

FCC PART 15 SUBPART C

TEST AND MEASUREMENT REPORT

For

Everex Communications, Inc

1045 Mission Court, Fremont, CA 94539, USA

FCC ID: TF7WO-21-1000 Model: WO-21

Report Type: Original Report		Product Type: 2.4 GHz Wireless Sensor
oliginal Report		
Test Engineers:	Victor Zhar	ng bor My
Report Number:	R0906304-2	247
Report Date:	2009-07-24	
	Boni Baniq	ued Ayon
Reviewed By:	Senior RF I	Engineer
Prepared By: (84)	1274 Anvil	CA 94089, USA 732-9162

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" 📖

TABLE OF CONTENTS

1	Gen	eral Information	
	1.1	Product Description for Equipment under Test (EUT)	5
	1.2	Mechanical Description of EUT	5
	1.3	EUT Photo	5
	1.4	Objective	5
	1.5	Related Submittal(s)/Grant(s)	6
	1.6	Test Methodology	
	1.7	Measurement Uncertainty	
	1.8	Test Facility	
2	Syst	em Test Configuration	
	2.1	Justification	
	2.2	EUT Exercise Software	
	2.3	Equipment Modifications	
	2.4	Special Accessories	
	2.5	Power Supply Information	
	2.6	EUT Internal Configuration Details	
	2.7	Interface Ports and Cabling	
3	Sum	mary of Test Results	
4		247 (i) & § 2.1091 - RF Exposure	
	4.1	Applicable Standard	
	4.2	MPE Prediction	
	4.3	Test Result	
5	FCC	§15.203 - Antenna Requirement	
	5.1	Åpplicable Standard	
	5.2	Results	
6	FCC	\$15.207 - Conducted Emissions	11
	6.1	Applicable Standard	11
	6.2	Test Setup	11
	6.3	Test Equipment List and Details	11
	6.4	Test Setup Block Diagram	12
	6.5	Test Procedure	12
	6.6	Test Environmental Conditions	12
	6.7	Summary of Test Results	13
	6.8	Conducted Emissions Test Plots and Data	
7	FCC	2 §2.1051 & §15.247(d) - Spurious Emissions At Antenna Terminals	16
	7.1	Applicable Standard	16
	7.2	Test Equipment Lists and Details	
	7.3	Test Environmental Conditions	16
	7.4	Measurement Result	
8	FCC	\$ \$15.205, \$15.209 & \$15.247(d) - Spurious Radiated Emissions	20
	8.1	Applicable Standard	20
	8.2	Test Setup	21
	8.3	EUT Setup	21
	8.4	Test Setup Block Diagram	
	8.5	Test Equipment List and Details	22
	8.6	Test Procedure	22
	8.7	Corrected Amplitude & Margin Calculation	
	8.8	Test Environmental Conditions	
	8.9	Summary of Test Results	

Report Number: R0906304-247

FCC Part 15.247 Test Report

FCC ID: TF7WO-21-1000

9 F	CC §15.247(a) (2) – 6 dB & 99% Bandwidth	
9.1	Applicable Standard	
9.2	Measurement Procedure	29
9.3	Test Equipment List and Details	29
9.4	Test Environmental Conditions	
9.5	Summary of Test Results	
10	FCC §15.247(b) - Peak Output Power	
10.1	Applicable Standard	
10.2	Measurement Procedure	
10.3	Test Equipment List and Details	
10.4	Test Environmental Conditions	
10.5	Summary of Test Results	
11	FCC §15.247(d) – Out of Band Emissions	
11.1	Applicable Standard	
11.2	Measurement Procedure	
11.3	Test Equipment List and Details	
11.4	Test Environmental Conditions	
12	FCC §15.247(e) - Power Spectral Density	
12.1	Applicable Standard	
12.2	Measurement Procedure	
12.3	Test Equipment List and Details	
12.4	Test Environmental Conditions	
12.5	Summary of Test Results	37
	Exhibit A – FCC Equipment Labeling Requirements	
13.1	FCC Equipment Labeling Requirements	
13.2	Suggested Content on FCC ID Label	
13.3	Suggested ID Label Location on EUT	
	Exhibit B - Test Setup Photographs	
14.1	Radiated Emissions – Front View	
14.2	Radiated Emissions – Rear View	
14.3	Conducted Emissions – Front View	
14.4	Conducted Emissions – Side View.	
	Exhibit C - EUT Photographs	
15.1	EUT - Top Side View	
15.2	EUT - Bottom Side View	
15.3	EUT – Left Edge Side View	
15.4	EUT – Right Edge Side View	
15.5	EUT – PCB Assembly with AC adapter Top View	
15.6	EUT – PCB Assembly with AC Adapter Bottom View	
15.7	EUT – PCB Assembly Top View	
15.8	EUT – PCB Assembly Bottom View	46

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
0	R0906304-247	Original Report	2009-07-24

1 General Information

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Everex Communications*, Inc and their product model: *WO-21, FCC ID: TF7WO-21-1000* or the "EUT" as referred to this report. The EUT is a wireless occupancy sensor which detects the presence of persons inside a room. It also detects if the door of the room is open or close. It operates in 2.4GHz unlicensed band and uses DSSS modulation scheme. The EUT operates on 2 x AA 1.5V alkaline batteries or from a low voltage external AC/DC adapter (3 VDC)

1.2 Mechanical Description of EUT

The EUT measures approximately 96 mm (L) x 51 mm (W) x 41 mm (H), weighing approximately 71 g.

* The test data gathered are from typical production sample, serial number: R0906304-1, assigned by BACL.

1.3 EUT Photo

Please refer to Exhibit C for addition EUT photographs.

1.4 Objective

This original measurement and test report is prepared on behalf of Everex Communications, Inc. in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for Output Power, Antenna Requirements, 6 dB Bandwidth, and power spectral density, 100 kHz Bandwidth of Band Edges Measurement, Spurious Emissions, Conducted and Radiated Spurious Emissions.

1.5 Related Submittal(s)/Grant(s)

No Related Submittals

1.6 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.7 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from ± 2.0 for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.8 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at <u>http://ts.nist.gov/Standards/scopes/2001670.htm</u>.

2 System Test Configuration

2.1 Justification

The EUT and its host were configured for testing according to ANSI C63.4-2003.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

2.2 EUT Exercise Software

The EUT had been tested with the following Channel settings:

Channel No.	Frequency (MHz)
11	2405
18	2440
26	2480

2.3 Equipment Modifications

No modifications were made to the EUT.

2.4 Special Accessories

N/A

2.5 **Power Supply Information**

Manufacturer	Description	Model	Serial Number
TAMURA	AC/DC Power Adapter	830A3367-03	R0906304-3*

* Note: Serial number was assigned by BACL.

2.6 EUT Internal Configuration Details

Manufacturer	Description	Model / Rev. No.	
Everex Communications	PCB Assembly	PWB-1259A1 / Rev. A1	

2.7 Interface Ports and Cabling

Cable Description	Length (m)	From	То
RF cable	< 3m	Output/ EUT	Spectrum analyzer

3 Summary of Test Results

Results reported relate only to the product tested.

FCC Rules	Description of Test	Results
\$15.247 (i) \$2.1091	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§ 15.207 (a)	Conducted Emissions	Compliant
\$2.1051 \$15.247 (d)	Spurious Emissions at Antenna Port	Compliant
§15.205	Restricted Bands	Compliant
\$15.209 (a) \$15.247 (d)	Radiated Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Bandwidth	Compliant
§15.247 (b)(3)	Maximum Peak Output Power	Compliant
§ 15.247 (d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247 (e)	Power Spectral Density	Compliant

4 §15.247 (i) & § 2.1091 - RF Exposure

4.1 Applicable Standard

According to \$15.247(i) and \$1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

4.2 MPE Prediction

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4\pi R^{\text{2}}$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{d}\mathbf{i}\mathbf{s}\mathbf{t}\mathbf{a}\mathbf{n}\mathbf{c}\mathbf{e}$ to the center of radiation of the antenna

Maximum peak output power at antenna input terminal (dBm):	<u>3.02</u>
Maximum peak output power at antenna input terminal (mW):	2.00
Prediction distance (cm):	<u>20</u>
Prediction frequency (MHz):	2405
Maximum Antenna Gain, typical (dBi):	<u>3.5</u>
Maximum Antenna Gain (numeric):	2.24
Power density of prediction frequency at 20.0 cm (mW/cm ²):	0.00089126
MPE limit for uncontrolled exposure at prediction frequency (mW/cm ²):	<u>1.0</u>

4.3 Test Result

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is $0.00089126 \text{ mW/cm}^2$. Limit is 1mW/cm^2 .

5 FCC §15.203 - Antenna Requirement

5.1 Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to § 15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2 Results

The EUT has PCB integral antenna with a maximum gain of 3.5 dBi antenna, which in accordance to sections FCC Part 15.203 is considered sufficient to comply with the provisions of these sections.

6 FCC §15.207 - Conducted Emissions

6.1 Applicable Standard

Section 15.207 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

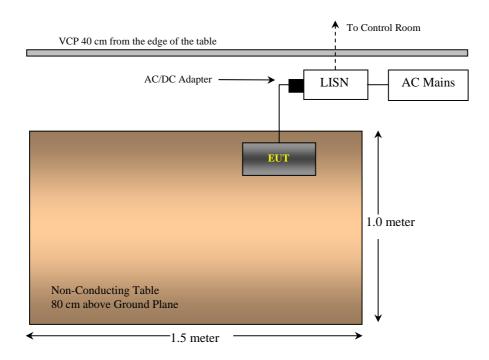
* Decreases with the logarithm of the frequency.

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4 – 2003 measurement procedure. The specification used was FCC Part15.207 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The EUT AC/DC power adapter was connected with LISN-1 which provided 120 V / 60 Hz AC power.


6.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Solar Electronics	LISN	9252-50-R-24-N	511205	2009-06-09
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.595 0K03	112005-1	2009-02-01

* Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.4 Test Setup Block Diagram

Conducted Emissions

6.5 Test Procedure

During the conducted emissions test, the power cord of the EUT was connected to the mains outlet of the LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP". Average readings are distinguished with an "Ave".

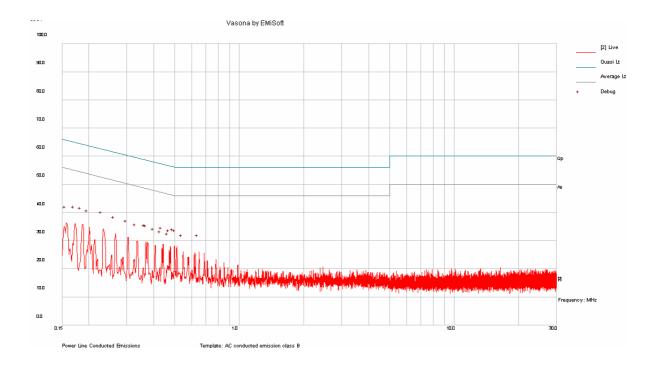
6.6 Test Environmental Conditions

Temperature:	22 °C~25 °C
Relative Humidity:	31 %~33 %
ATM Pressure:	101.1~101.4 kPa

*The testing was performed by Victor Zhang 09-06-30.

6.7 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC standard's</u> conducted emissions limits for consumer devices, with the *worst* margin reading of:


Connection: AC/DC adapter connected to 120 V/60 Hz					
Margin (dB)Frequency (MHz)Conductor (Line/Neutral)Range (MHz)					
-36.35	0.22	Line	0.15 to 30		
-36.40	0.23	Neutral	0.15 to 30		

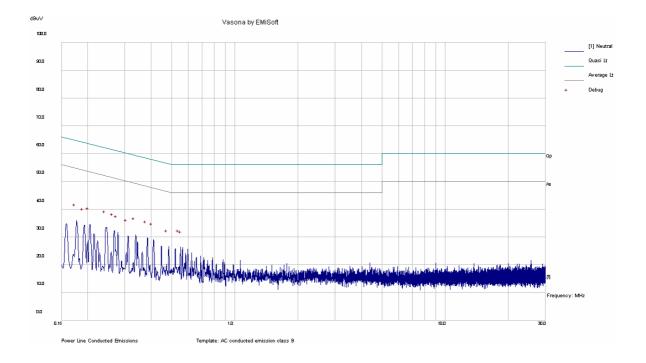
Please refer to the following plots and tables for detailed results.

6.8 Conducted Emissions Test Plots and Data

FCC ID: TF7WO-21-1000

120 V/60 Hz Line

Quasi-Peak Measurements


Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.22	26.51	Quasi-Peak	L	62.85	-36.35
0.17	28.11	Quasi-Peak	L	64.98	-36.86
0.44	19.53	Quasi-Peak	L	57.00	-37.47
0.47	18.70	Quasi-Peak	L	56.49	-37.79
0.50	18.17	Quasi-Peak	L	56.04	-37.87
0.49	18.32	Quasi-Peak	L	56.22	-37.90

Average Measurements

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.50	-0.57	Average	L	46.04	-46.62
0.49	-0.58	Average	L	46.22	-46.80
0.47	-0.48	Average	L	46.49	-46.97
0.44	-0.26	Average	L	47.00	-47.26
0.22	5.18	Average	L	52.85	-47.67
0.17	4.82	Average	L	54.98	-50.16

FCC ID: TF7WO-21-1000

120V/60 Hz Neutral

Quasi-Peak Measurements

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.23	26.05	Quasi-Peak	Ν	62.46	-36.40
0.25	25.04	Quasi-Peak	Ν	61.72	-36.68
0.33	22.62	Quasi-Peak	Ν	59.58	-36.96
0.16	28.33	Quasi-Peak	Ν	65.3	-36.97
0.37	21.35	Quasi-Peak	Ν	58.53	-37.18
0.40	20.41	Quasi-Peak	N	57.87	-37.46

Average Measurements

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.40	0.10	Average	Ν	47.87	-47.77
0.23	4.44	Average	Ν	52.46	-48.02
0.37	0.43	Average	Ν	48.53	-48.10
0.33	0.87	Average	Ν	49.58	-48.70
0.25	2.56	Average	Ν	51.72	-49.17
0.16	5.00	Average	Ν	55.30	-50.30

7 FCC §2.1051 & §15.247(d) - Spurious Emissions At Antenna Terminals

7.1 Applicable Standard

For §15.247(d) in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

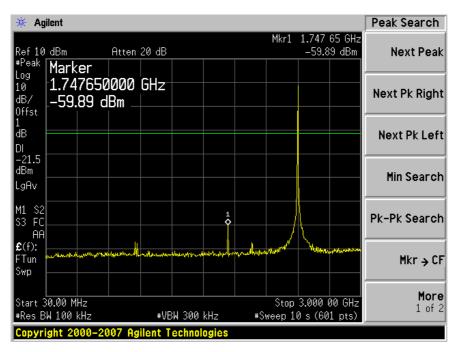
Requirements: CFR 47, §2.1051.

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1057.

7.2 Test Equipment Lists and Details

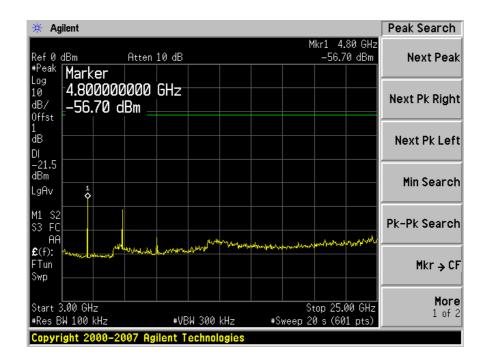
Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

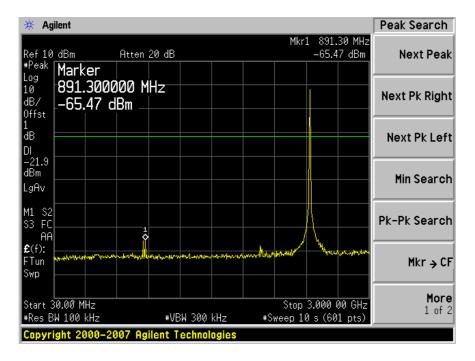

7.3 Test Environmental Conditions

Temperature:	22 °C~25 °C
Relative Humidity:	31 %~33 %
ATM Pressure:	101.1~101.4 kPa

*The testing was performed by Victor Zhang on 2009-06-30.

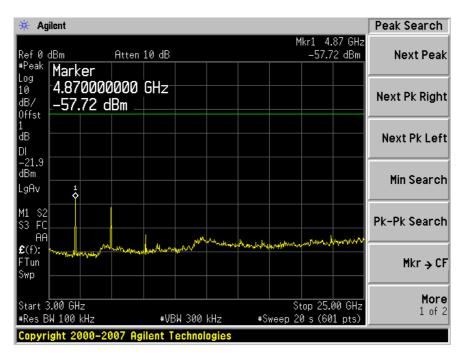

7.4 Measurement Result

Please refer to following plots of spurious emissions.

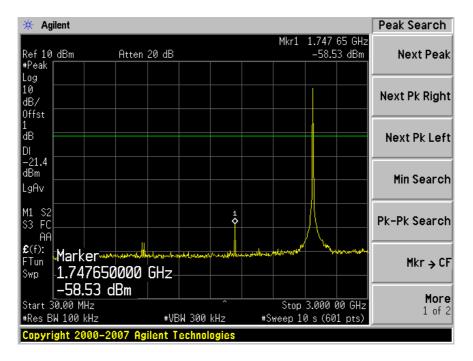


Low Channel

Plot 1: 30 MHz ~ 3 GHz

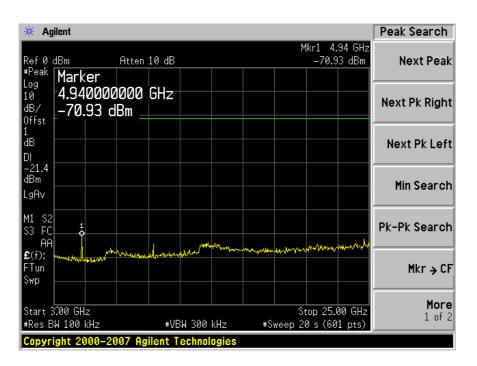


Plot 2: 3 ~25 GHz



Middle Channel

Plot 1: 30 MHz ~ 3 GHz



Plot 2: 3 ~ 25 GHz

High Channel

Plot 1: 30 MHz ~ 3 GHz

Plot 2: 3 ~ 25 GHz

8 FCC §15.205, §15.209 & §15.247(d) - Spurious Radiated Emissions

8.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

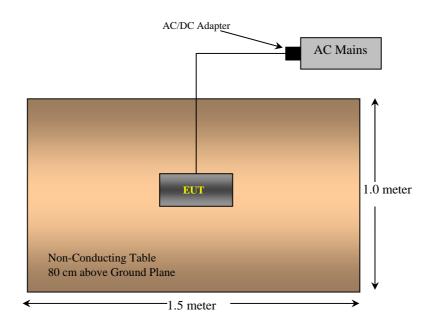
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	960 - 1240	4.5-5.15
0.495 - 0.505	16.69475 - 16.69525	1300 - 1427	5.35 - 5.46
2.1735 - 2.1905	25.5 - 25.67	1435 - 1626.5	7.25 - 7.75
4.125 - 4.128	37.5 - 38.25	1645.5 - 1646.5	8.025 - 8.5
4.17725 - 4.17775	73 - 74.6	1660 - 1710	9.0 - 9.2
4.20725 - 4.20775	74.8 - 75.2	1718.8 - 1722.2	9.3 - 9.5
6.215 - 6.218	108 - 121.94	2200 - 2300	10.6 - 12.7
6.26775 - 6.26825	123 – 138	2310 - 2390	13.25 - 13.4
6.31175 - 6.31225	149.9 - 150.05	2483.5 - 2500	14.47 - 14.5
8.291 - 8.294	156.52475 - 156.52525	2690 - 2900	15.35 - 16.2
8.362 - 8.366	156.7 - 156.9	3260 - 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 - 167.17	3.332 - 3.339	22.01 - 23.12
8.41425 - 8.41475	167.72 - 173.2	3 3458 - 3 358	23.6 - 24.0
12.29 - 12.293	240 - 285	3.600 - 4.400	31.2 - 31.8
12.51975 - 12.52025	322 - 335.4		36.43 - 36.5
12.57675 - 12.57725	399.9 - 410		Above 38.6
13.36 - 13.41	608 - 614		

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.2 Test Setup

The radiated emissions tests were performed in the 3-meter open area test site, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart C.

8.3 EUT Setup


The radiated emissions tests were performed using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC limits.

The spacing between the peripherals was 3 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

8.4 Test Setup Block Diagram

Radiated Emissions

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	US44303352	2009-03-25
Sunol Sciences	Sunol Sciences Antenna		A020106-1	2009-04-17
A.R.A	Horn Antenna	DRG-118/A	1132	2008-07-28
Ducommun Pre-Amplifier		ALN-09173030-01	99-297-01R	2009-03-04
HP	HP Pre-Amplifier		2944A06639	2009-03-06

8.5 Test Equipment List and Details

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

8.6 Test Procedure

For the radiated emissions test, the EUT was connected to the DC power source, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meters away from the testing antenna, which is varied from 1-4 meters, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:

(1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto

(2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

8.7 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

8.8 Test Environmental Conditions

Temperature:	22°C~25°C
Relative Humidity:	31 %~33 %
ATM Pressure:	101.1~101.4kPa

*The testing was performed by Victor Zhang on 2009-06-30.

8.9 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC requirements</u>, and had the worst margin readings of:

Low Channel: 2402 MHz

Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)		
-	-	-	30 to 1000 MHz		
-16.91	4810	Horizontal	Above 1 GHz		

Middle Channel: 2440 MHz

Margin (dB)	Frequency (MHz)	Range (MHz)		
-	-	-	30 to 1000 MHz	
-15.99	4880	Horizontal	Above 1 GHz	

High Channel: 2480 MHz

Margin (dB)	Frequency (MHz)Polarization (Horizontal/Vertical)		Range (MHz)
-	-	-	30 to 1000 MHz
-16.46	4960	Horizontal	Above 1 GHz

Note*: Emission below 1GHz had a margin of larger than -20dB in all channels.

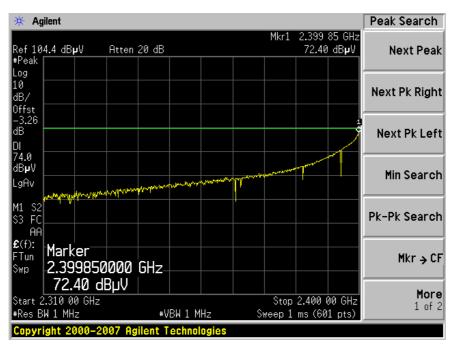
Please refer to the following tables for detailed results.

Above 1 GHz

Spurious/Harmonics Emissions measured at 3 meters (Above 1 GHz)

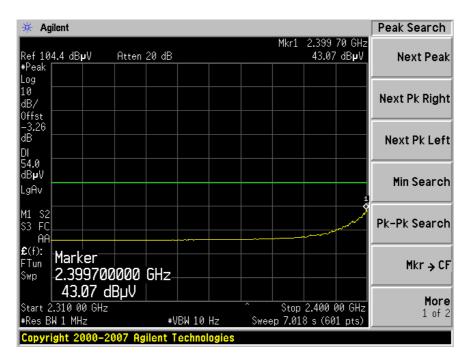
Freq.	Reading	Reading Azimuth -	Т	Test Antenna		Cable	Pre-	Cord.	Part 15C	Margin	~
(MHz)			Height (m)	Polar. (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	(dB)	Comments
4810	52.66	20	1.02	Н	33.1	8.23	36.9	57.09	74	-16.91	Peak
4810	36.84	20	1.02	Н	33.1	8.23	36.9	41.27	54	-12.73	Ave
4810	51.74	11	1.52	V	33.1	8.23	36.9	56.17	74	-17.83	Peak
4810	35.89	11	1.52	V	33.1	8.23	36.9	40.32	54	-13.68	Ave

Low Channel 2405 MHz

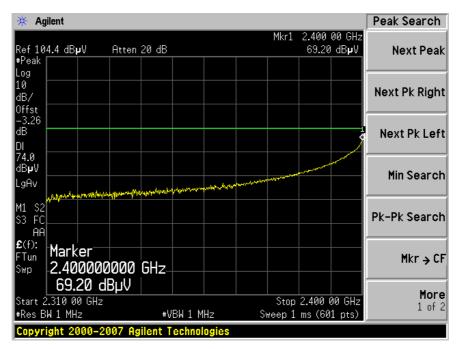

Middle Channel 2440 MHz

Freq. (MHz)	Reading	Azimuth	Те	est Anten	na	Cable	Pre-	Cord.	Part 15C	Margin	Comments
		Degrees	Height (m)	Polar. (H/V)	Factor (dB/m)	Loss (dB)	1	Reading (dBµV/m)	Limit (dBµV/m)	(dB)	
4880	53.62	8	1.00	Н	33.1	8.29	37	58.01	74	-15.99	Peak
4880	37.88	8	1.00	Н	33.1	8.29	37	42.27	54	-11.73	Ave
4880	52.09	20	1.45	V	33.1	8.29	37	56.48	74	-17.52	Peak
4880	36.52	20	1.45	V	33.1	8.29	37	40.91	54	-13.09	Ave

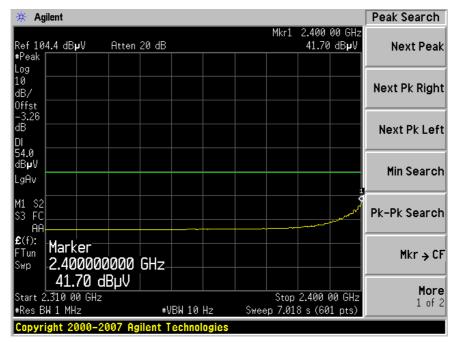
High Channel 2480 MHz

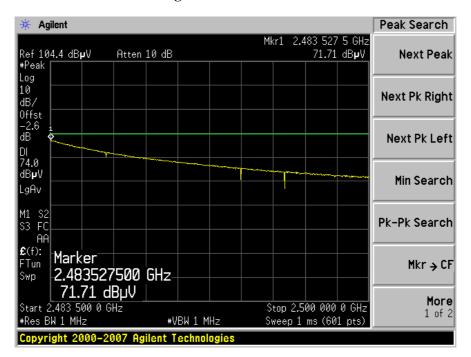

Freq. (MHz)	Reading	Reading Azimuth	Те	Test Antenna		Cable	Pre-	Cord.	Part 15C	Margin	
			Height (m)	Polar. (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	(dB)	Comments
4960	52.59	7	1.27	Н	33.6	8.35	37	57.54	74	-16.46	Peak
4960	36.78	7	1.27	Н	33.6	8.35	37	41.73	54	-12.27	Ave
4960	52.49	12.25	1.03	V	33.6	8.35	37	57.44	74	-16.56	Peak
4960	36.48	12.25	1.03	V	33.6	8.35	37	41.43	54	-12.57	Ave

Out of Band Emissions:

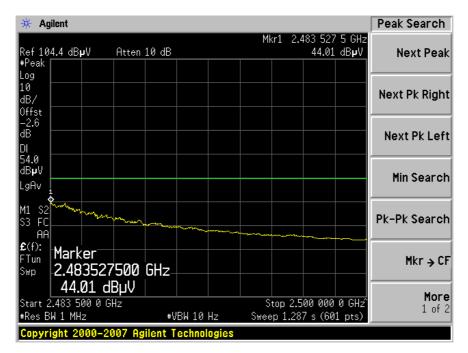


Lowest Channel: 2405 MHz

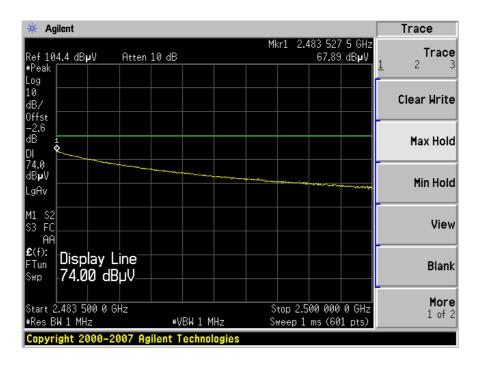

Vertical – Peak


Vertical - Ave

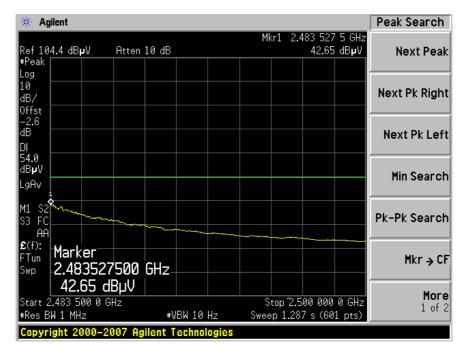
Horizontal - Peak



Horizontal - Ave



Highest Channel: 2480 MHz


Vertical - Peak

Vertical - Ave

Horizontal - Peak

Horizontal - Ave

9 FCC §15.247(a) (2) – 6 dB & 99% Bandwidth

9.1 Applicable Standard

According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emissions bandwidth. (6 dB bandwidth for DTS)
- 4. Repeat above procedures until all frequencies measured were complete.

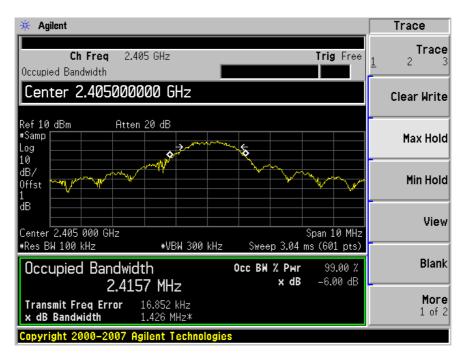
9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-03-25	

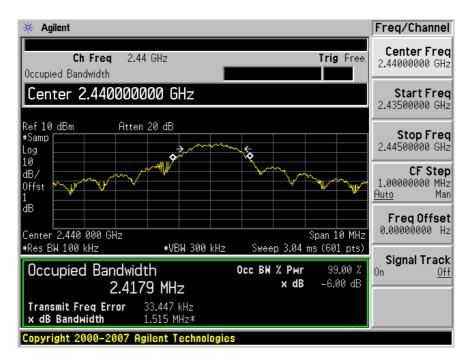
* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions

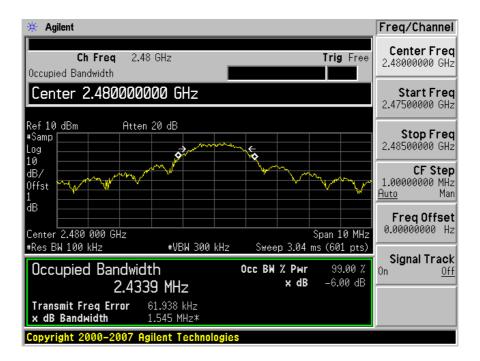
Temperature:	22 °C~25 °C
Relative Humidity:	31 %~33 %
ATM Pressure:	101.1~101.4 kPa


*The testing was performed by Victor Zhang on 2009-06-30.

9.5 Summary of Test Results


Channel	Frequency (MHz)	6 dB OBW (kHz)	99% OBW (kHz)	Limit (kHz)
Low	2405	1426	2415.7	> 500
Middle	2440	1515	2417.9	> 500
High	2480	1545	2433.9	> 500

Please refer to the following plots for detailed test results


Low Channel

Middle Channel

10 FCC §15.247(b) - Peak Output Power

10.1 Applicable Standard

§15.247(b) the maximum peak output power of the intentional radiator shall not exceed the following:

§15.247(b) (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

10.2 Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
- 3. Add a correction factor to the display.

10.3 Test Equipment List and Details

Manufacturer	Description	escription Model		Calibration Date	
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-03-25	

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	22 °C~25 °C
Relative Humidity:	31 %~33 %
ATM Pressure:	101.1~101.4 kPa

*The testing was performed by Victor Zhang on 2009-06-30.

10.5 Summary of Test Results

Channel	Frequency (MHz)	Max Power (dBm)	Max Power (mW)	Limit (mW)	Result
Low	2405	3.02	2.00	1000	Compliant
Mid	2440	3.01	1.99	1000	Compliant
High	2480	2.98	1.98	1000	Compliant

11 FCC §15.247(d) – Out of Band Emissions

11.1 Applicable Standard

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c)).

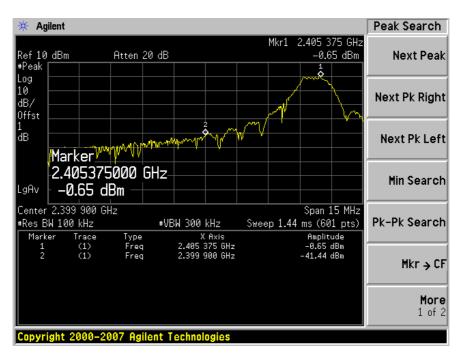
11.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.3 Test Equipment List and Details

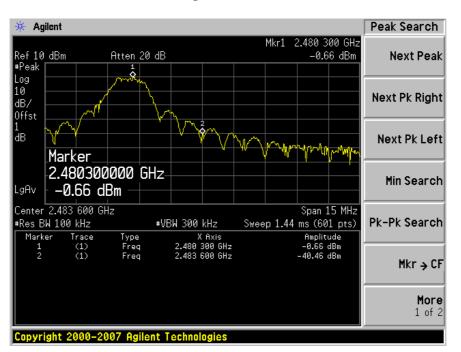
Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-03-25

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.


11.4 Test Environmental Conditions

Temperature:	22 °C~25 °C	
Relative Humidity:	31 %~33 %	
ATM Pressure:	101.1~101.4 kPa	

*The testing was performed by Victor Zhang on 2009-06-30.


Please Refer to the Following Plots

Plots of 100 kHz Band Edge

Lowest Channel

Highest Channel

12 FCC §15.247(e) - Power Spectral Density

12.1 Applicable Standard

According to §15.247 (e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

12.2 Measurement Procedure

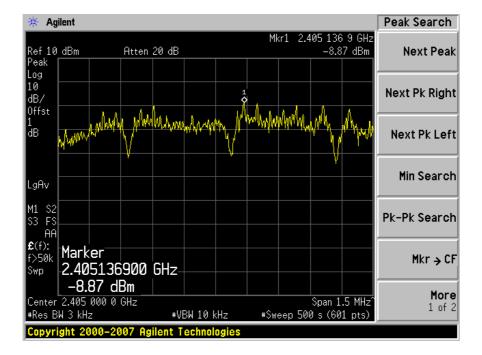
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 1.5MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Repeat above procedures until all frequencies measured were complete.

12.3 Test Equipment List and Details

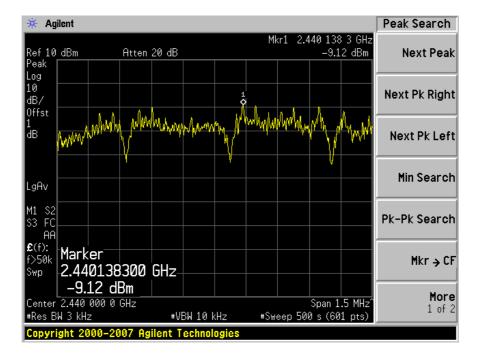
Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-03-25

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

12.4 Test Environmental Conditions

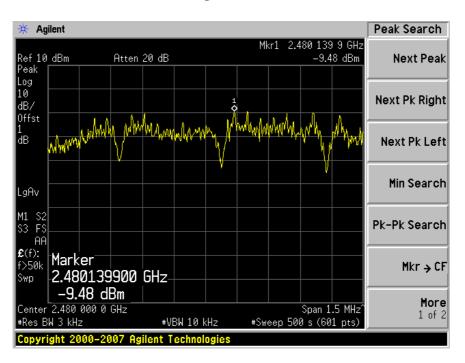

Temperature:	22 °C~25 °C
Relative Humidity:	31 %~33 %
ATM Pressure:	101.1~101.4 kPa

*The testing was performed by Victor Zhang on 2009-06-30.


12.5 Summary of Test Results

Frequency (MHz)	PPSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
2405	-8.87	8	Compliant
2440	-9.12	8	Compliant
2480	-9.48	8	Compliant

Please refer to the following plots for detailed test results



Low Channel

Middle Channel

High Channel

