-2280 9701-4855 193	001 6 48 5	241542015 2442016 2442016 2442016 5/30/2015 5/6/2015 Verification 1/14/2016 3/31/2016 11/30/2015	4/15/2016 2/4/2017 2/4/2017 Verification 6/30/2016 5/6/2016 Verification 1/14/2017 3/31/2017 11/30/2016	Calibration Due Active Calibration Active Calibration System Active Calibration Active Calibration System Active Calibration Active Calibration Active Calibration
Jate : Prepared By:	s 10-Feb-2016 <u>Coty</u> Hammerer	Type Test Customer :	Conducted Meas	urements		Job #	⊧: <u>C-2391</u> #: 316050		
. Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Statu	IS	
EE 960088 EE 960077 AA 960144 AA 960143 RE 16002	8GHz MXE Spectrum Analyzer DC Power Supply Phaseflex Phaseflex PXA Spectrum Analyzer 26.5 GHz	Agilent G∀Instek Gore Gore Keysight	N9038A GPS-3030DD EKD01D010720 EKD01D01048.0 N9030A	MY51210138 EJ810521 5800373 5546519 MY54490691	2/24/2016 Verification Verification 6/26/2015 2/23/2016	2/24/2017 Verification Verification 6/26/2017 2/23/2017	Active Calibratic System System Active Calibratic Active Calibratic	yn yn yn	
JUSR a Laird Business	5 14-Apr-2016	Type Test	: Conducted Emis	sions		Job	#: <u>C-2391</u>		
Prepared By:	Coty Hammerer	Customer :	LSR			Quote	#: 316050		
Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Sta	tus	
EE 960162 EE 960077 EE 960088	LISN - 15A DC Power Supply 8GHz MXE Spectrum Analyzer	COM-POWER GW Instek Agilent	LI-215A GPS-3030DD N9038A	191969 EJ810521 MY51210138	7/24/2015 Verification 2/24/2016	7/24/2016 Verification 2/24/2017	Active Calibrat System Active Calibrat	ion ion	
	Project Engineer:	Coty Homm	rever		Quality Assurance:	Shame	Ink		

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 47 of 50

APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2014		
ANSI C63.10	2013		
FCC 47 CFR, Parts 0-15	2016		
FCC Public Notice DA 00- 705	2000		
RSS GEN	2014		
RSS 247	2015		

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 48 of 50

APPENDIX C - Uncertainty Statement

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64°/2.88 %RH

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 49 of 50

APPENDIX D – Bluetooth and WLAN Coexistence

The BCM4343W implements an advance Enhanced Collaborative algorithms and hardware mechanism, allowing for a collaborative WLAN and Bluetooth coexistence. Support is provided for platforms that share a single antenna between Bluetooth and WLAN.

Prepared For: LSR	EUT: Sterling-LWB	LSR, LLC
Report # 316050 B	Model #: Sterling-LWB	Template: 15.247 FHSS template
LSR Job #: C-2391	Serial #: Radiated: 29 Conducted: 26	Page 50 of 50