

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 1 of 69

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 22 SUBPART H and **PART 24 SUBPART E REQUIREMENT**

OF

Product Name: S-911 Personal Locator

S-911 Personal Locator **Brand Name:**

Model Name: S-911 205/206

FCC ID: **TET-S911LOCATOR**

Report No.: ER/2005/80021

Issue Date: May. 30 2006

FCC Rule Part: 2 & 24E& 22H

Laipac Technology Inc. Prepared for

55 West Beaver Creek Rd., Unit 1, Richmond

Hill, Ontario, L4B 1K5, Canada

SGS Taiwan Ltd. Prepared by

No. 134, Wu Kung Rd., Wuku Industrial Zone,

Taipei County, Taiwan.

Note: This report shall not be reproduced except in full, without the written approval of SGS Taiwan Ltd. This document may be altered or revised by SGS Taiwan Ltd. personnel only, and shall be noted in the revision section of the document.

Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law." 對本報告內容或外觀之任何未經授權之變更、偽造、竄改皆屬非法,違犯者將會被依法追訴

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 2

VERIFICATION OF COMPLIANCE

Applicant: Laipac Technology Inc.

55 West Beaver Creek Rd., Unit 1, Richmond Hill, Ontario, L4B 1K5,

Canada

Equipment Under Test: S-911 Personal Locator

FCC ID Number: TET-S911LOCATOR

Brand Name: S-911 Personal Locator

Model No.: S-911 205/206

Model Difference: N/A

File Number: ER/2005/80021

Date of test: Sep. 01, 2005 ~ May. 29, 2006

Date of EUT Received: Sep. 01, 2005

We hereby certify that:

The above equipment was tested by SGS Taiwan Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-1-1998 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 subpart H and FCC PART 24 subpart E.

The test results of this report relate only to the tested sample identified in this report.

Test By:	Alex	Hsieh	Date	May. 30, 2006	
	Ale.	x Hsieh			
Prepared By:	Gig	yeh	Date	May. 30, 2006	
	Gi	gi Yeh			
Approved By	Vine	nt du	Date	May. 30, 2006	
-					

Vincent Su

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 3

Version

Version No.	Date
00	May. 30, 2006

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 4

Table of Contents

1.	GEN	NERAL INFORMATION	6
	1.1	Product Description	6
	1.2	Related Submittal(s) / Grant (s)	7
	1.3	Test Methodology	7
	1.4	Test Facility	7
	1.5	Special Accessories	7
	1.6	Equipment Modifications	7
2.	SYS	TEM TEST CONFIGURATION	8
	2.1	EUT Configuration	8
	2.2	EUT Exercise	8
	2.3	Test Procedure	8
	2.4	Configuration of Tested System	9
3.	SUN	MMARY OF TEST RESULTS	10
4.	DES	SCRIPTION OF TEST MODES	10
5.	RF]	POWER OUTPUT MEASUREMENT	11
	5.1	Standard Applicable	
	5.2	Test Set-up:	11
	5.3	Measurement Procedure	11
	5.4	Measurement Equipment Used:	12
	5.5	Measurement Result	13
6.	ERI	P, EIRP MEASUREMENT	14
	6.1	Standard Applicable	
	6.2	Test SET-UP (Block Diagram of Configuration)	14
	6.3	Measurement Procedure	16
	6.4	Measurement Equipment Used:	17
	6.5	Measurement Result	18
7.	99%	OCCUPIED BANDWIDTH MEASUREMENT	20
	7.1	Standard Applicable	
	7.2	Test Set-up:	20
	7.3	Measurement Procedure	20
	7.4	Measurement Equipment Used:	21
	7.5	Measurement Result:	
8.	O UT	Γ OF BAND EMISSION AT ANTENNA TERMINALS	27
-	8.1	Standard Applicable	
	8.2	Test SET-UP	27
and J reprod	urisdiction duced, exc	rt is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnifical issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be cept in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本語管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。	

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 5

	8.3	Measurement Procedure	27			
	8.4	Measurement Equipment Used:	28			
	8.5	Measurement Result	29			
9.	FIEI	LD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	37			
	9.1	Standard Applicable	37			
	9.2	EUT Setup (Block Diagram of Configuration)	37			
	9.3	Measurement Procedure	39			
	9.4	Measurement Equipment Used:	40			
	9.5	Measurement Result.	40			
10.	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT					
	10.1	Standard Applicable	47			
	10.2	Test Set-up:	47			
	10.3	Measurement Procedure	47			
	10.4	Measurement Equipment Used:	48			
	10.5	Measurement Result.	49			
11.	FRE	QUENCY STABILITY V.S. VOLTAGE MEASUREMENT	50			
	11.1	Standard Applicable	50			
	11.2	Test Set-up:	50			
	11.3	Measurement Procedure	50			
	11.4	Measurement Equipment Used:	51			
	11.5	Measurement Result.	52			
12.	AC I	POWER LINE CONDUCTED EMISSION TEST	53			
	12.1	Standard Applicable	53			
	12.2	EUT Setup	53			
	12.3	Measurement Procedure	53			
	12.4	Measurement Equipment Used:	54			
	12.5	Measurement Result.	54			
PH	ото	GRPHS OF SET UP	59			
PHO	ото	GRPHS OF EUT	62			

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 6

1. GENERAL INFORMATION

1.1 Product Description

Product	S-911 Personal Locator				
Model Name	S-911 205/206				
Model Difference:	Variant in exterior looks.				
Trade Name	S-911 Personal Locator				
Frequency Range and	GSM 850, TX: 824 MHz – 849MHz	33 dBm			
Power	GSM 1900, TX:1850MHz-1910MHz	30 dBm			
Hardware Version	Vers. 2.60				
Software Version	Vers. 1.32				
Type of Emission 300KGXW					
Power Supply	wer Supply 3.6Vdc Li-lon Battery Pack or 5.5Vdc by AC/DC power adap Model Number: SME-2B				

The EUT is compliance with Bluetooth Standard.

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 7

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: TET-S911LOCATOR filing to comply with Section Part 22 subpart H and Part 24 subpart E of the FCC CFR 47 Rules.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 (2003) and FCC CFR 47.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003 and CISPR 22/EN 55022 requirements. Site No. 1(3 &10 meters) Registration Number: 94644, Both OATS and Anechoic chamber (3 meters) was accredited by CNLA (0513).

1.5 Special Accessories

Not available for this EUT intended for grant.

1.6 Equipment Modifications

Not available for this EUT intended for grant.

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 8

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is placed on a turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions

The EUT is placed on a turn table which is 1.0 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2003.

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 9

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

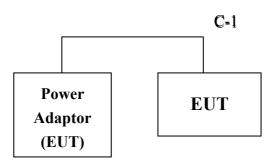


Table 2-1 Equipment Used in Tested System

Ite	m Equipment	Mfr/Brand	Model/ Type No.	FCC ID	Series No.	Data Cable	Power Cord
1.	Adaptor	Personal Locator	SME-2B	N/A	Z3062680P	shielded	Non-shielded

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 10

SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§2.1046(a)		
§22.913(a)	RF Power Output	Compliant
§24.232(a)		
§2.1046(a)		
§22.913(a)	ERP/ EIRP measurement	Compliant
§24.232(a)		
§2.1049(h)	99% Occupied Bandwidth	Compliant
§2.1051	Out of Band Emissions at Antenna	
§22.917(a)	Terminals and	Compliant
§24.238(a)	Band Edge	
§2.1053		
§22.917(a)	Field Strength of Spurious Radiation	Compliant
§24.238(a)		
§2.1055(a)(1)(b)	Frequency Stability vs. Temperature	Compliant
§2.1055(d)(1)(2)	Frequency Stability vs. Voltage	Compliant
§15.107;§15.207	AC Power Line Conducted Emission	Compliant

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

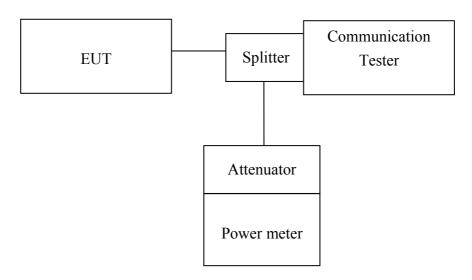
EUT staying in continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing.

The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for both GSM and GPRS with all power adaptors, earphone and Data cable. The worst-case E2 mode for GSM 850 band and H mode for GSM 1900 band with earphone mode for channel Low, Mid and High at GSM mode was reported.

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 11

5. RF POWER OUTPUT MEASUREMENT


5.1 Standard Applicable

According to FCC §2.1046.

FCC 22.913(a) Mobile station are limited to 7W.

FCC 24.232(b) Mobile station are limited to 2W.

5.2 Test Set-up:

Note: Measurement setup for testing on Antenna connector

5.3 Measurement Procedure

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 12

5.4 Measurement Equipment Used:

Conducted Emission Test Site									
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.				
TYPE		NUMBER	NUMBER	CAL.					
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006				
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006				
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006				
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006				
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2005	11/12/2006				
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A				
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006				
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006				
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006				
Signal Generator	R&S	SMR40	100210	11/09/2005	11/10/2006				
DC Power Supply	Agilent	6038A	2929A-07548	01/06/2006	01/05/2007				

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 13

5.5 Measurement Result

EUT Mode	Frequency (MHz)			Offset (dB)	Power (dBm)	
GSM 850	824.20	128	9.90	22.60	32.50	
	836.60	190	10.00	22.60	32.60	
	848.80	251	9.80	22.60	32.40	

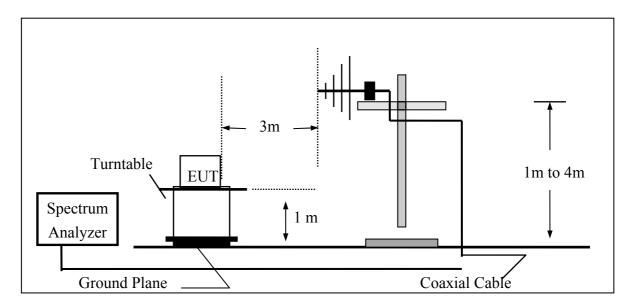
EUT Mode	Γ Mode Frequency (MHz) CH		Power Meter Reading (dBm)	Offset (dB)	Power (dBm)	
	1850.20	512	11.30	18.40	29.70	
PCS 1900	1880.00	661	11.40	18.40	29.80	
	1909.80	810	11.40	18.40	29.80	

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 14

ERP, EIRP MEASUREMENT

6.1 Standard Applicable

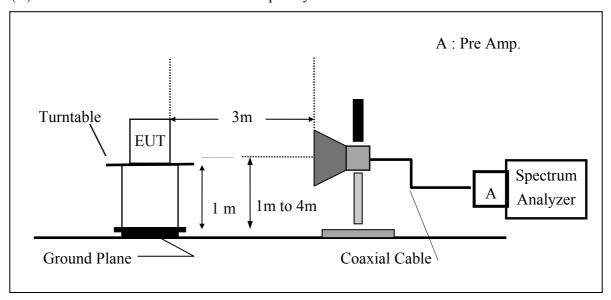

According to FCC §2.1046

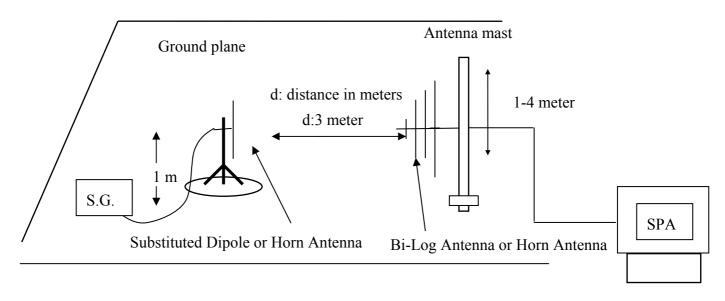
FCC 22.913(a) Mobile station are limited to 7W ERP.

FCC 24.232(b) Mobile station are limited to 2W EIRP.

6.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz




Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 15

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

(C) Substituted Method Test Set-UP

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 16

6.3 Measurement Procedure

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824.2 –848.80.8MHz were measured using a substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follows:

EIRP in frequency band 1850.2 –1909.8MHz were measured using a substitution method. The EUT was replaced by or horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable Loss (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss (dB)

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 17

6.4 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2006	03/28/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2005	06/02/2006
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2005	08/15/2006
Pre-Amplifier	НР	8447D	2944A09469	07/19/2005	07/18/2006
Pre-Amplifier	HP	8494B	3008A00578	02/26/2006	02/25/2007
Signal Generator	R&S	SMR40	100210	02/09/2006	02/10/2007
Turn Table	HD	DT420	N/A	N.C.R	N.C.R
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R
Controller	HD	HD100	N/A	N.C.R	N.C.R
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-0.5M	0.5m	10/09/2005	10/08/2006
Site NSA	SGS	966 chamber	N/A	11/17/2005	11/16/2006
Site NSA	SGS	10m Open-Site	N/A	10/02/2005	10/01/2006
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	10/14/2005	10/13/2006
Dipole Antenna	Schwarzbeck	VHAP	908/909	06/10/2005	06/11/2006
Dipole Antenna	Schwarzbeck	UHAP	891/892	06/10/2005	06/11/2006
Horn antenna	Schwarzbeck	BBHA 9120D	N/A	08/16/2005	08/15/2006

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 18

6.5 Measurement Result

EUT Mode	Frequency (MHz)	СН	EUT Pol.	Antenna Pol.	SPA Reading (dBuV)	S.G. Output (dBm)	Antenna Gain (dBd)	Cable Loss (dB)	ERP (dBm)	Limit (dBm)
				V	117.40	30.08	-7.87	3.64	18.56	38.45
			Н	Н	123.86	36.21	-7.87	3.64	24.69	38.45
	02420	120	E1	V	121.94	34.62	-7.87	3.64	23.10	38.45
	824.20	128	LI	Н	121.62	33.96	-7.87	3.64	22.45	38.45
			E2	V	118.14	30.82	-7.87	3.64	19.30	38.45
			EZ	Н	121.77	34.12	-7.87	3.64	22.60	38.45
	836.60	190	Н	V	119.76	32.73	-7.88	3.70	21.16	38.45
				Н	126.43	39.09	-7.88	3.70	27.52	38.45
~~~			E1	V	123.39	36.36	-7.88	3.70	24.79	38.45
GSM 850				Н	123.16	35.83	-7.88	3.70	24.25	38.45
			E2	V	125.40	38.37	-7.88	3.70	26.80	38.45
				Н	124.72	37.39	-7.88	3.70	25.81	38.45
			Н	V	118.14	31.40	-7.88	3.75	19.77	38.45
			п	Н	121.77	34.75	-7.88	3.75	23.12	38.45
	848.80	251	E1	V	124.18	37.44	-7.88	3.75	25.82	38.45
	040.00	251	E1	Н	125.51	38.49	-7.88	3.75	26.86	38.45
			E2	V	125.22	38.48	-7.88	3.75	26.85	38.45
			E2	Н	126.56	39.54	-7.88	3.75	27.91	38.45

### Remark:

(1) The RBW, VBW of SPA for frequency

Below 1GHz was RBW=100 KHz, VBW=300KHz,

Above 1GHz was RBW= 1MHz, VBW= 3MHz



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 19

EUT Mode	Frequency (MHz)	СН	EUT Pol.	Antenna Pol.	SPA Reading (dBuV)	S.G. Output (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)
		512	Н	V	111.44	4.48	9.90	5.41	8.97	33.00
				Н	127.72	20.83	9.90	5.41	25.32	33.00
	1050 20		E1	V	124.92	17.96	9.90	5.41	22.45	33.00
	1850.20		EI	Н	122.52	15.63	9.90	5.41	20.12	33.00
			E2	V	123.45	16.49	9.90	5.41	20.98	33.00
				Н	126.17	19.28	9.90	5.84	23.34	33.00
	1880.00	661	Н	V	120.42	13.47	9.99	5.46	18.00	33.00
			п	Н	127.57	20.70	9.99	5.46	25.23	33.00
			E1	V	123.37	16.42	9.99	5.46	20.95	33.00
PCS 1900				Н	124.43	17.56	9.99	5.46	22.09	33.00
			E2	V	122.18	15.23	9.99	5.46	19.76	33.00
				Н	124.85	17.98	9.99	5.46	22.51	33.00
	1909.80	810	Н	V	120.07	13.13	10.08	5.51	17.70	33.00
			п	H 126.74 19.89 10.08	5.51	24.45	33.00			
			E1	V	123.05	16.11	10.08	5.51	20.68	33.00
				Н	124.17	17.32	10.08	5.51	21.88	33.00
			E2	V	122.44	15.50	10.08	5.51	20.07	33.00
				Н	124.32	17.47	10.08	5.51	22.03	33.00

### Remark:

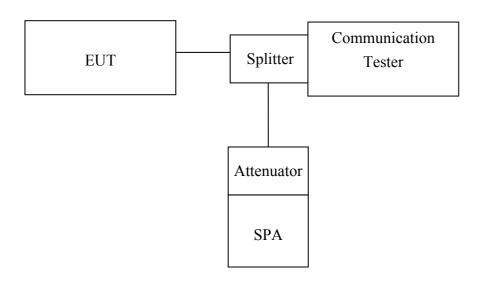
The RBW, VBW of SPA for frequency (1)

Below 1GHz was RBW=100 KHz, VBW=300KHz,

Above 1GHz was RBW= 1MHz, VBW= 3MHz



Report No.: ER/2005/80021 Issue Date: May. 30, 2006


Page: 20

#### 99% OCCUPIED BANDWIDTH MEASUREMENT 7.

### 7.1 Standard Applicable

According to §FCC 2.1049.

### 7.2 Test Set-up:



Note: Measurement setup for testing on Antenna connector

#### 7.3 Measurement Procedure

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW (10/30KHz) was set to about 1% of emission BW, VBW= 3 times RBW(30/100KHz), -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 21

# 7.4 Measurement Equipment Used:

Conducted Emission Test Site						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
TYPE		NUMBER	NUMBER	CAL.		
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2006	03/28/2007	
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006	
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006	
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006	
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2005	11/12/2006	
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A	
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006	
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006	
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006	
Signal Generator	R&S	SMR40	100210	11/09/2005	11/10/2006	
DC Power Supply	Agilent	6038A	2929A-07548	01/06/2006	01/05/2007	



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 22

### 7.5 Measurement Result:.

EUT Mode	Frequency (MHz)	СН	99% Bandwidth (MHz)	
GSM 850	824.20	128	0.2335	
	836.60	190	0.2339	
	848.80	251	0.2331	

EUT Mode	Frequency (MHz)	СН	99 % Bandwidth (MHz)
PCS 1900	1850.20	512	0.2304
	1880.00	661	0.2282
	1909.80	810	0.2304



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 23

Figure 7-1: GSM 850 Channel Low

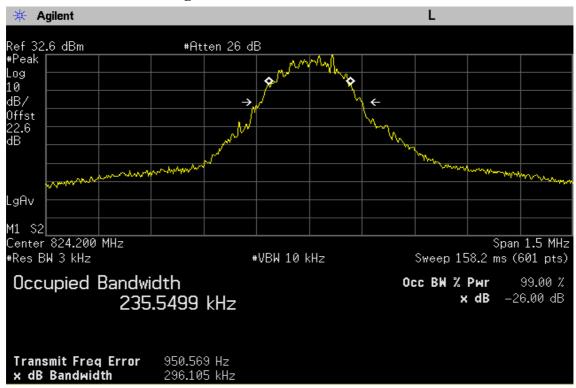
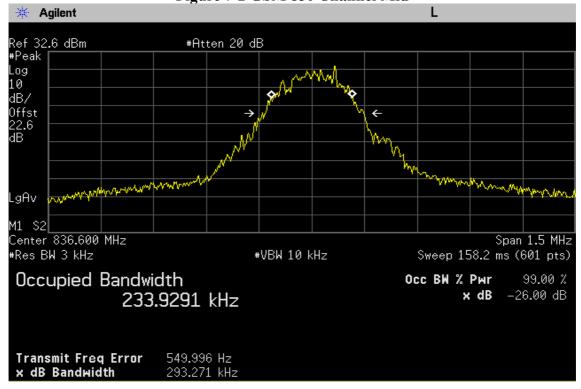
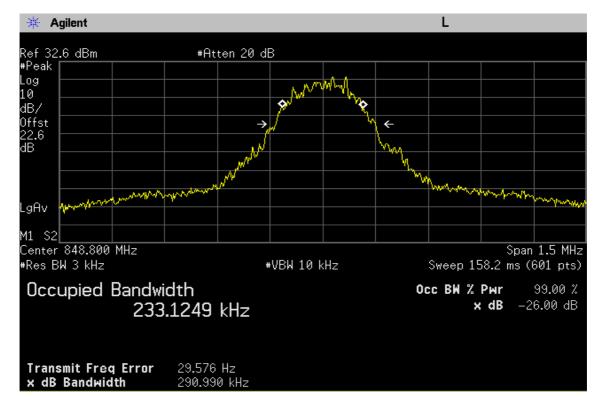




Figure 7-2 GSM 850 Channel Mid



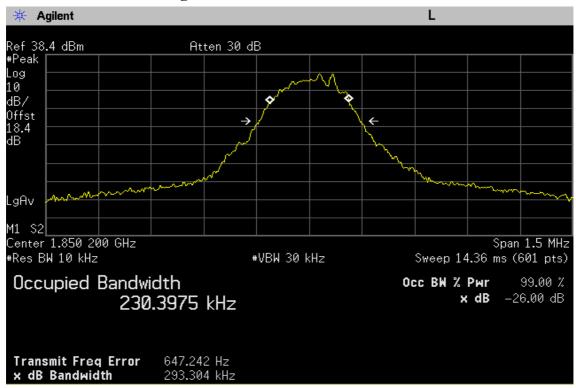

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司 之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 24

Figure 7-3: GSM 850 Channel High






Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 25** 

Figure 7-4: GSM 1900 Channel Low









Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 26

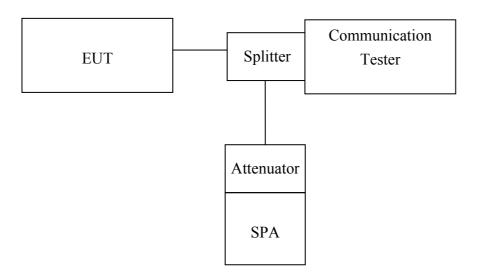
Figure 7-6: GSM 1900 Channel High





Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 27** 


#### **OUT OF BAND EMISSION AT ANTENNA TERMINALS**

### 8.1 Standard Applicable

According to FCC §2.1051.

FCC §22.917(a),§24.238(a), the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specified in the instruction manual and/ or alignment procedure, shall not be less than 43 + 10 log (mean output power in watts) dBc below the mean power output outside a license's frequency block (-13dBm)

### 8.2 Test SET-UP



Note: Measurement setup for testing on Antenna connector

#### **8.3** Measurement Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10th harmonic. Limit = -13dBm

Band Edge Requirements: In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit. -13dBm.

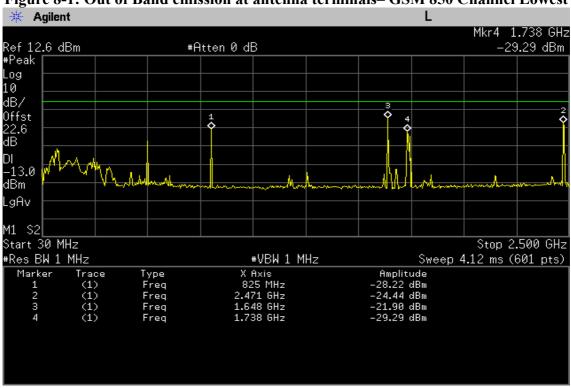


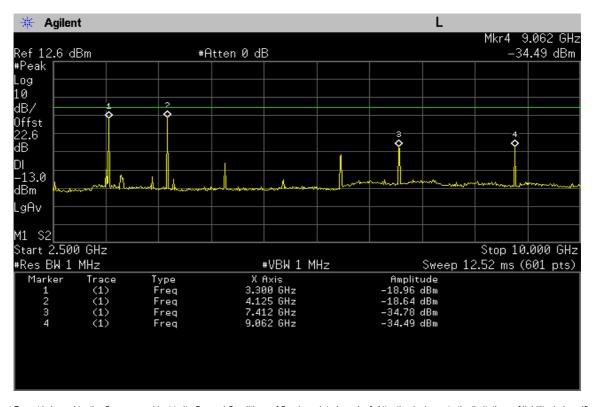
Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 28

# 8.4 Measurement Equipment Used:

Conducted Emission Test Site						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
TYPE		NUMBER	NUMBER	CAL.		
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2006	03/28/2007	
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006	
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006	
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006	
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2005	11/12/2006	
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A	
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006	
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006	
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006	
Signal Generator	R&S	SMR40	100210	11/09/2005	11/10/2006	
DC Power Supply	Agilent	6038A	2929A-07548	01/06/2006	01/05/2007	



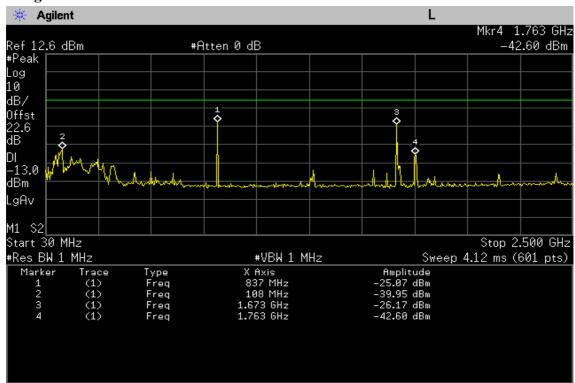


Report No.: ER/2005/80021 Issue Date: May. 30, 2006

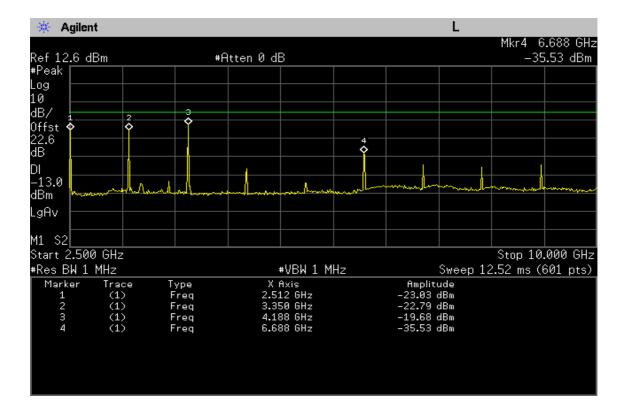
Page: 29

#### 8.5 Measurement Result

Figure 8-1: Out of Band emission at antenna terminals—GSM 850 Channel Lowest





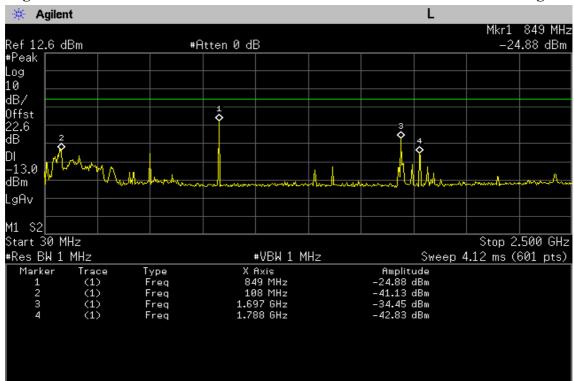



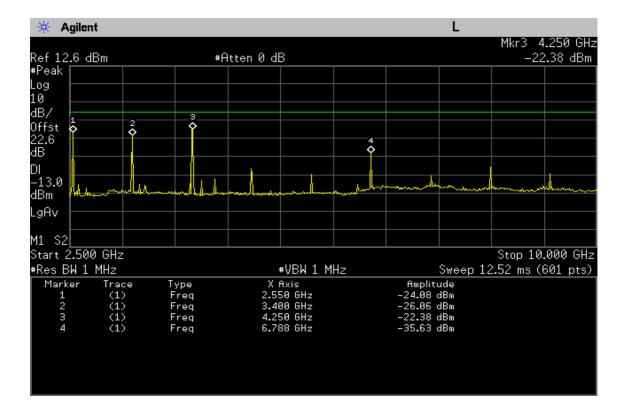

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 30** 

Figure 8-2: Out of Band emission at antenna terminals -GSM 850 Channel Mid






Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 31** 

Figure 8-3: Out of Band emission at antenna terminals-GSM 850 Channel Highest







Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 32

Figure 8-4: Band edge emission at antenna terminals – GSM 850Channel Lowest

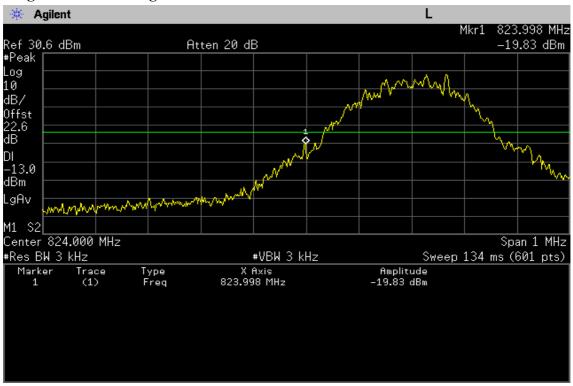
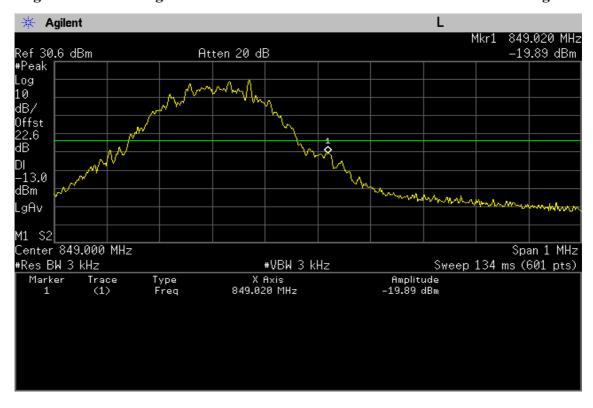
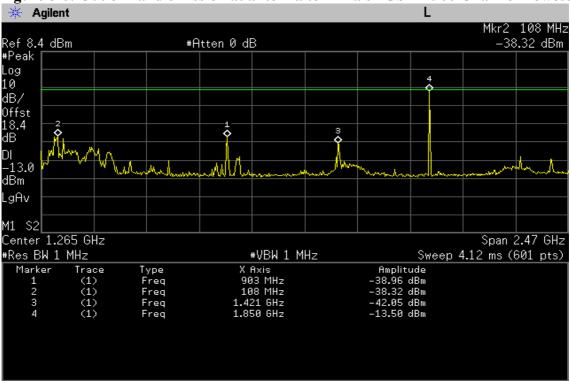
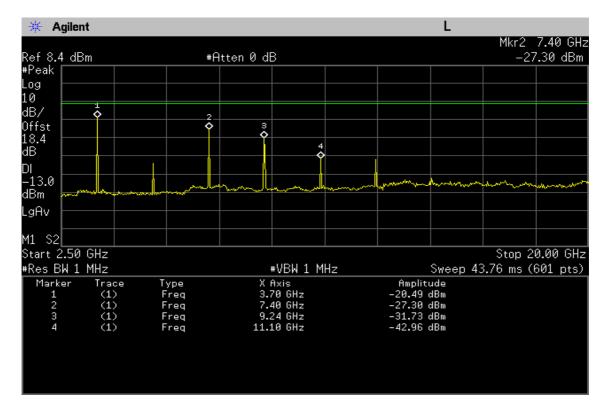




Figure 8-5: Band edge emission at antenna terminals – GSM 850 Channel Highest




This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司 之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

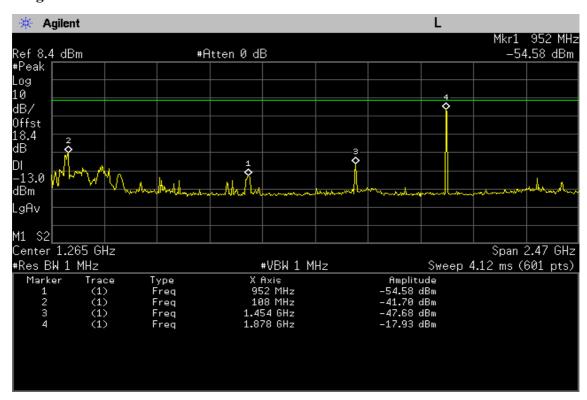


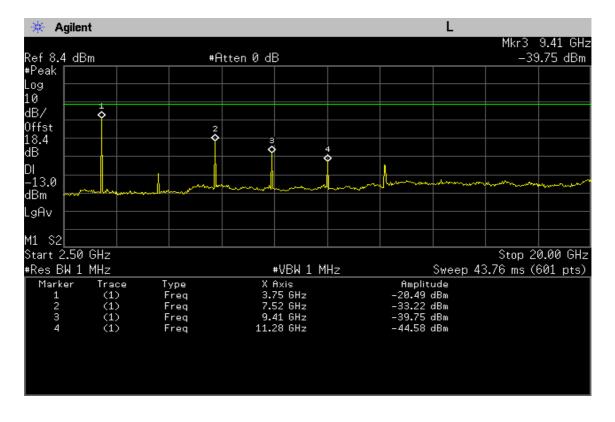

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 33

Figure 8-6: Out of Band emission at antenna terminals-GSM 1900 Channel Lowest





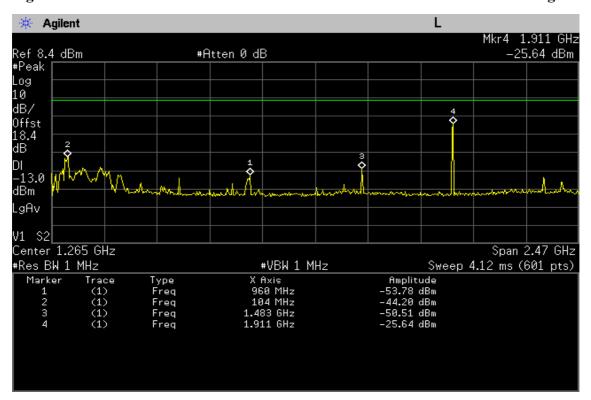



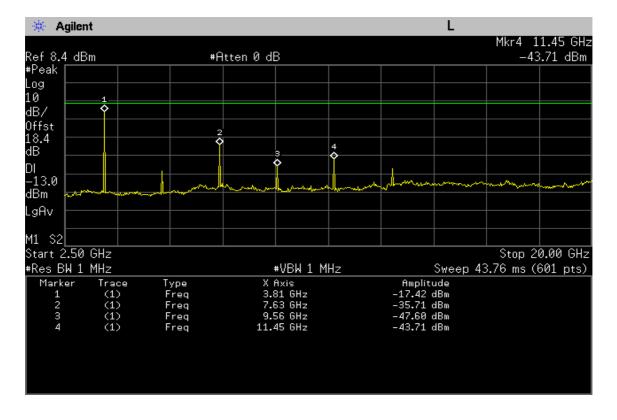

Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 34** 

Figure 8-7: Out of Band emission at antenna terminals -GSM 1900 Channel Mid






Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 35** 

Figure 8-8: Out of Band emission at antenna terminals-GSM 1900 Channel Highest







Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 36** 

Figure 8-9: Band edge emission at antenna terminals – GSM 1900 Channel Lowest

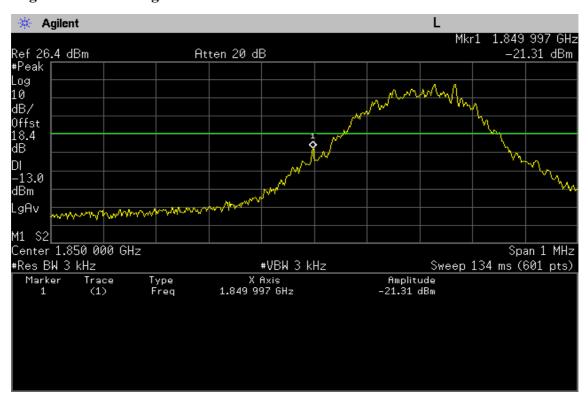
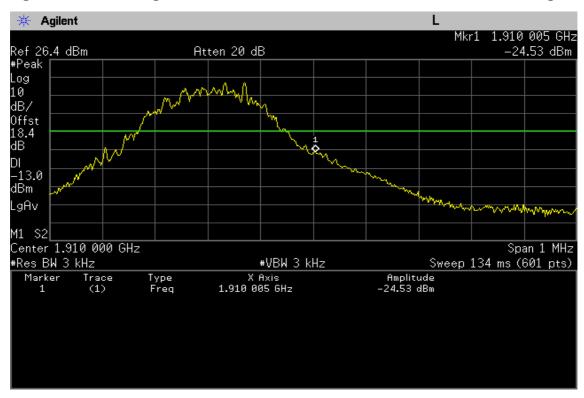




Figure 8-10: Band edge emission at antenna terminals – GSM 1900 Channel Highest



This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 此報告是遵循本公司訂定之通用服務條款所製作發放。請注意此條款列印於背面,將本公司 之義務,免責,管轄權皆明確規範之。此報告結果除非另有說明僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。

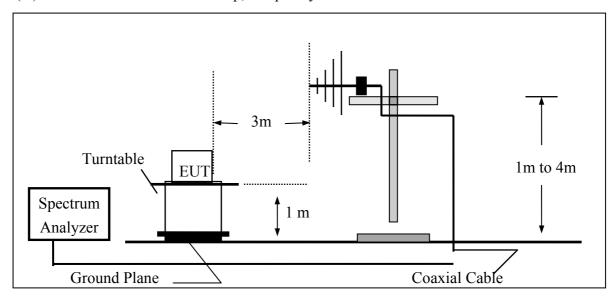
 SGS Taiwan Ltd.
 No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. / 台北縣五股工業區五工路 134 號 t (886-2) 2299-3939
 f (886-2) 2298-2698
 www.sas.com tw



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 37** 

#### 9. FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

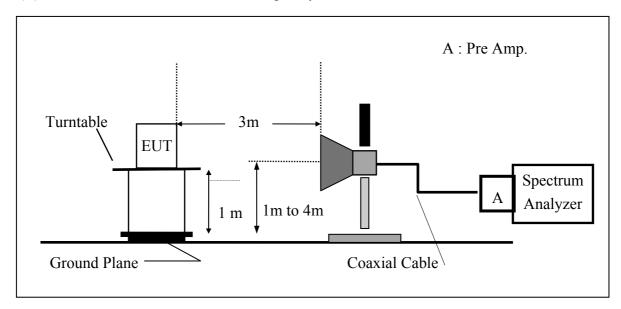

# 9.1 Standard Applicable

According to FCC §2.1053,

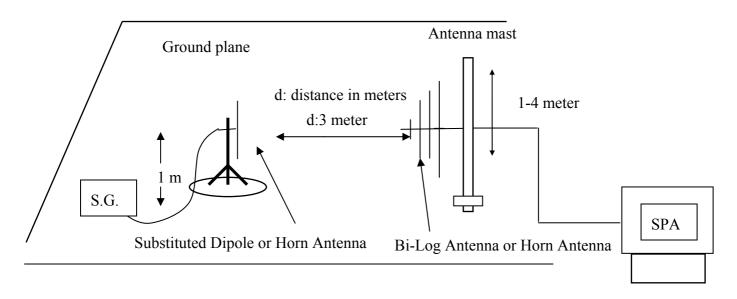
FCC §22.917(a),§24.238(a), the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specified in the instruction manual and/ or alignment procedure, shall not be less than 43 + 10 log (mean output power in watts) dBc below the mean power output outside a license's frequency block (-13dBm)

# 9.2 EUT Setup (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz







Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 38

# (B) Radiated Emission Test Set-UP Frequency Over 1 GHz



#### (C) Substituted Method Test Set-UP





Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 39

# 9.3 Measurement Procedure

The EUT was placed on a non-conductive, The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain(dBd) - Cable Loss (dB)

EIRP = S.G. output (dBm) + Antenna Gain(dBi) – Cable Loss (dB)



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 40

# 9.4 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2006	03/28/2007
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2005	06/02/2006
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2005	08/15/2006
Pre-Amplifier	HP	8447D	2944A09469	07/19/2005	07/18/2006
Pre-Amplifier	HP	8494B	3008A00578	02/26/2006	02/25/2007
Signal Generator	R&S	SMR40	100210	02/09/2006	02/10/2007
Turn Table	HD	DT420	N/A	N.C.R	N.C.R
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R
Controller	HD	HD100	N/A	N.C.R	N.C.R
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-0.5M	0.5m	10/09/2005	10/08/2006
Site NSA	SGS	966 chamber	N/A	11/17/2005	11/16/2006
Site NSA	SGS	10m Open-Site	N/A	10/02/2005	10/01/2006
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	10/14/2005	10/13/2006
Dipole Antenna	Schwarzbeck	VHAP	908/909	06/10/2005	06/11/2006
Dipole Antenna	Schwarzbeck	UHAP	891/892	06/10/2005	06/11/2006
Horn antenna	Schwarzbeck	BBHA 9120D	N/A	08/16/2005	08/15/2006

#### 9.5 Measurement Result

Refer to attach tabular data sheets.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 41

# Radiated Spurious Emission Measurement Result: GSM 850 Mode

Operation Mode : TX CH Low E2 Mode Test Date: : May 16, 2006

Fundamental Frequency : 824.20 MHz Test By: : Alex
Temperature : 25°C Pol: : Ver / Hor

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
130.88	50.53	V	-49.41	-7.78	1.37	-58.57	-13.00	-45.57
259.89	51.36	V	-49.12	-7.90	1.99	-59.00	-13.00	-46.00
824.00	74.09	V	-13.24	-7.87	3.64	-24.76	-13.00	-11.76
1648.40	72.18	V	-34.86	9.29	5.06	-30.63	-13.00	-17.63
3297.08	51.02	V	-51.56	12.17	7.26	-46.65	-13.00	-33.65
4121.35	60.37	V	-39.41	12.61	8.33	-35.12	-13.00	-22.12
4945.62		V					-13.00	
5769.89		V					-13.00	
6594.16		V					-13.00	
7418.43		V					-13.00	
8242.70		V					-13.00	
133.79	48.83	Н	-51.25	-7.79	1.39	-60.42	-13.00	-47.42
586.78	42.53	Н	-49.27	-7.78	2.89	-59.95	-13.00	-46.95
824.00	72.68	Н	-14.98	-7.87	3.64	-26.50	-13.00	-13.50
1648.40	74.17	Н	-32.84	9.29	5.06	-28.61	-13.00	-15.61
4121.35		Н					-13.00	
4945.62		Н					-13.00	
5769.89		Н					-13.00	
6594.16		Н					-13.00	
7418.43		Н					-13.00	
8242.70		Н					-13.00	

# Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 42** 

# Radiated Spurious Emission Measurement Result: GSM 850 Mode

: May 16, 2006 Operation Mode : TX CH Mid E2 Mode Test Date:

Fundamental Frequency: 836.60 MHz Test By: : Alex Temperature : 25°C Pol: :Ver / Hor

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
225.94	51.87	V	-49.50	-7.87	1.78	-59.15	-13.00	-46.15
586.78	40.76	V	-50.41	-7.78	2.89	-61.08	-13.00	-48.08
2509.80	78.20	V	-25.68	10.09	6.35	-21.94	-13.00	-8.94
3346.40	62.05	V	-40.51	12.28	7.29	-35.53	-13.00	-22.53
4183.00	60.05	V	-39.51	12.62	8.40	-35.29	-13.00	-22.29
5019.12		V					-13.00	
5855.64		V					-13.00	
6692.16		V					-13.00	
7528.68		V					-13.00	
8365.20		V					-13.00	
218.18	56.97	Н	-44.50	-7.86	1.72	-54.08	-13.00	-41.08
586.78	43.52	Н	-48.28	-7.78	2.89	-58.96	-13.00	-45.96
2509.80	74.24	Н	-29.63	10.09	6.35	-25.89	-13.00	-12.89
3346.40	62.35	Н	-39.97	12.28	7.29	-34.99	-13.00	-21.99
4183.00	59.53	Н	-39.89	12.62	8.40	-35.66	-13.00	-22.66
5019.12		Н					-13.00	
5855.64		Н					-13.00	
6692.16		Н					-13.00	
7528.68		Н					-13.00	
8365.20		Н					-13.00	

#### Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 43

# Radiated Spurious Emission Measurement Result: GSM 850 Mode

Operation Mode : TX CH High E2 Mode Test Date: : May 16, 2006

Fundamental Frequency: 848.80 MHz
Temperature: 25°C
Test By: : Alex
Pol: : Ver / Hor

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
208.48	51.94	V	-49.92	-7.85	1.63	-59.40	-13.00	-46.40
849.00	80.45	V	-6.28	-7.88	3.75	-17.91	-13.00	-4.91
1693.00	81.88	V	-25.14	9.42	5.13	-20.85	-13.00	-7.85
2546.40	82.74	V	-21.05	10.20	6.40	-17.25	-13.00	-4.25
3395.20	64.83	V	-37.71	12.38	7.33	-32.66	-13.00	-19.66
4244.35		V					-13.00	
5093.22		V					-13.00	
5942.09		V					-13.00	
6790.96		V					-13.00	
7639.83		V					-13.00	
8488.70		V					-13.00	
								_
586.78	45.60	Н	-46.20	-7.78	2.89	-56.88	-13.00	-43.88
849.00	79.02	Н	-8.00	-7.88	3.75	-19.62	-13.00	-6.62
1693.00	79.64	Н	-27.34	9.42	5.13	-23.05	-13.00	-10.05
2546.40	80.15	Н	-23.63	10.20	6.40	-19.83	-13.00	-6.83
3395.48		Н					-13.00	
4244.35		Н					-13.00	
5093.22		Н					-13.00	
5942.09		Н					-13.00	
6790.96		Н					-13.00	
7639.83		Н					-13.00	
8488.70		Н					-13.00	

#### Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 44

# Radiated Spurious Emission Measurement Result: PCS 1900 Mode

: TX CH Low H Mode : May 16, 2006 Operation Mode Test Date

Fundamental Frequency: 1850.20MHz Test By: : Alex Temperature : 25°C Pol: : Ver

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Out- put	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Mar- gin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
61.04	53.04	V	-58.31	-0.52	0.95	-59.79	-13.00	-46.79
780.78	44.89	V	-43.14	-7.87	3.50	-54.51	-13.00	-41.51
1850.00	70.10	V	-36.86	9.90	5.41	-32.37	-13.00	-19.37
5550.60	69.35	V	-25.86	13.23	9.68	-22.32	-13.00	-9.32
9251.00		V					-13.00	
11101.20		V					-13.00	
12951.40		V					-13.00	
14801.60		V					-13.00	
16651.80		V					-13.00	
18502.00		V					-13.00	
61.04	50.50	Н	-60.81	-0.52	0.95	-62.29	-13.00	-49.29
96.93	52.37	Н	-50.98	-7.76	1.20	-59.94	-13.00	-46.94
1850.00	81.15	Н	-25.74	9.90	5.41	-21.25	-13.00	-8.25
1838.50	71.32	Н	-35.58	9.86	5.39	-31.10	-13.00	-18.10
5550.60	64.01	Н	-31.12	13.23	9.68	-27.57	-13.00	-14.57
9251.00		Н					-13.00	
11101.20		Н					-13.00	
12951.40		Н					-13.00	
14801.60		Н					-13.00	
16651.80		Н					-13.00	
18502.00		Н					-13.00	

#### Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 45

# Radiated Spurious Emission Measurement Result: PCS 1900 Mode

Operation Mode : TX CH Mid H Mode Test Date :May 16, 2006

Fundamental Frequency: 1880MHz

Test By: Alex

Temperature: 25°C

Pol: Ver / Hor

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Mar- gin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
33.88	52.75	V	-50.82	-5.52	0.72	-57.07	-13.00	-44.07
61.04	52.43	V	-58.92	-0.52	0.95	-60.40	-13.00	-47.40
586.78	44.74	V	-46.43	-7.78	2.89	-57.10	-13.00	-44.10
780.78	45.27	V	-42.76	-7.87	3.50	-54.13	-13.00	-41.13
5641.00	70.21	V	-24.74	13.36	9.73	-21.11	-13.00	-8.11
9400.00		V					-13.00	
11280.00		V					-13.00	
13160.00		V					-13.00	
15040.00		V					-13.00	
16920.00		V					-13.00	
18800.00		V					-13.00	
48.43	51.85	Н	-54.57	-0.92	0.88	-56.38	-13.00	-43.38
586.78	44.78	Н	-47.02	-7.78	2.89	-57.70	-13.00	-44.70
780.78	40.83	Н	-47.54	-7.87	3.50	-58.91	-13.00	-45.91
1871.00	71.81	Н	-35.07	9.96	5.44	-30.55	-13.00	-17.55
5641.00	64.77	Н	-30.12	13.36	9.73	-26.49	-13.00	-13.49
9400.00		Н					-13.00	
11280.00		Н					-13.00	
13160.00		Н					-13.00	
15040.00		Н					-13.00	
16920.00		Н					-13.00	
18800.00		Н					-13.00	

#### Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 46

# Radiated Spurious Emission Measurement Result: PCS 1900 Mode

Operation Mode : TX CH High H Mode Test Date :May 16, 2006

Fundamental Frequency : 1909.8 MHz Test By : Alex Temperature :  $25^{\circ}$ C Pol : Ver / Hor

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Out- put	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Mar- gin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
586.78	47.24	V	-43.93	-7.78	2.89	-54.60	-13.00	-41.60
1910.02	65.84	V	-41.10	10.08	5.51	-36.53	-13.00	-23.53
3821.00	58.04	V	-42.98	12.60	7.92	-38.30	-13.00	-25.30
5725.50	55.02	V	-39.69	13.49	9.78	-35.98	-13.00	-22.98
9549.00		V					-13.00	
11458.80		V					-13.00	
13368.60		V					-13.00	
15278.40		V					-13.00	
17188.20		V					-13.00	
19098.00		V					-13.00	
586.78	45.74	Н	-46.06	-7.78	2.89	-56.74	-13.00	-43.74
935.98	41.19	Н	-44.02	-7.99	3.92	-55.93	-13.00	-42.93
1910.00	75.59	Н	-31.26	10.08	5.51	-26.70	-13.00	-13.70
3821.00	57.22	Н	-43.63	12.60	7.92	-38.95	-13.00	-25.95
5725.50	59.40	Н	-35.26	13.49	9.78	-31.55	-13.00	-18.55
9549.00		Н					-13.00	
11458.80		Н					-13.00	
13368.60		Н					-13.00	
15278.40		Н					-13.00	
17188.20		Н					-13.00	
19098.00		Н					-13.00	

#### Remark:

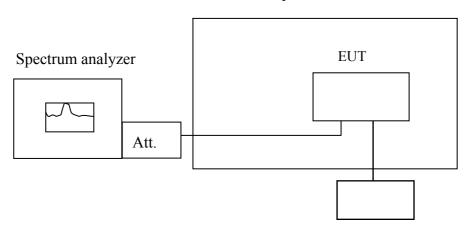
- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 47

# 10. FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT


# 10.1 Standard Applicable

According to FCC §2.1055(a)(1)(b).

Frequency Tolerance: 2.5 ppm

# 10.2 Test Set-up:

Temperature Chamber



Variable Power Supply

**Note:** Measurement setup for testing on Antenna connector

#### 10.3 Measurement Procedure

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to  $-30^{\circ}$ C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 48

# 10.4 Measurement Equipment Used:

	Conducto	ed Emission T	est Site		
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2006	03/28/2007
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2005	11/12/2006
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006
Signal Generator	R&S	SMR40	100210	11/09/2005	11/10/2006
DC Power Supply	Agilent	6038A	2929A-07548	01/06/2006	01/05/2007



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 49

# 10.5 Measurement Result

Re	eference Frequency:	GSM Mid Channe	el 836.6 MHz @ 2:	5°C
	Limit	: +/- 2.5 ppm = 209	91 Hz	
Power Supply	Environment	Frequency	Delta (Hz)	Limit (Hz)
Vdc	Temperature ( $^{\circ}$ C)	(MHz)	Della (112)	Lillit (112)
3.7	-30	836.59951	370.00	2091
3.7	-20	836.59974	140.00	2091
3.7	-10	836.59968	200.00	2091
3.7	0	836.59967	210.00	2091
3.7	10	836.59979	90.00	2091
3.7	20	836.59988	0.00	2091
3.7	30	836.59975	130.00	2091
3.7	40	836.59986	20.00	2091
3.7	50	836.59987	10.00	2091

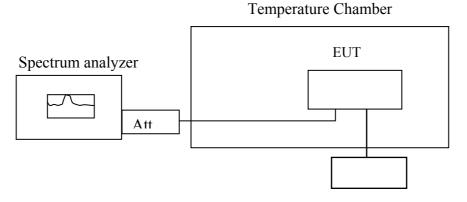
Re	Reference Frequency: PCS Mid Channel 1880 MHz @ 25°C								
	Limit	+/- 2.5  ppm = 470	00 Hz						
Power Supply	Environment	Frequency	Delta (Hz)	Limit (Hz)					
Vdc	Temperature (°C)	(MHz)	Della (HZ)	Lillit (HZ)					
3.7	-30	1880.00136	-100.00	4700					
3.7	-20	1880.00135	-90.00	4700					
3.7	-10	1880.00124	20.00	4700					
3.7	0	1880.00123	30.00	4700					
3.7	10	1880.00136	-100.00	4700					
3.7	20	1880.00126	0.00	4700					
3.7	30	1880.00122	40.00	4700					
3.7	40	1880.00124	20.00	4700					
3.7	50	1880.00131	-50.00	4700					

Note: The battery is rated 3.7V dc.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 50


# 11. FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

# 11.1 Standard Applicable

According to FCC  $\S2.1055(d)(1)(2)$ 

Frequency Tolerance: 2.5 ppm

# 11.2 Test Set-up:



Variable DC Power Supply

**Note:** Measurement setup for testing on Antenna connector

#### 11.3 Measurement Procedure

Set chamber temperature to 25°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 51

# 11.4 Measurement Equipment Used:

	Conducto	ed Emission T	est Site		
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2005	11/12/2006
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006
Signal Generator	R&S	SMR40	100210	11/09/2005	11/10/2006
DC Power Supply	Agilent	6038A	2929A-07548	01/06/2006	01/05/2007



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 52

# 11.5 Measurement Result

Re	eference Frequency	GSM Mid Channe	el 836.6 MHz @ 25	$^{\circ}$ C					
	Limit: $\pm -2.5 \text{ ppm} = 2091 \text{ Hz}$								
Power Supply	Environment	Frequency	Dolto (Uz)	Limit (Hz)					
Vdc	Temperature ( $^{\circ}$ C)	(MHz)	Delta (Hz)						
3.70	25.00	836.59983	0.00	2091.00					
3.26	25.00	836.59986	-30.00	2091.00					
3.15	25.00	836.59979	40.00	2091.00					
3.13	25.00	927 50002	(100.00)	2001.00					
(End Point)	25.00	836.59993	(100.00)	2091.00					

Reference Frequency: PCS Mid Channel 1880 MHz @ 25°C									
Limit: $\pm -2.5 \text{ ppm} = 4700 \text{ Hz}$									
Power Supply Environment Frequency Delta (II-)									
Vdc	Temperature (°C)	(MHz)	Delta (Hz)	Limit (Hz)					
3.7	25	1880.00125	0.00	4700					
3.255	25	1880.00124	10.00	4700					
3.15	25	1880.00121	40.00	4700					
3.14	25	1000 00120	50.00	4700					
(Endpoint)	25	1880.00120	50.00	4700					

Note: The battery is rated 3.7V dc.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 53** 

#### AC POWER LINE CONDUCTED EMISSION TEST 12.

# 12.1 Standard Applicable

According to §15.207. The emission value for frequency within 150KHz to 30MHz shall not exceed criteria of below chart.

Frequency range	Limits dB(uV)				
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

#### Note

# 12.2 EUT Setup

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2001.
- 2. The EUT was plug-in DC power adaptort and was placed on the center of the back edge on the test table. The peripherals like earphone was placed on the side of the EUT. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The Power adaptor was connected with 110Vac/60Hz power source.

#### 12.3 Measurement Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

^{1.} The lower limit shall apply at the transition frequencies

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 54

# 12.4 Measurement Equipment Used:

Conducted Emission Test Site										
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.					
TYPE		NUMBER	NUMBER	CAL.						
EMC Analyzer	НР	8594EM	3624A00203	09/02/2005	09/03/2006					
EMI Test Receiver	R&S	ESCS30	828985/004	06/09/2005	06/10/2006					
Transient Limiter	HP	11947A	3107A02062	09/02/2005	09/03/2006					
LISN	Rolf-Heine	NNB-2/16Z	99012	12/31/2005	12/30/2006					
LISN	Rolf-Heine	NNB-2/16Z	99013	12/24/2005	12/23/2006					
Coaxial Cables	N/A	No. 3, 4	N/A	12/24/2005	12/23/2006					

#### 12.5 Measurement Result

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Humidity:

Air Pressure:

hpa

Page: 55

# AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode : GSM850 Normal Operating Test Date :May.23, 2006

Fundamental Frequency: N/A Test By :Alex Temperature Pol :Line : 24°C Adaptor Model :SME-2B Humidity : 61% Test Voltage :120Vac Serial number :Laipac

#### Conducted Emission Measurement



Power:

Distance:

AC 120V/60Hz

Site SGS CONDUCTED #1

Limit: CISPR22 Class B Conduction(QP)

EUT: Personal Locator

M/N: 911

Note: LINK MODE(850)

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	47.23	0.60	47.83	66.00	-18.17	QP	
2		0.1500	29.93	0.60	30.53	56.00	-25.47	AVG	
3		0.3750	43.71	0.61	44.32	58.39	-14.07	QP	
4		0.3750	32.14	0.61	32.75	48.39	-15.64	AVG	
5	*	0.8200	47.22	0.62	47.84	56.00	-8.16	QP	
6		0.8200	32.93	0.62	33.55	46.00	-12.45	AVG	
7		1.1850	45.50	0.63	46.13	56.00	-9.87	QP	
8		1.1850	30.90	0.63	31.53	46.00	-14.47	AVG	
9		1.9450	45.08	0.65	45.73	56.00	-10.27	QP	
10		1.9450	28.32	0.65	28.97	46.00	-17.03	AVG	
11		3.2550	39.40	0.69	40.09	56.00	-15.91	QP	
12		3.2550	20.30	0.69	20.99	46.00	-25.01	AVG	



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

**Page: 56** 

Operation Mode : GSM850 Normal Operating Test Date : May.23, 2006

Fundamental Frequency: N/A Test By : Alex Temperature Pol :Neutral : 24°C Humidity : 61% Adaptor Model :SME-2B Test Voltage Serial number :120Vac ::Laipac

#### **Conducted Emission Measurement**



Site SGS CONDUCTED #1

Limit: CISPR22 Class B Conduction(QP)

EUT: Personal Locator

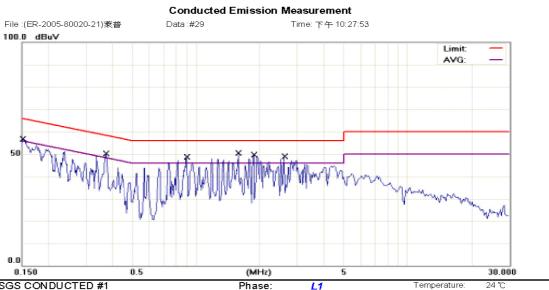
M/N: 911

Note: LINK MODE(850)

i ilase.	<u></u> /	romporataro.	
Power:	AC 120V/60Hz	Humidity:	61 %
Distance:		Air Pressure:	hpa

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	47.23	0.60	47.83	66.00	-18.17	QP	
2		0.1500	29.93	0.60	30.53	56.00	-25.47	AVG	
3		0.3750	43.71	0.61	44.32	58.39	-14.07	QP	
4		0.3750	32.14	0.61	32.75	48.39	-15.64	AVG	
5	*	0.8200	47.22	0.62	47.84	56.00	-8.16	QP	
6		0.8200	32.93	0.62	33.55	46.00	-12.45	AVG	
7		1.1850	45.50	0.63	46.13	56.00	-9.87	QP	
8		1.1850	30.90	0.63	31.53	46.00	-14.47	AVG	
9		1.9450	45.08	0.65	45.73	56.00	-10.27	QP	
10		1.9450	28.32	0.65	28.97	46.00	-17.03	AVG	
11		3.2550	39.40	0.69	40.09	56.00	-15.91	QP	
12		3.2550	20.30	0.69	20.99	46.00	-25.01	AVG	




Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 57

# AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode : GSM1900 Normal Operating Test Date : May.23, 2006

Fundamental Frequency: N/A Test By :Alex Temperature Pol :Line Adaptor Model :SME-2B Humidity : 61% Test Voltage :120Vac Serial number :Laipac



AC 120V/60Hz

Humidity:

Air Pressure:

Site SGS CONDUCTED #1

Limit: CISPR22 Class B Conduction(QP)

EUT: Personal Locator

M/N: 911

Note: LINK MODE(1900)

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1516	47.34	0.60	47.94	65.91	-17.97	QP	
2		0.1516	33.10	0.60	33.70	55.91	-22.21	AVG	-
3		0.3750	47.59	0.61	48.20	58.39	-10.19	QP	
4		0.3750	29.63	0.61	30.24	48.39	-18.15	AVG	
5		0.9000	43.96	0.62	44.58	56.00	-11.42	QP	
6		0.9000	32.81	0.62	33.43	46.00	-12.57	AVG	
7	*	1.5800	49.68	0.64	50.32	56.00	-5.68	QP	
8		1.5800	33.49	0.64	34.13	46.00	-11.87	AVG	
9		1.8750	40.98	0.65	41.63	56.00	-14.37	QP	
10		1.8750	31.82	0.65	32.47	46.00	-13.53	AVG	
11		2.6150	42.33	0.67	43.00	56.00	-13.00	QP	
12		2.6150	28.55	0.67	29.22	46.00	-16.78	AVG	

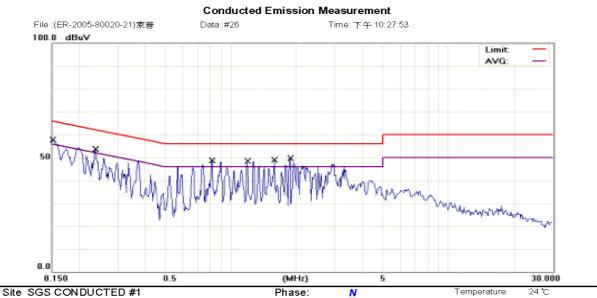
Power:

Distance:



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Humidity:


Air Pressure:

hpa

Page: 58

Test Date Operation Mode : GSM1900 Normal Operating : May.23, 2006

Fundamental Frequency: N/A Test By :Alex Temperature Pol :Neutral : 24°C Humidity : 61% Adaptor Model :SME-2B Test Voltage :120Vac Serial number :Laipac



AC 120V/60Hz

Limit: CISPR22 Class B Conduction(QP)

EUT: Personal Locator

M/N: 911

Note: LINK MODE(1900)

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1516	47.62	0.60	48.22	65.91	-17.69	QP	
2		0.1516	34.17	0.60	34.77	55.91	-21.14	AVG	
3		0.2378	46.24	0.60	46.84	62.17	-15.33	QP	
4		0.2378	29.84	0.60	30.44	52.17	-21.73	AVG	
5		0.8200	43.66	0.62	44.28	56.00	-11.72	QP	
6		0.8200	27.25	0.62	27.87	46.00	-18.13	AVG	
7	*	1.1850	45.34	0.63	45.97	56.00	-10.03	QP	
8		1.1850	28.43	0.63	29.06	46.00	-16.94	AVG	
9		1.5850	44.45	0.64	45.09	56.00	-10.91	QP	
10		1.5850	30.15	0.64	30.79	46.00	-15.21	AVG	
11		1.8700	40.54	0.65	41.19	56.00	-14.81	QP	
12		1.8700	28.47	0.65	29.12	46.00	-16.88	AVG	

Power:

Distance:



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 59

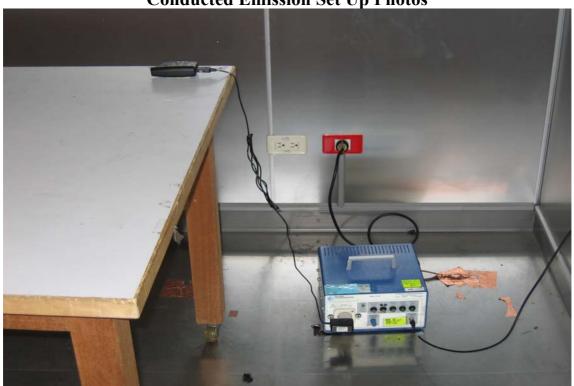
# APPENDIX 1 PHOTOGRPHS OF SET UP



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 60

# **Radiated Emission Set up Photos**






Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 61

**Conducted Emission Set Up Photos** 







Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 62

# **APPENDIX 2** PHOTOGRPHS OF EUT



Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 63

# All of EUT



# Adaptor





Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 64

# Front View of EUT



Back View of EUT





Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 65

# Top View of EUT



**Bottom View of EUT** 





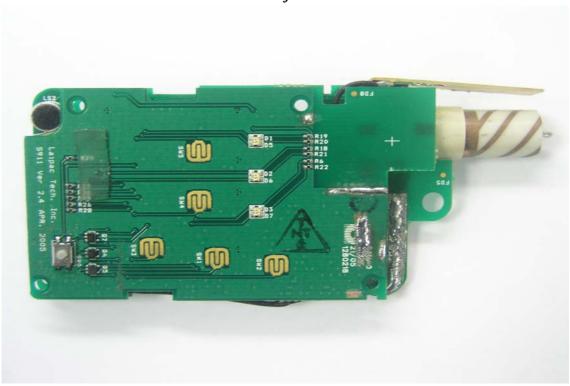
Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 66

# Open View of EUT



Internal of EUT - 1






Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 67

# Internal of EUT – 2



# Internal of EUT – 3





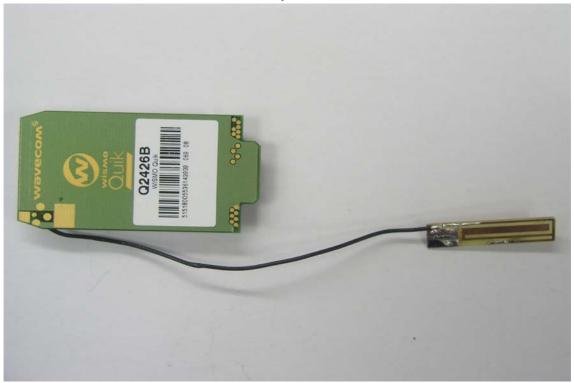
Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 68

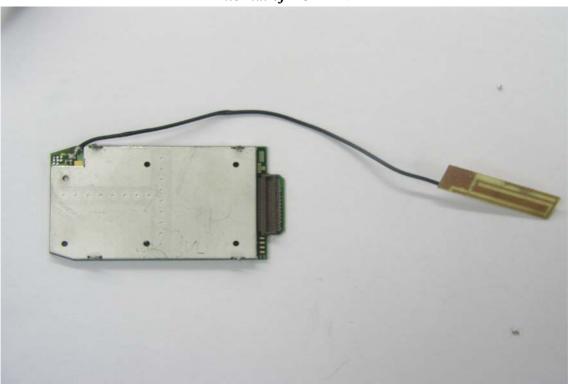
# Internal of EUT --- 4



Internal of EUT --- 5







Report No.: ER/2005/80021 Issue Date: May. 30, 2006

Page: 69

# Internal of EUT --- 6



Internal of EUT --- 7

