FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

OCCUPANCY SENSOR WITH 2.4 GHz RADIO
MODEL NUMBER: WO-11
FCC ID: TF7WO-11-1000
REPORT NUMBER: 05U3534B
ISSUE DATE: AUGUST 4, 2005
Prepared for
EVEREX COMMUNICATION, INC
5020A BRANDIN COURT FREMONT, CA 94538

USA
Prepared by
COMPLIANCE ENGINEERING SERVICES, INC.
d.b.a.

COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY ROAD,
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888

Revision History

Rev.	Revisions	Revised By
A	Initial Issue	
B	Updated the table under Result of Section 7.1.2	D.Z.
	Revised the MPE calculation under Section 7.1.4	D.Z.

Page 2 of 56

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS 4
2. TEST METHODOLOGY 5
3. FACILITIES AND ACCREDITATION 5
4. CALIBRATION AND UNCERTAINTY. 5
4.1. MEASURING INSTRUMENT CALIBRATION. 5
4.2. MEASUREMENT UNCERTAINTY. 5
5. EQUIPMENT UNDER TEST. 6
5.1. DESCRIPTION OF EUT 6
5.2. MAXIMUM OUTPUT POWER 6
5.3. DESCRIPTION OF AVAILABLE ANTENNAS 6
5.4. SOFTWARE AND FIRMWARE 6
5.5. WORST-CASE CONFIGURATION AND MODE. 6
5.6. DESCRIPTION OF TEST SETUP. 7
6. TEST AND MEASUREMENT EQUIPMENT 9
7. LIMITS AND RESULTS 10
7.1.1. 6 dB BANDWIDTH 10
7.1.2. 99% BANDWIDTH 14
7.1.3. PEAK OUTPUT POWER 18
7.1.4. MAXIMUM PERMISSIBLE EXPOSURE 23
7.1.5. AVERAGE POWER 26
7.1.6. PEAK POWER SPECTRAL DENSITY 27
7.1.7. CONDUCTED SPURIOUS EMISSIONS 31
7.2. RADIATED EMISSIONS. 38
7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS 38
7.2.2. TRANSMITTER ABOVE 1 GHz FOR 2400 TO 2483.5 MHz BAND 41
7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz 50
8. SETUP PHOTOS 54

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	EVEREX COMMUNICATION, INC
	5020A BRANDIN COURT
	FREMONT, CA 94538
	USA
EUT DESCRIPTION:	OCCUPANCY SENSOR WITH 2.4 GHz RADIO
MODEL:	WO-11
SERIAL NUMBER:	01563
DATE TESTED:	JULY 11 TO JULY 13, 2005

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved \& Released For CCS By: Tested By:

THU CHAN
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

VIEN TRAN
EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 56

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	$+/-3.3 \mathrm{~dB}$
Radiated Emission, 200 to 1000 MHz	$+4.5 /-2.9 \mathrm{~dB}$
Radiated Emission, 1000 to 2000 MHz	$+4.5 /-2.9 \mathrm{~dB}$
Power Line Conducted Emission	$+/-2.9 \mathrm{~dB}$

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 56

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.15.4 Occupancy Sensor with 2.4 GHz Radio.
The radio module is manufactured by Everex Communications, Inc.

After the testing, EUT name is changed from Motion Sensor with 2.4 GHz Radio to Occupancy Sensor with 2.4 GHz Radio per client's request.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:
2400 to 2483.5 MHz Authorized Band

Frequency Range $(\mathbf{M H z})$	Mode	Output Power $(\mathbf{d B m})$	Output Power $(\mathbf{m W})$
$2405-2475$	802.15	1.19	1.32

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a permanently attached PCB inverted F antenna with a maximum gain of 3.5 dBi .

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was WO-11-FCC-TEST, rev.1.0.0.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2405 MHz .

The worst-case data rate for this channel is determined to be $250 \mathrm{~kb} / \mathrm{s}$, based on previous experience with 802.15 WPAN product design architectures.

Thus all emissions tests were made in the $802.15,2405 \mathrm{MHz}, 250 \mathrm{~kb} / \mathrm{s}$.

Page 6 of 56

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Mescription	Manufacturer	Model	Serial Number	FCC ID
N/A				

I/O CABLES

I/O CABLE LIST							
Cable No.	Port	\# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
N/A							

TEST SETUP

The EUT is a Occupany Sensor with 2.4 GHz Radio and it is operated by 3.0 VDC battery..

Page 7 of 56

SETUP DIAGRAM FOR TESTS

Page 8 of 56

561F MONTEREY ROAD, MORGAN HILL, CA 95037 USA

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due
Spectrum Analyzer	Agilent	E4446A	MY43360112	$01 / 13 / 2006$
Peak Power Meter	Agilent	E4416A	GB41291160	$02 / 09 / 2006$
Peak / Average Power Sensor	Agilent	E9327A	US40440755	$02 / 10 / 2006$
Antenna, Horn $1 \sim 18 \mathrm{GHz}$	S	3115	6717	$09 / 12 / 2005$
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924341	$08 / 17 / 2005$
EMI Receiver, $9 \mathrm{kHz} \sim 2.9 \mathrm{GH} /$	HP	8542 E	3942 A 00286	$11 / 21 / 2005$
RF Filter Section	HP	85420 E	3705 A 00256	$11 / 21 / 2005$
30MHz---- 2Ghz	Sunol Sciences	JB1 Antenna	A121003	$12 / 22 / 2005$
4.0 High Pass Filter	Micro Tronics	HPM13351	3	N/A

Page 9 of 56

7. LIMITS AND RESULTS

7.1.1. 6 dB BANDWIDTH

LIMIT

$\S 15.247$ (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz .

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz . The sweep time is coupled.

RESULTS

No non-compliance noted:
802.15

Channel	Frequency (MHz)	$\mathbf{6}$ dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2405	1670	500	1170
Middle	2445	1670	500	1170
High	2475	1670	500	1170

Page 10 of 56

6 DB BANDWIDTH

Page 11 of 56

Page 12 of 56

Page 13 of 56

7.1.2. 99\% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99% bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

No non-compliance noted:
802.15

Channel	Frequency (MHz)	99\% Bandwidth (KHz)
Low	2405	2669.6
Middle	2445	2504.7
High	2475	2626.1

99\% BANDWIDTH

Page 15 of 56

Page 16 of 56

Page 17 of 56

7.1.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

$\S 15.247$ (b) The maximum peak output power of the intentional radiator shall not exceed the following:
$\S 15.247$ (b) (3) For systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and 5725-5850 MHz bands: 1 watt.
$\S 15.247$ (b) (3) For systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and 5725-5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
$\S 15.247$ (b) (4) (i) Systems operating in the $2400-2483.5 \mathrm{MHz}$ band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 18 of 56

RESULTS

The maximum antenna gain is 3.5 dBi for other than fixed, point-to-point operations, therefore the limit is 30 dBm .

No non-compliance noted:
802.15

Channel	Frequency (MHz)	Peak Power $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
Low	2405	1.19	30	-28.81
Middle	2445	-0.65	30	-30.65
High	2475	-0.91	30	-30.91

Page 19 of 56

OUTPUT POWER

Page 20 of 56

Page 21 of 56

Page 22 of 56

7.1.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in $\S 1.1307(\mathrm{~b})$, except in the case of portable devices which shall be evaluated according to the provisions of $\S 2.1093$ of this chapter.

Table 1-Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	${ }^{*}(100)$	6
3.0-30	18427	4.897f	${ }^{*}\left(900 \mathrm{f}^{2}\right.$)	6
30-300	61.4	0.163	1.0	6
300-1500	f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824\%	2.197	${ }^{*}\left(180 r^{2}\right)$	30

Table 1-Limits for Maximum Permissible Exposure (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A / m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000	1.0	30

$\mathrm{f}=$ frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those perscns are fully aware of the potential for exposure and can exercise control over their exposure. Limits for oocupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 23 of 56

CALCULATIONS

Given
$E=\sqrt{ }(30 * P * G) / d$
and
$\mathrm{S}=\mathrm{E}^{\wedge} 2 / 3770$
where
E = Field Strength in Volts/meter
$\mathrm{P}=$ Power in Watts
$\mathrm{G}=$ Numeric antenna gain
d = Distance in meters
S = Power Density in milliwatts/square centimeter
Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:
$\mathrm{d}=\sqrt{ }((30 * \mathrm{P} * \mathrm{G}) /(3770 * \mathrm{~S}))$
Changing to units of Power to mW and Distance to cm , using:
$P(m W)=P(W) / 1000$ and
$\mathrm{d}(\mathrm{cm})=100 * d(\mathrm{~m})$
yields
$\mathrm{d}=100 * \sqrt{ }((30 *(\mathrm{P} / 1000) * \mathrm{G}) /(3770 * \mathrm{~S}))$
$\mathrm{d}=0.282 * \sqrt{ }(\mathrm{P} * \mathrm{G} / \mathrm{S})$
where
$\mathrm{d}=$ distance in cm
$\mathrm{P}=$ Power in mW
$\mathrm{G}=$ Numeric antenna gain
$\mathrm{S}=$ Power Density in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
Substituting the logarithmic form of power and gain using:
$\mathrm{P}(\mathrm{mW})=10^{\wedge}(\mathrm{P}(\mathrm{dBm}) / 10)$ and
$\mathrm{G}($ numeric $)=10^{\wedge}(\mathrm{G}(\mathrm{dBi}) / 10)$
yields

$$
\mathrm{d}=0.282 * 10^{\wedge}((\mathrm{P}+\mathrm{G}) / 20) / \sqrt{ } \mathrm{S}
$$

where
$\mathrm{d}=$ MPE distance in cm
$\mathrm{P}=$ Power in dBm
$\mathrm{G}=$ Antenna Gain in dBi
$\mathrm{S}=$ Power Density Limit in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
Rearranging terms to calculate the power density at a specific distance yields

$$
\mathrm{S}=0.0795 * 10^{\wedge}((\mathrm{P}+\mathrm{G}) / 10) /\left(\mathrm{d}^{\wedge} 2\right)
$$

Page 24 of 56

LIMITS

From §1.1310 Table 1 (B), the maximum value of $\mathrm{S}=1.0 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$

RESULTS

No non-compliance noted.

Mode	MPE Distance $(\mathbf{c m})$	Output Power $(\mathbf{d B m})$	Antenna Gain $(\mathbf{d B i})$	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{\wedge} \mathbf{2}\right)$
802.15	20.0	1.19	3.50	0.0006

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm , even if calculations indicate that the MPE distance would be less.

7.1.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:
The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.
802.15

Channel	Frequency (MHz)	Power (dBm)
Low	2405	-1.70
Middle	2445	-1.64
High	2475	-1.53

7.1.6. PEAK POWER SPECTRAL DENSITY

LIMIT

$\S 15.247$ (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using $\mathrm{RBW}=3 \mathrm{kHz}$ and VBW $>3 \mathrm{kHz}$, sweep time $=$ span $/ 3 \mathrm{kHz}$, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

RESULTS

No non-compliance noted:
802.15

Channel	Frequency (MHz)	PPSD $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
Low	2405	-15.83	8	-23.83
Middle	2445	-15.25	8	-23.25
High	2475	-15.27	8	-23.27

Page 27 of 56

PEAK POWER SPECTRAL DENSITY

Page 28 of 56

Page 29 of 56

Page 30 of 56

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

$\S 15.247$ (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in $\S 15.209$ (a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205(\mathrm{a})$, must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Conducted power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB .

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz . The video bandwidth is set to 300 kHz .

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

No non-compliance noted:

SPURIOUS EMISSIONS, LOW CHANNEL

Page 32 of 56

Page 33 of 56

SPURIOUS EMISSIONS, MID CHANNEL

Page 34 of 56

Page 35 of 56

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 36 of 56

Page 37 of 56

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
${ }^{1} 0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-156.52525$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	$156.7-156.9$	$2655-2900$	$22.01-23.12$
$8.41425-8.41475$	$162.0125-167.17$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$167.72-173.2$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$240-285$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$322-335.4$	$3600-4400$	$\left({ }^{2}\right)$
$13.36-13.41$			

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
$\S 15.205$ (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 38 of 56
$\S 15.209$ (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance $($ meters $)$

$30-88$	$100 * *$	3
$88-216$	$150 * *$	3
$216-960$	$200 * *$	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241 .
$\S 15.209$ (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz , then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 40 of 56

7.2.2. TRANSMITTER ABOVE 1 GHz FOR 2400 TO 2483.5 MHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 41 of 56

Page 42 of 56

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 43 of 56

Page 44 of 56

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 45 of 56

Page 46 of 56

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 47 of 56

Page 48 of 56

HARMONICS AND SPURIOUS EMISSIONS

07/11/05 High Frequency Measurement

Compliance Certification Services, Morgan Hill Open Field Site
Test Engr: Thanh Nguyen
Project \#: 05U3534
Company: EVEREX
EUT Descrip.:MOTION SSENSOR
EUT M/N: WO-11
Test Target: FCC15.247
Mode Oper: TX ABOVE 1GHz_LOW, MID \& HI CHANNELS _HARMONIC \& SPUR

Page 49 of 56

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

 SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)HORIZONTAL PLOT

(AudixATC)
Trace: 1 Ref Trace:

Condition: FCC CLASS-B HORIZONTAL
Test operator: : William zhuang
Project \#: : 05U3534
Company: : EverexCommunications, Inc.
EUT: : Motion sensor with 2.4 GHz Radio
Model No. : WO-11
Configuration : EUT stand Alone
Target of Test : FCC Class B
Mode of Operation: Tx, worst case

Page 50 of 56

Page 51 of 56

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 52 of 56

VERTICAL DATA Read Limit over							
	MHz	dBuV	dB	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBu} / \mathrm{m}}$	dB	
1	30.970	8.51	20.45	28.96	40.00	-11.04	Peak
2	125.060	9.34	15.26	24.60	43.50	-18.90	Peak
3	223.030	12.31	12.72	25.03	46.00	-20.97	Peak
4	315.180	13.07	16.08	29.15	46.00	-16.85	Peak
5	497.540	12.45	20.19	32.64	46.00	-13.36	Peak
6	698.330	11.78	23.08	34.86	46.00	-11.14	Peak
7	853.530	12.22	25.30	37.52	46.00	-8.48	Peak
8	945.680	11.99	26.45	38.44	46.00	-7.56	Peak

Page 53 of 56

561F MONTEREY ROAD, MORGAN HILL, CA 95037 USA
TEL: (408) 463-0885 FAX: (408) 463-0888

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 54 of 56

RADIATED RF MEASUREMENT SETUP

Page 55 of 56

END OF REPORT

Page 56 of 56

