

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM171101178804 Page: 1 of 85

FCC & IC REPORT

Test Result:	PASS *
Date of Issue:	2018-06-28
Date of Test:	2018-01-10 to 2018-06-28
Date of Receipt:	2018-01-09
Test Method:	ANSI C63.10 (2013) RSS-Gen Issue 4 Nov 2014
Standards:	47 CFR Part 15, Subpart C(2018) RSS-247 Issue 2 Feb 2017
FCC ID: IC ID:	TET-LOOKWATCH 11280A-LOOKWATCH
Trade Mark:	LooK Watch
Model No.(EUT):	J525K
Product Name:	LooK Watch
Manufacturer:	Laipac Technology Inc.
Applicant:	Laipac Technology Inc.
Application No.:	SZEM1711011788RG

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM171101178804 Page: 2 of 85

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2018-06-28		Original

Authorized for issue by:		
Tested By	Mike Mu (Mike Hu) /Project Engineer	2018-06-28
Checked By	David Chen (Jim Huang) /Reviewer	2018-06-28

Report No.: SZEM171101178804 Page: 3 of 85

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)&RSS-Gen Issue 4	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207&RSS-Gen Issue 4	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (a)(1) &RSS 247 5.4(a)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1) &RSS 247 5.1(a)	ANSI C63.10 (2013)	PASS
99% Occupied Bandwidth	RSS-Gen Issue 4	RSS-Gen Issue 4	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1) &RSS 247 5.1(b)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1) &RSS 247 5.1(d)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1) &RSS 247 5.1(d)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d) RSS 247 5.5	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d) & RSS 247 5.5	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209&RSS-Gen Issue 4	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209&RSS-Gen Issue 4	ANSI C63.10 (2013)	PASS

Report No.: SZEM171101178804 Page: 4 of 85

Contents

Page

1	cc	OVER PAGE	1
2	VE	RSION	2
3	TE	ST SUMMARY	
4	СС	DNTENTS	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11	EQUIPMENT LIST	9
6	TE	ST RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20dB Occupy Bandwidth	
	6.5	99% Occupy Bandwidth	
	6.6	CARRIER FREQUENCIES SEPARATION	
	6.7	HOPPING CHANNEL NUMBER	
	6.8	DWELL TIME	
	6.9	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.10	SPURIOUS RF CONDUCTED EMISSIONS	
	6.11	RADIATED SPURIOUS EMISSION	
	•••	11.1 Radiated Emission below 1GHz	
	•••	11.2 Transmitter Emission above 1GHz	
	6.12	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PH	IOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	85

Report No.: SZEM171101178804 Page: 5 of 85

4 General Information

4.1 Client Information

Applicant:	Laipac Technology Inc.	
Address of Applicant:	Address: 20 Mural St., Unit 5, Richmond Hill, Ontario L4B 1K3 Canada	
Manufacturer:	Laipac Technology Inc.	
Address of Manufacturer:	Address: 20 Mural St., Unit 5, Richmond Hill, Ontario L4B 1K3 Canada	

4.2 General Description of EUT

Product Name:	LooK Watch	
Model No.:	J525K	
Trade Mark:	LooK Watch	
Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	V4.0 Dual mode	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Sample Type:	Portable production	
Antenna Type:	Monopole	
Antenna Gain:	3dBi	
Power Supply	DC input: 3.7V charging cable: 70cm unshielded, 4pin cable(white) 55cm unshielded. USB cable (Black)	

Report No.: SZEM171101178804 Page: 6 of 85

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM171101178804 Page: 7 of 85

4.3 Test Environment

Operating Environment		
Temperature:	24.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1010.3 KPa	

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.7 Deviation from Standards

None.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM171101178804 Page: 8 of 85

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

4.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	\pm 0.75dB
2	RF power density, conducted	±2.84dB
3	Spurious emissions, conducted	\pm 0.75dB
		±4.5dB (30MHz-1GHz)
4 Radiated Spurious emi	Radiated Spurious emission test	±4.8dB (1GHz-25GHz)
5	Conduct emission test	\pm 3.12 dB(9KHz- 30MHz)
6	Temperature test	±1°C
7	Humidity test	±3%
8	DC and low frequency voltages	±0.5%

Report No.: SZEM171101178804 Page: 9 of 85

4.11 Equipment List

	Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)				
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10				
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-10-09	2018-10-09				
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-14				
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017-09-28	2018-09-28				
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017-09-28	2018-09-28				
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017-09-28	2018-09-28				
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-14				
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09				

	RF connected test										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)					
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-10-09	2018-10-09					
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2017-03-06	2018-03-06					
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14					
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017-10-09	2018-10-09					
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017-10-09	2018-10-09					

Report No.: SZEM171101178804 Page: 10 of 85

	RE in Chamber										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)					
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10					
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-10-09	2018-10-09					
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-11-01	2020-11-01					
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17					
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017-11-24	2020-11-24					
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14					
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A					
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09					
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13					

	RE in Chamber										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)					
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017-05-10	2018-05-10					
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017-04-14	2018-04-14					
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29					
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017-07-06	2018-07-06					
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14					

	RE in Chamber									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)				
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10				
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017-07-19	2018-07-19				
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017-11-15	2020-11-15				
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-10-09	2018-10-09				
5	Horn Antenna	Rohde & Schwarz		SEM003-07	2015-06-14	2018-06-14				

Report No.: SZEM171101178804 Page: 11 of 85

	(1-18GHz)					
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017-11-24	2020-11-24
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017-10-09	2018-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM171101178804 Page: 12 of 85

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

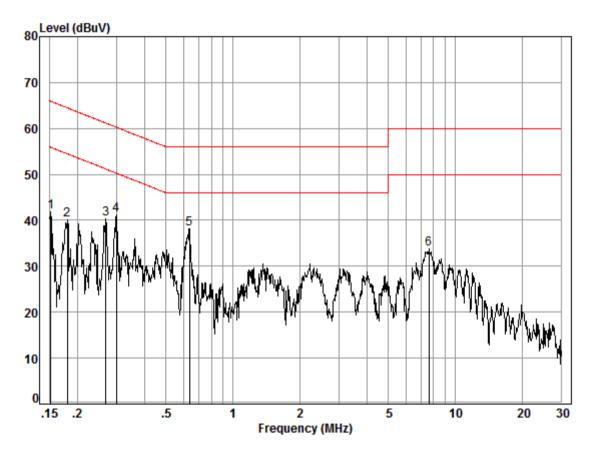
Report No.: SZEM171101178804 Page: 13 of 85

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
	Frequency range (MHz)	Limit (dBuV)				
		Quasi-peak	Average			
Limit:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarith	im of the frequency.				
Test Procedure:	 room. 2) The EUT was connected Impedance Stabilization I impedance. The power connected to a second Line reference plane in the sameasured. A multiple soor power cables to a single exceeded. 3) The tabletop EUT was placed on the horizontal of placed on the horizontal of the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bondor mounted on top of the gro between the closest poin the EUT and associated of 5) In order to find the maxim 	to AC power source Network) which provi ables of all other unit ISN 2, which was bound me way as the LISN cket outlet strip was un LISN provided the rate aced upon a non-me And for floor-standing ground reference plane with a vertical ground in from the	ides a $50\Omega/50\mu$ H + 5Ω linear ts of the EUT were inded to the ground 1 for the unit being used to connect multiple ating of the LISN was not itallic table 0.8m above the g arrangement, the EUT was ine, I reference plane. The rear bund reference plane. The rear bund reference plane. The o the horizontal ground m from the boundary of the ence plane for LISNs e. This distance was the EUT. All other units of ast 0.8 m from the LISN 2. lative positions of it be changed according to			

Report No.: SZEM171101178804 Page: 14 of 85

Test Setup:	Shielding Room. Test Receiver Test Receiver Test Receiver LISN1 LISN2 Ground Reference Plane				
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Charge + Transmitting mode.				
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Charge + Transmitting mode Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				


Report No.: SZEM171101178804 Page: 15 of 85

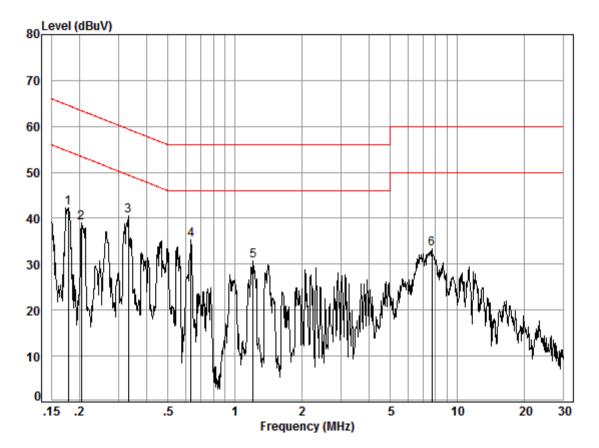
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:


```
Site : Shielding Room
Condition: Line
Job No. : 11788RG
Test mode: e
```


		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15	0.02	9.51	32.33	41.86	55.91	-14.05	Peak
2	0.18	0.02	9.51	30.47	40.00	54.50	-14.50	Peak
3	0.27	0.01	9.51	30.80	40.32	51.16	-10.84	Peak
4	0.30	0.01	9.51	31.60	41.12	50.28	-9.16	Peak
5	0.64	0.02	9.51	28.56	38.09	46.00	-7.91	Peak
6	7.61	0.01	9.60	24.23	33.84	50.00	-16.16	Peak

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Service/Terms-and-Conditions/Service/Terms-and-Conditions/Service/Terms-and-Conditions/Service/Ser

Report No.: SZEM171101178804 Page: 16 of 85

Neutral line:


```
Site : Shielding Room
Condition: Neutral
Job No. : 11788RG
Test mode: e
```

	mouel e								
		Cable	LISN	Read		Limit	0ver		
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB	dBuV	dBuV	dBuV	dB		
1	0.18	0.02	9.58	32.76	42.36	54.59	-12.23	Peak	
2	0.20	0.02	9.57	29.49	39.08	53.45	-14.37	Peak	
3	0.33	0.01	9.58	31.01	40.60	49.40	-8.80	Peak	
4	0.63	0.02	9.62	25.60	35.24	46.00	-10.76	Peak	
5	1.21	0.02	9.64	21.00	30.66	46.00	-15.34	Peak	
6	7.69	0.01	9.74	23.54	33.29	50.00	-16.71	Peak	

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

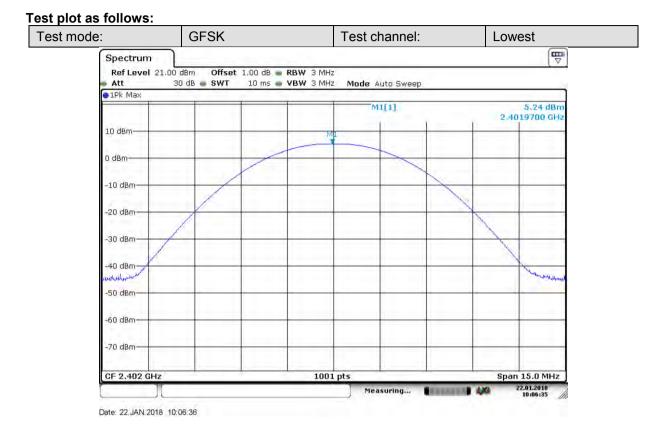
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

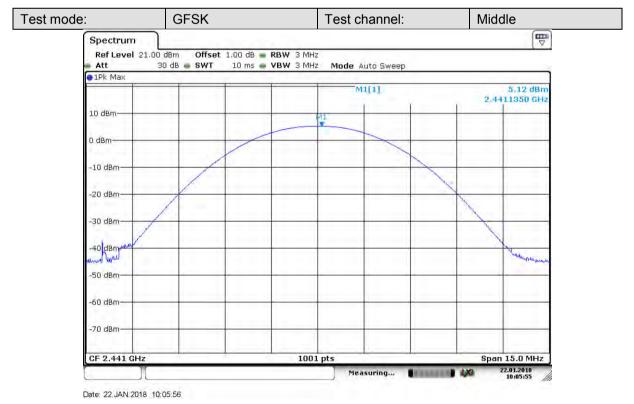
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM171101178804 Page: 17 of 85

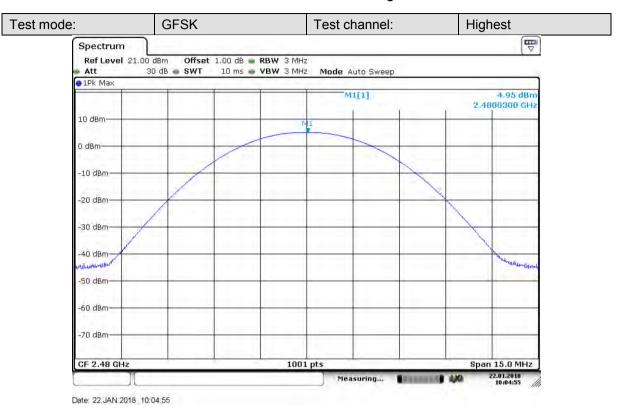
5.3 Conducted Peak Output Power

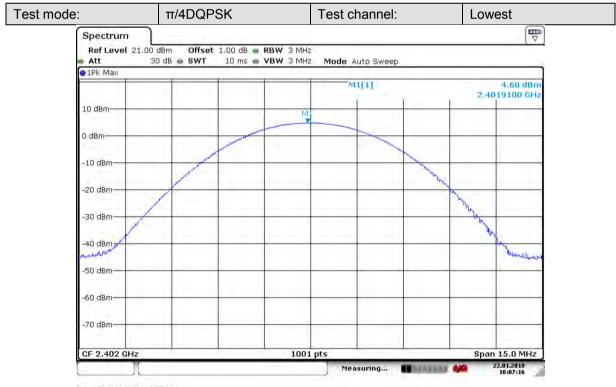
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 Section 7.8.5			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Limit:	(20.97dBm) 125mW			
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.			
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			


Report No.: SZEM171101178804 Page: 18 of 85

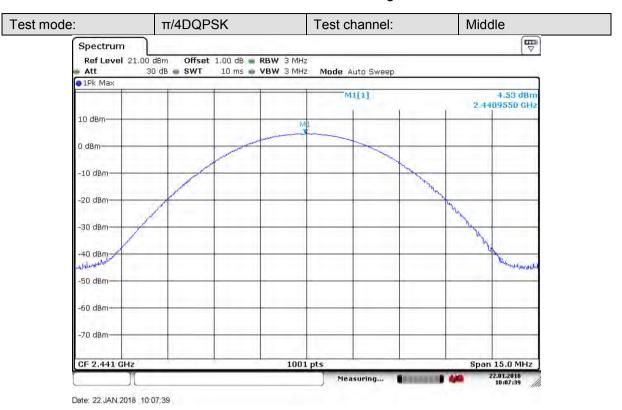

Measurement Data

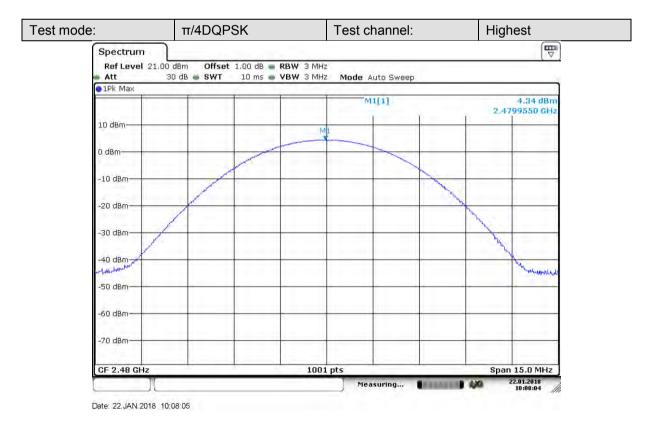
GFSK mode										
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	5.24	20.97	Pass							
Middle	5.12	20.97	Pass							
Highest	4.95	20.97	Pass							
	π/4DQPSK mode									
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	4.68	20.97	Pass							
Middle	4.53	20.97	Pass							
Highest	4.34	20.97	Pass							
	8DPSK mo	de								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	4.66	20.97	Pass							
Middle	4.50	20.97	Pass							
Highest	4.31	20.97	Pass							


Report No.: SZEM171101178804 Page: 19 of 85

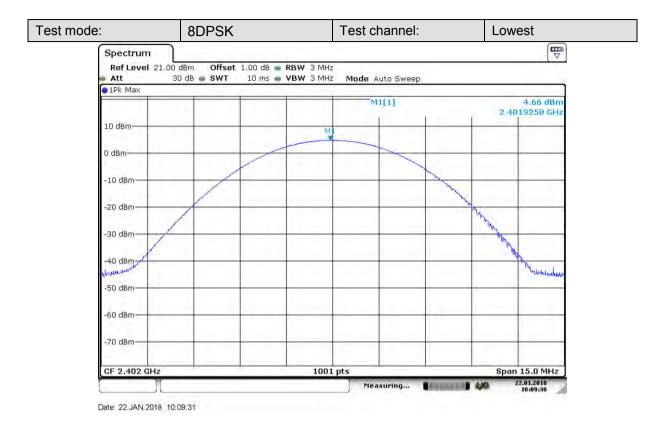


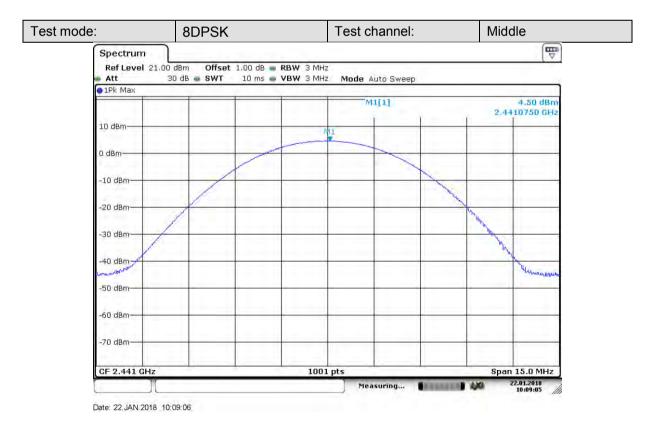
Report No.: SZEM171101178804 Page: 20 of 85

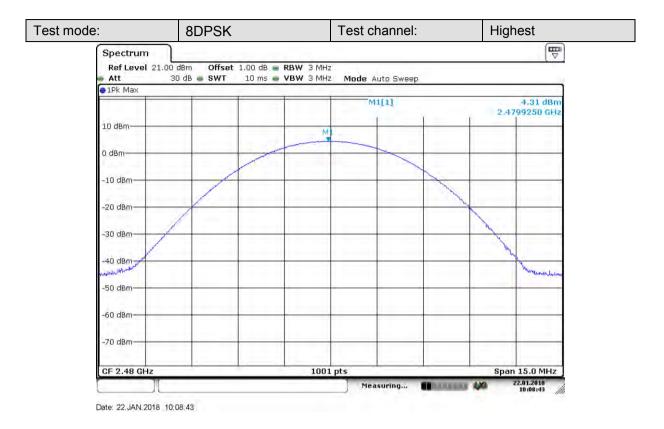




Date: 22, JAN. 2018 10:07:16


Report No.: SZEM171101178804 Page: 21 of 85

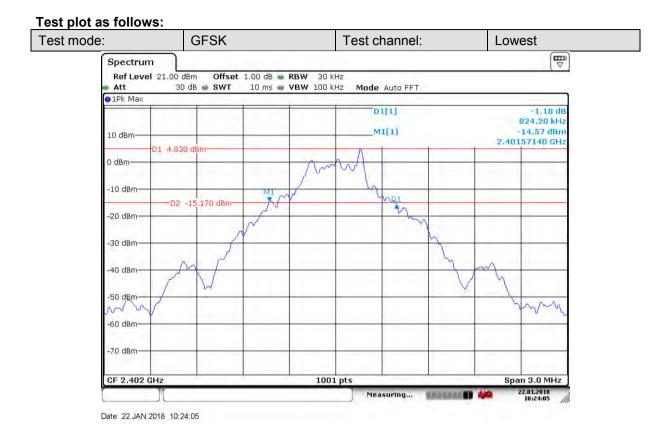


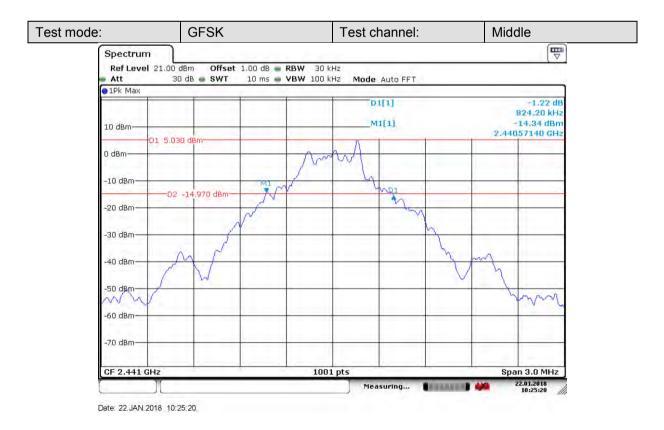

Report No.: SZEM171101178804 Page: 22 of 85

Report No.: SZEM171101178804 Page: 23 of 85

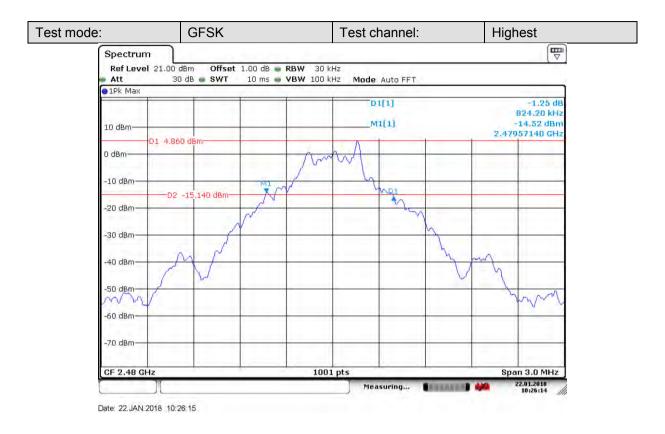
Report No.: SZEM171101178804 Page: 24 of 85

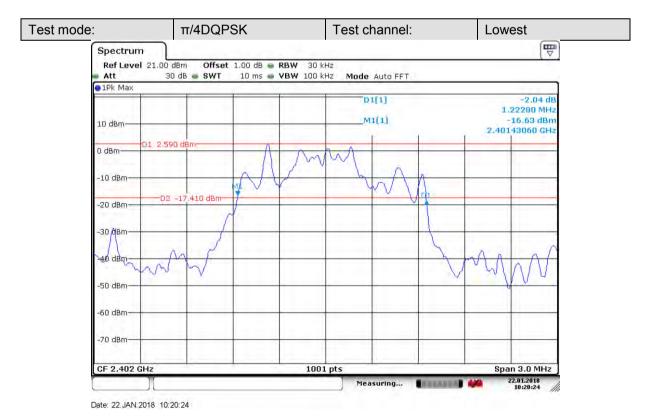
5.4 20dB Emission Bandwidth

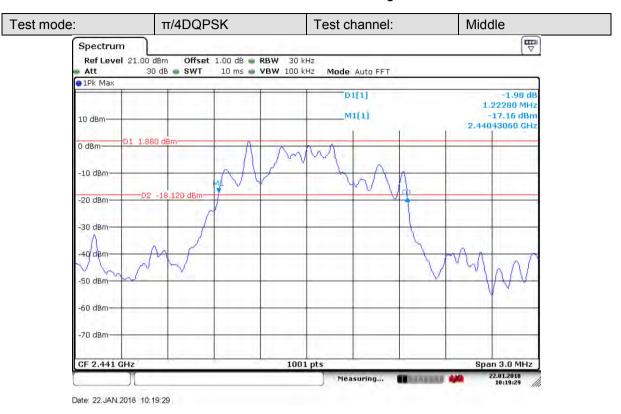

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.7	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Limit:	NA	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

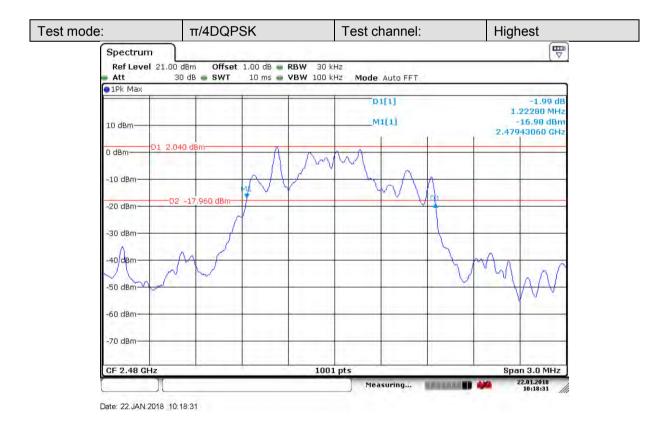

Measurement Data

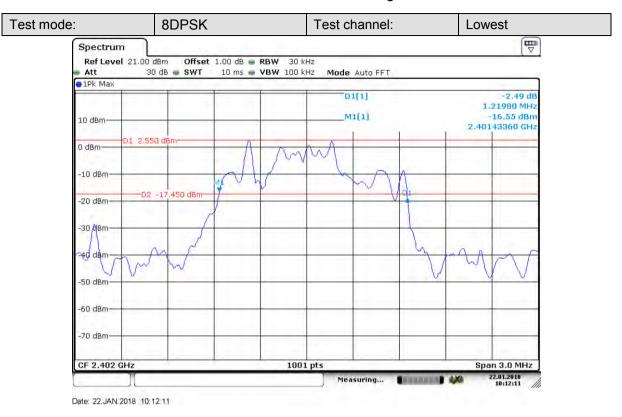
Test channel	20dB Emission Bandwidth (kHz)		
	GFSK	π/4DQPSK	8DPSK
Lowest	824.20	1222.8	1219.8
Middle	824.20	1222.8	1219.8
Highest	824.20	1222.8	1219.8

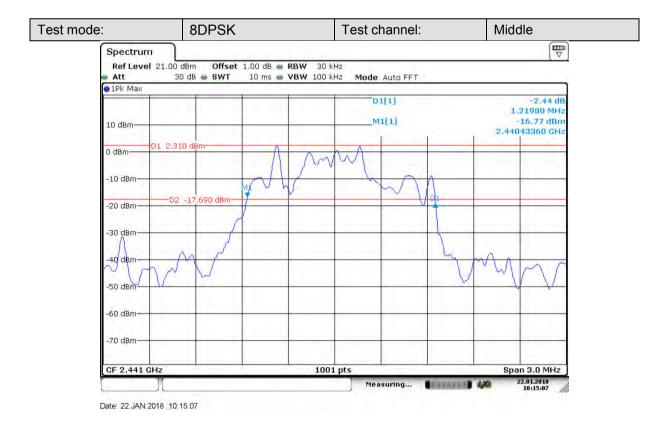

Report No.: SZEM171101178804 Page: 25 of 85



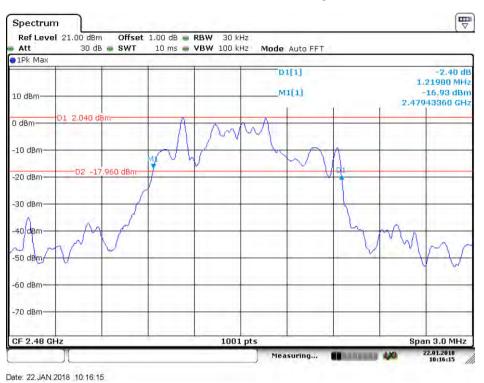

Report No.: SZEM171101178804 Page: 26 of 85




Report No.: SZEM171101178804 Page: 27 of 85



Report No.: SZEM171101178804 Page: 28 of 85



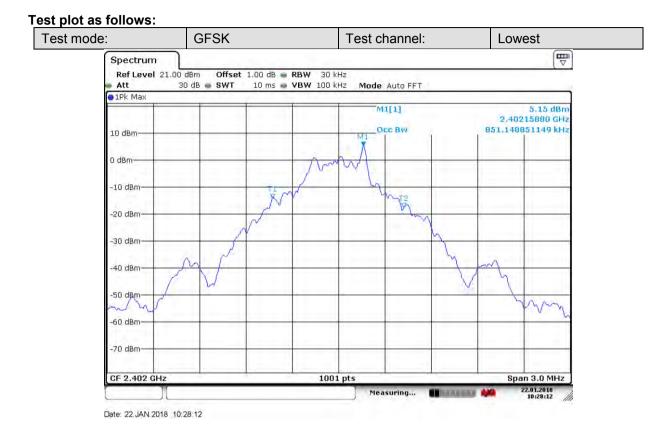
	Test mode:	8DPSK	Test channel:	Highest
nis document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for				

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions-re-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM171101178804 Page: 29 of 85

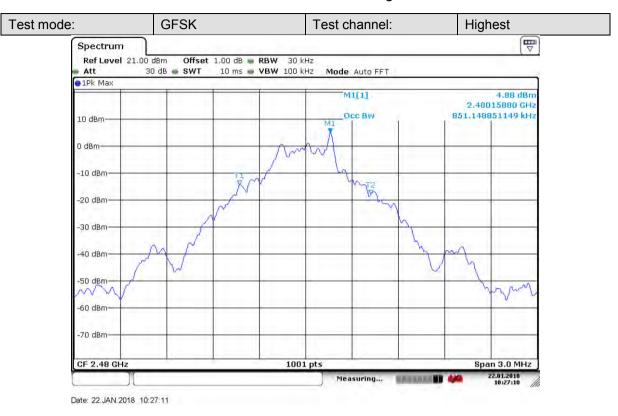
Report No.: SZEM171101178804 Page: 30 of 85

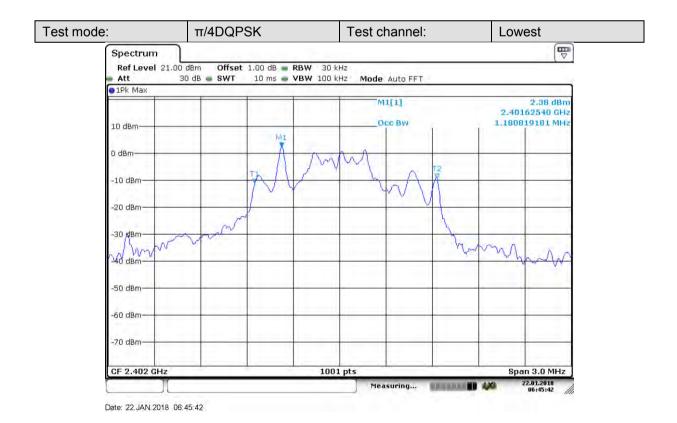
5.5 99% Occupied Bandwidth

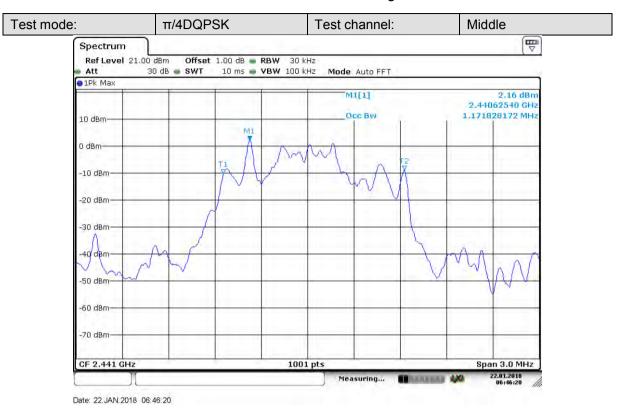

Test Requirement:	RSS-Gen Issue 4	
Test Method:	RSS-Gen Issue 4	
Test Setup:	RSS-Gen Issue 4	
Instruments Used:	Refer to section 5.10 for details	
Limit:	NA	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.	
Test Results:	Pass	

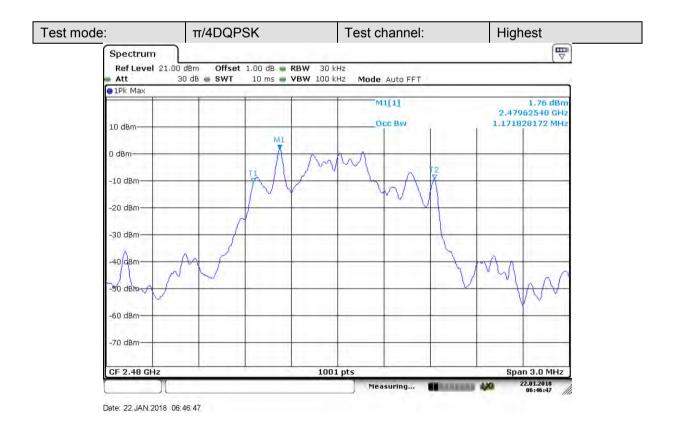

Measurement Data

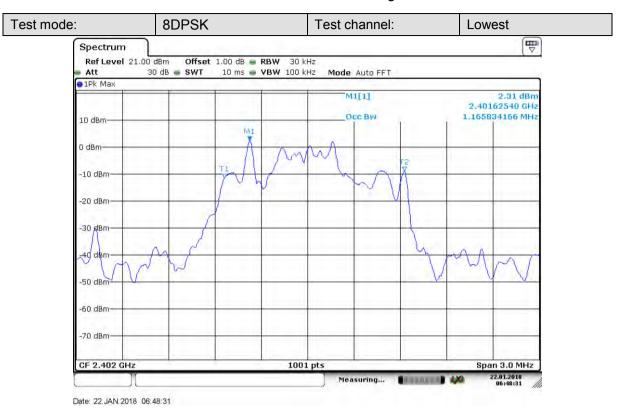
Test channel	99% Occupied Bandwidth (kHz)		
	GFSK	π/4DQPSK	8DPSK
Lowest	851.15	1180.19	1165.83
Middle	851.15	1180.19	1165.83
Highest	851.15	1180.19	1165.83

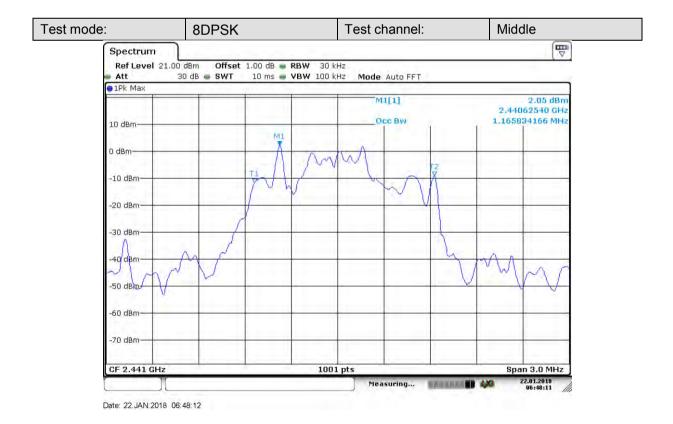

Report No.: SZEM171101178804 Page: 31 of 85

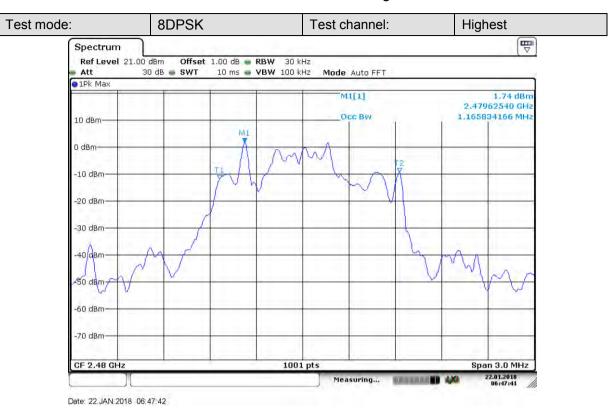



Report No.: SZEM171101178804 Page: 32 of 85




Report No.: SZEM171101178804 Page: 33 of 85




Report No.: SZEM171101178804 Page: 34 of 85

Report No.: SZEM171101178804 Page: 35 of 85

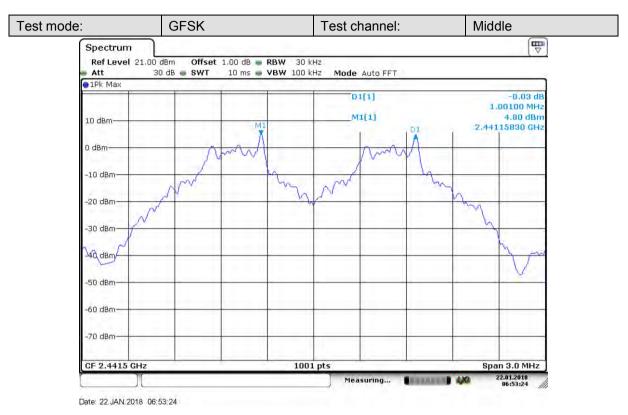
Report No.: SZEM171101178804 Page: 36 of 85

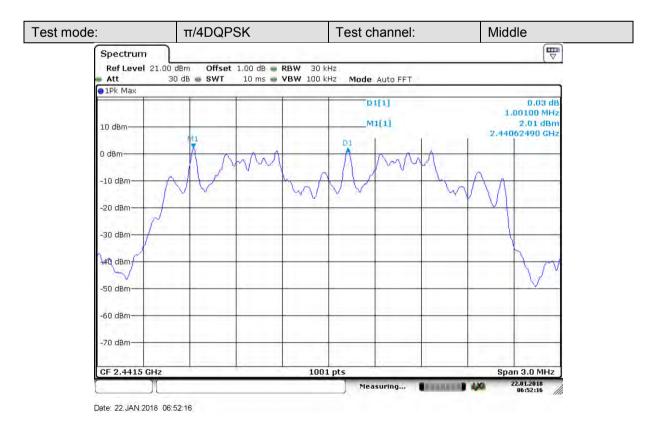
5.6 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.2	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Limit:	2/3 of the 20dB bandwidth	
	Remark: the transmission power is less than 0.125W.	
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

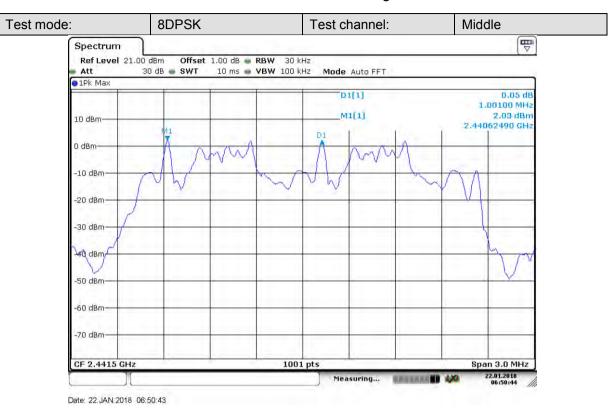
Report No.: SZEM171101178804 Page: 37 of 85

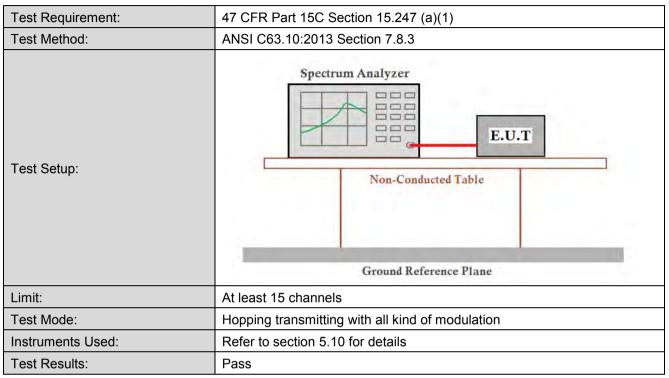
GFSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Middle	1001	549.5	Pass			
	π/4DQPSK m	ode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Middle	1001	815.2	Pass			
8DPSK mode						
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result			
Middle	1001	813.2	Pass			


Note: According to section 6.4,


Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	824.2	549.5
π/4DQPSK	1222.8	815.2
8DPSK	1219.8	813.2

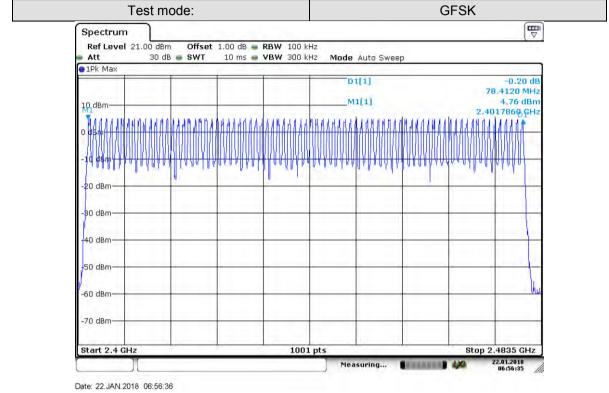
Report No.: SZEM171101178804 Page: 38 of 85

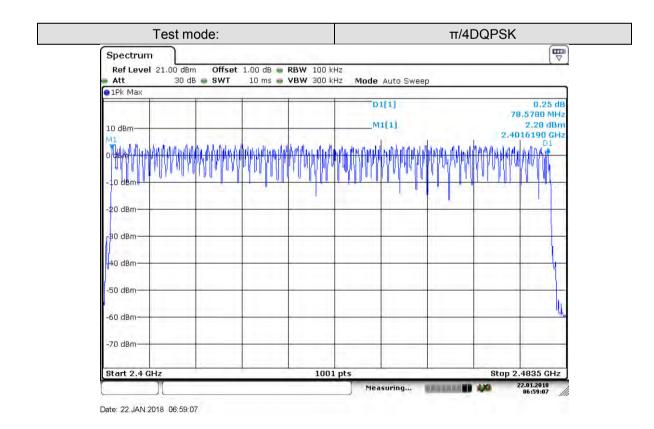

Test plot as follows:


Report No.: SZEM171101178804 Page: 39 of 85

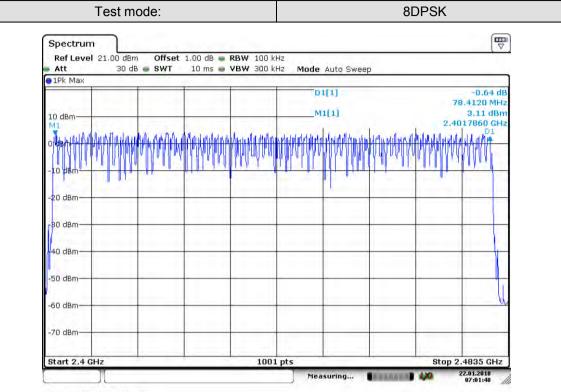
Report No.: SZEM171101178804 Page: 40 of 85

5.7 Hopping Channel Number

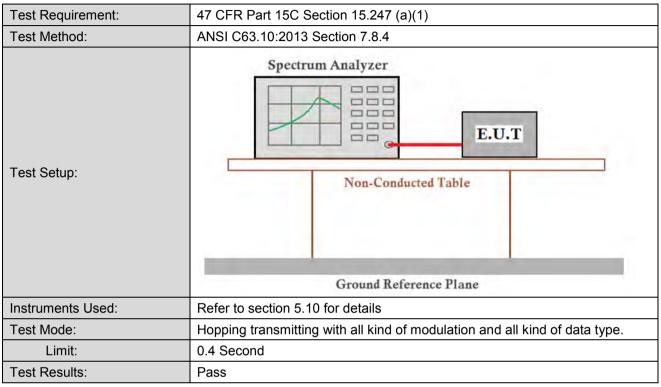

Measurement Data


Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Report No.: SZEM171101178804 Page: 41 of 85


Test plot as follows

Report No.: SZEM171101178804 Page: 42 of 85



Date: 22.JAN.2018 07:01:48

Report No.: SZEM171101178804 Page: 43 of 85

5.8 Dwell Time

Measurement Data

Operation Modes	On time (ms) on one channel
DH1	0.3745
DH3	1.642
DH5	2.899
2DH1	0.382
2DH3	1.643
2DH5	2.89
3DH1	0.384
3DH3	1.646
3DH5	2.89

Report No.: SZEM171101178804 Page: 44 of 85

Bluetooth Time of Occupancy Calculation

Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s, since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600/6=266.67 hops/slot

400ms x 79 Channel = 31.6 s (Time of Occupancy Limit)

Worst case BT has 266.67 hops/second (for 1x/EDR modes with DH5 operation)

266.67 hops/second/79 channels=3.38 hops/second (# of hops/second on one channel)

3.38 hops/second/channel*31.6seconds=106.67 hops (#hops over a 31.6 second period)

106.67 hops *2.899 ms/channel =309.24 ms(worst case dwell time for one channel in 1x/EDR

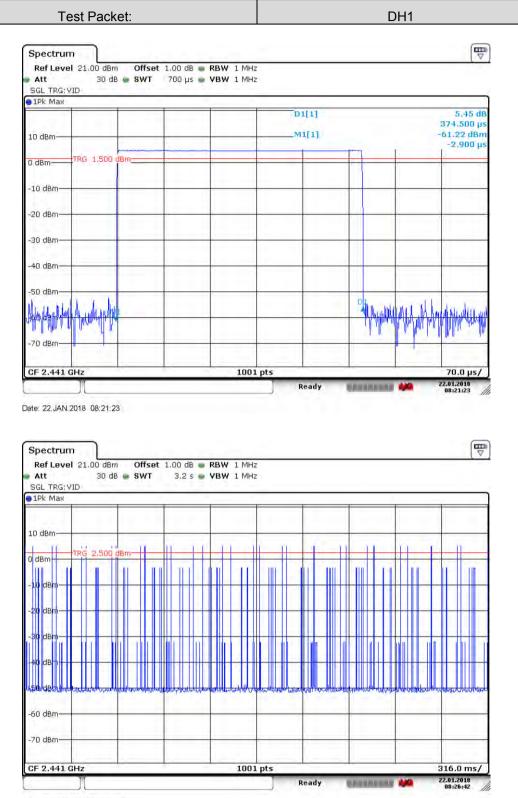
modes)

With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800hops/s, AFH mode also uses 6 slots so the Bluetooth transmitter hops at a rate of 800/6=133.3 hops/s/slot

400ms x 20 Channel = 8 s (Time of Occupancy Limit)

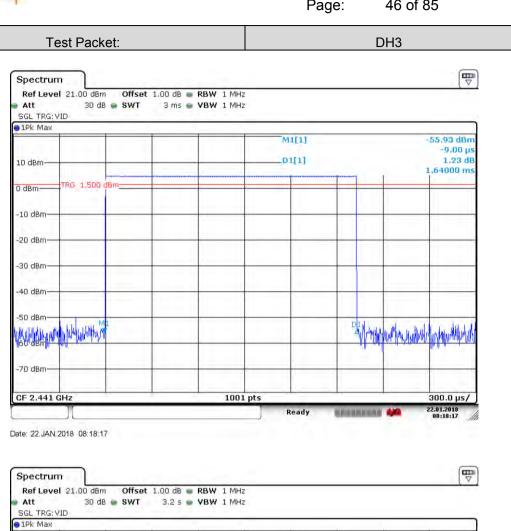
Worst case BT has 133.3 hops/second/slot (for AFH mode with DH5 operation)

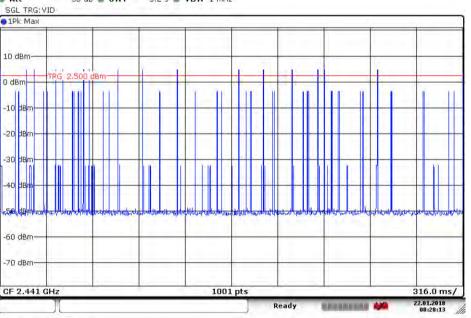
133.3 hops/second/20 channels=6.67 hops/second (#hops/second on one channel)


6.67 hops/second *8seconds=53.34 hops (#hops over a 8 seconds period)

53.34 hops x2.899 ms/channel=154.63 ms(worst case dwell time for one channel in AFH mode)

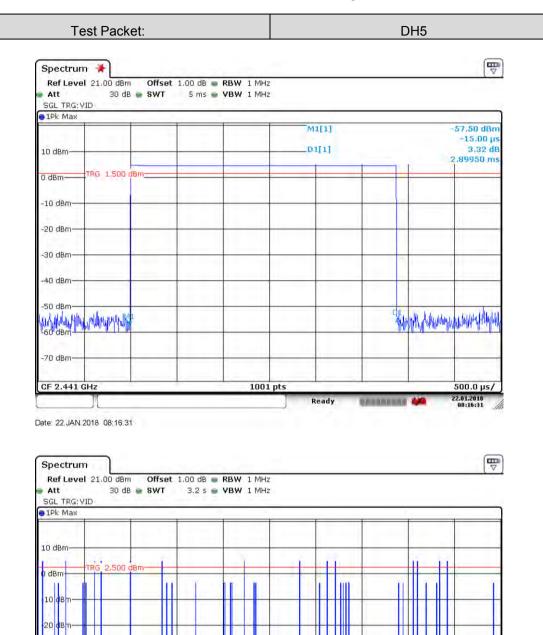
Report No.: SZEM171101178804 Page: 45 of 85


Test plot as follows:



Date: 22. JAN. 2018 08:26:42

Report No.: SZEM171101178804 Page: 46 of 85



Date: 22. JAN. 2018 08:28:14

Report No.: SZEM171101178804 Page: 47 of 85

> 316.0 ms/ 22.01.2018 98:30:10

Date: 22. JAN. 2018 08:30:11

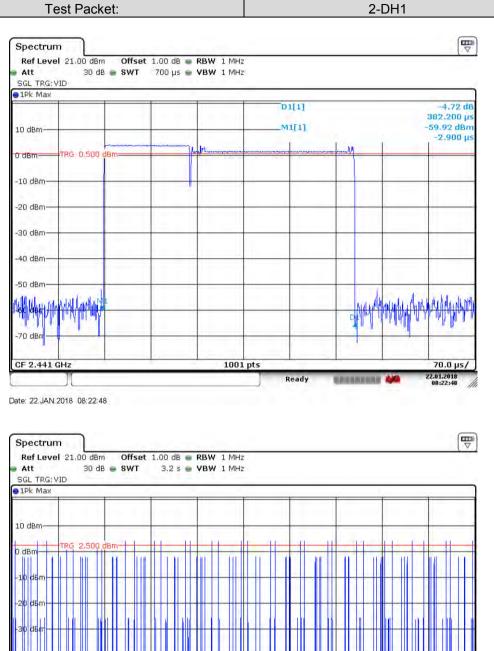
30 40

-60 dBm-

CF 2.441 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-ConditionsTerms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

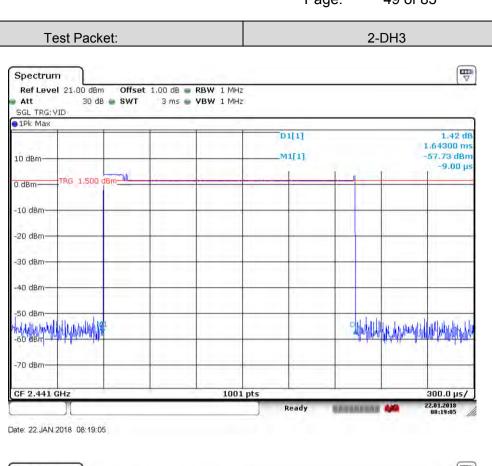
1001 pts

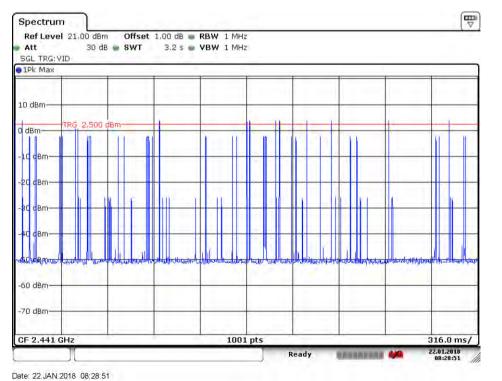

Ready

VARIATIAN

100

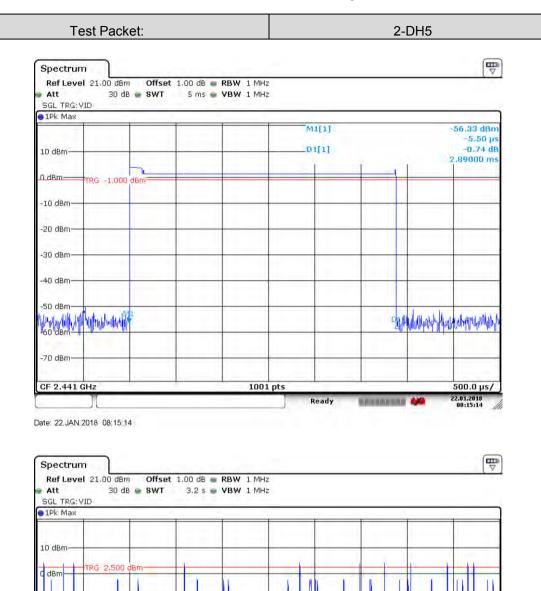
Report No.: SZEM171101178804 Page: 48 of 85




-20 d5m -30 d5m -40 d5m -50 c5m -60 d8m -70 d8m -70 d8m -70 d8m -20 c2 2.441 GHz -60 d8m -70 d8m -70 d8m -70 d8m -20 c2 2.441 GHz -20 c2 2.441

Date: 22.JAN.2018 08:25:58

Report No.: SZEM171101178804 Page: 49 of 85



Report No.: SZEM171101178804 Page: 50 of 85

> 316.0 ms/ 22.01.2018 08:31:11

Date: 22, JAN. 2018 08:31:11

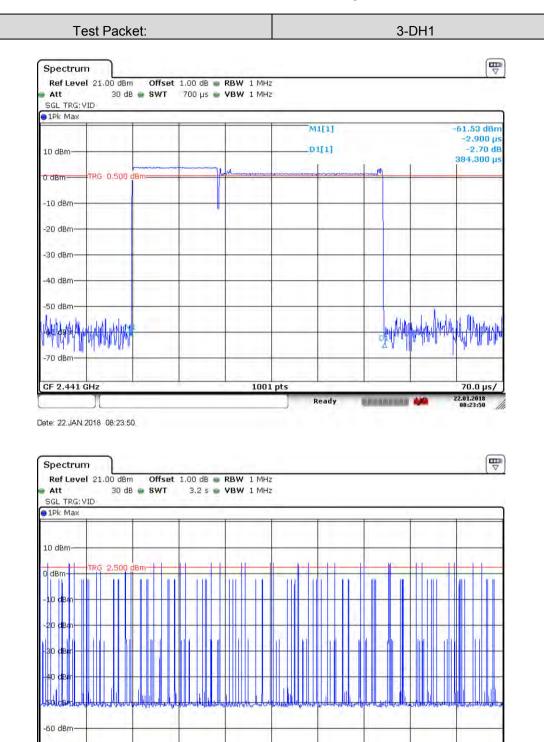
10 dBm 20 dBm 30 dBm 40 dBm

-60 dBm-

CF 2.441 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-ConditionsTerms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

1001 pts


Ready

SPREASES.

Report No.: SZEM171101178804 Page: 51 of 85

> 316.0 ms/ 22.01.2018

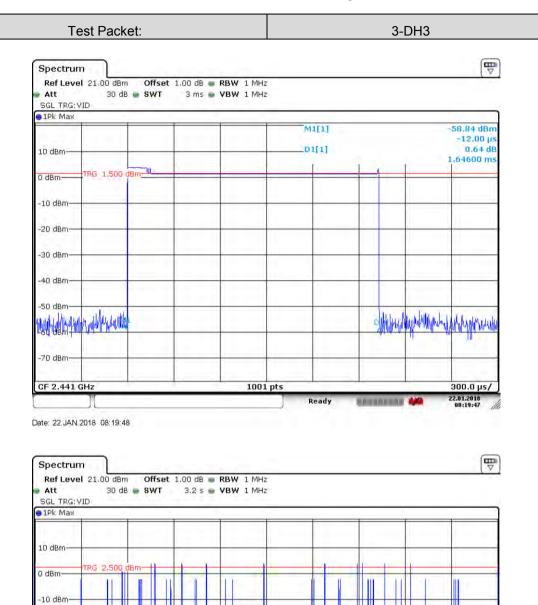
Date: 22.JAN.2018 08:27:18

-70 dBm-

CF 2.441 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-ConditionsTerms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

1001 pts


Ready

U.S. BARRAR

Report No.: SZEM171101178804 Page: 52 of 85

> 316.0 ms/ 22.01.2018

Date: 22, JAN. 2018 08: 29: 29

-20 dBm -20 dBm -40 dBm

-60 dBm-

CF 2.441 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-ConditionsTerms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

1001 pts

Ready

STREET, STREET

Report No.: SZEM171101178804 Page: 53 of 85

> 316.0 ms/ 22.01.2018 08:32:08

URBARDAR

Test Packet:

3-DH5

Att 30 dB SWT 5 ms VBW GL TRG: VID 1Pk Max 0 dBm 0	¥ 1 MHz			
D dBm				
	e contra de la consta	01[1] M1[1]		2.86 d 2.89000 m -57.05 dBr
.dBm the _1 mm dam			-1	-5.50 µ
TRG -1.000 dBm				
10 dBm				
20 dBm		+		-
30 dBm			_	-
40 dBm			-	-
50 dBm			TA	17-201
nuality of his house the			Strift house have	alladithanduut
70 dBm-				+
F 2.441 GHz	1001 pts			500.0 µs/
Spectrum Ref Level 21.00 dBm Offset 1.00 dB . RBW	V 1 MHz			
Att 30 dB SWT 3.2 s VBW				
1Pk Max		i i		Ť
0 dBm				
dBm TRG 2.500 dBm				-11-1
		1	18	
Ø dBm				
0 dBm				
20 dBm				
20 dBm				
			all and a second	

Date: 22. JAN. 2018 08:32:08

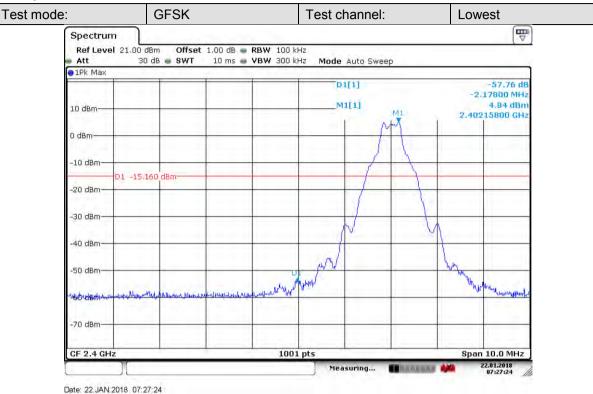
CF 2.441 GHz

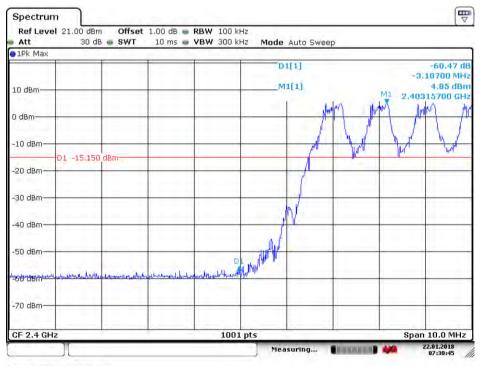
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-ConditionsTerms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

1001 pts

Ready

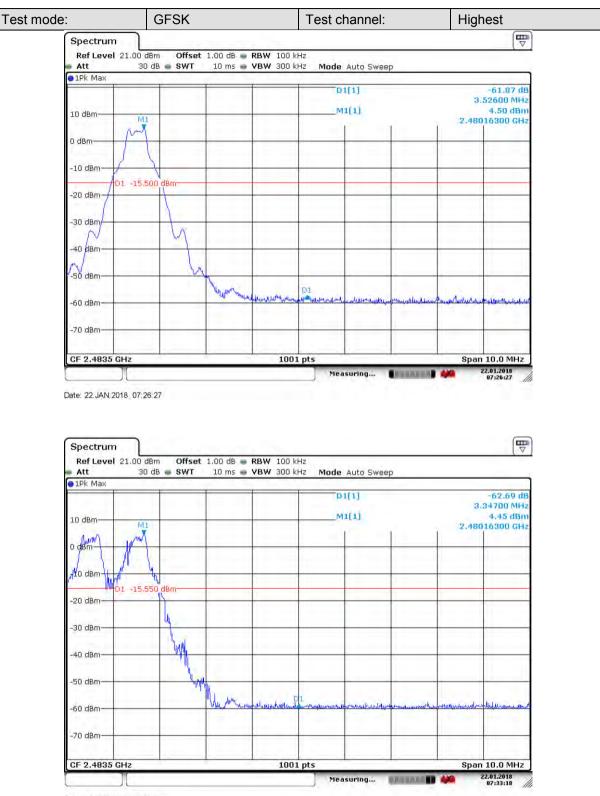
Report No.: SZEM171101178804 Page: 54 of 85


5.9 Danu-e	age for Kr Conducted Emissions
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

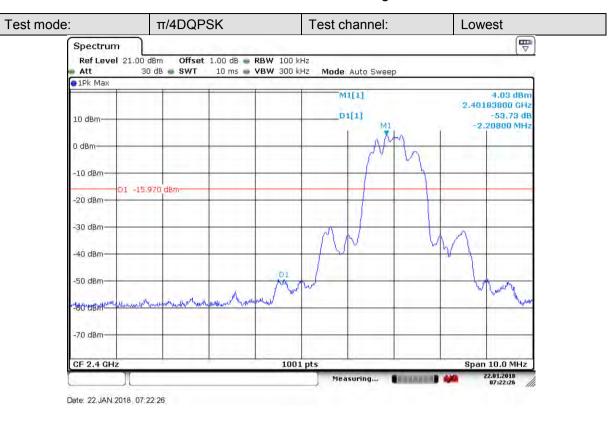

5.9 Band-edge for RF Conducted Emissions

Report No.: SZEM171101178804 Page: 55 of 85

Test plot as follows:

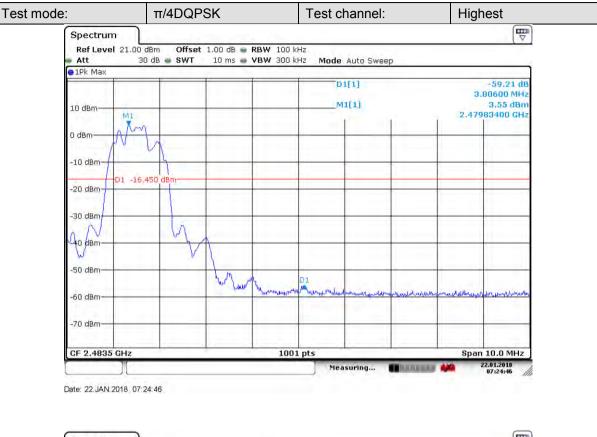


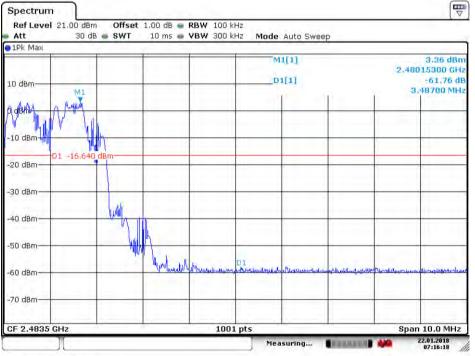
Date: 22. JAN. 2018 07:30:45


Report No.: SZEM171101178804 Page: 56 of 85

Date: 22.JAN.2018 07:33:18

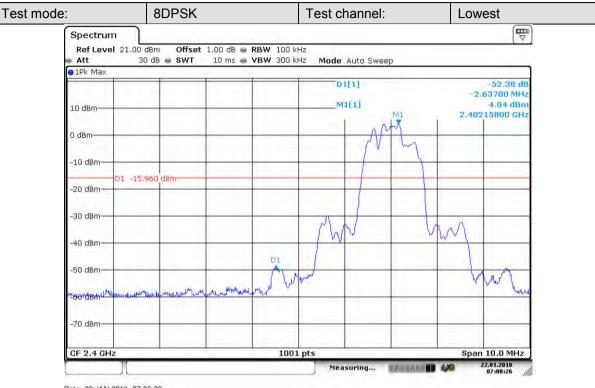
Report No.: SZEM171101178804 Page: 57 of 85

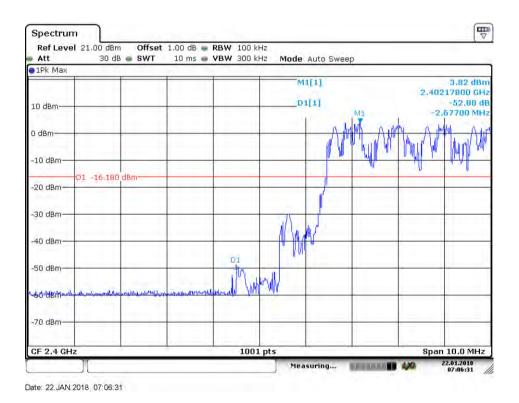




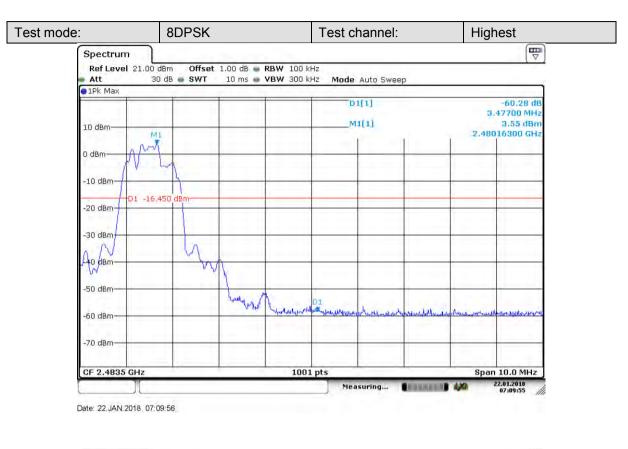
Date: 22. JAN. 2018 07: 19: 15

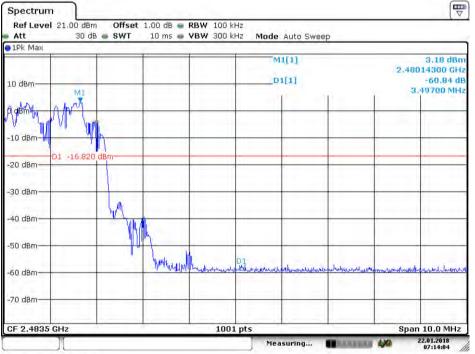
Report No.: SZEM171101178804 Page: 58 of 85




Date: 22. JAN. 2018 07:16:19

Report No.: SZEM171101178804 Page: 59 of 85

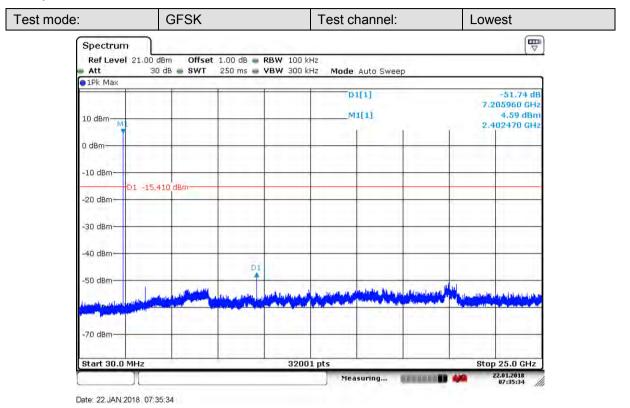


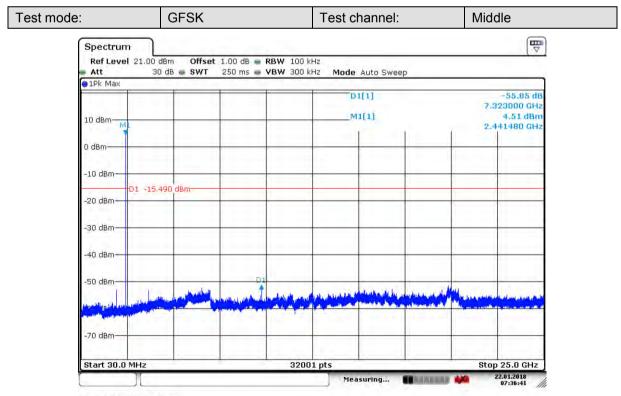

Date: 22.JAN.2018 07:08:26

Report No.: SZEM171101178804 Page: 60 of 85

Date: 22. JAN. 2018 07:14:05

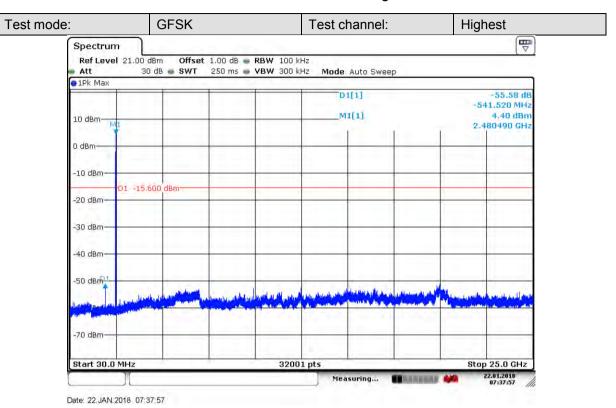
Report No.: SZEM171101178804 Page: 61 of 85

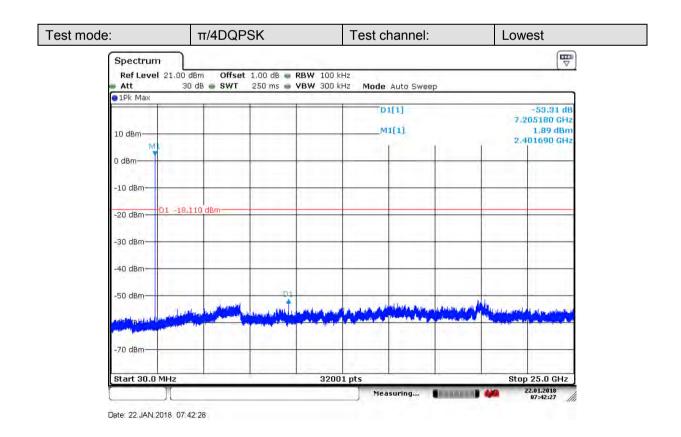

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.8
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass


5.10 Spurious RF Conducted Emissions

Report No.: SZEM171101178804 Page: 62 of 85

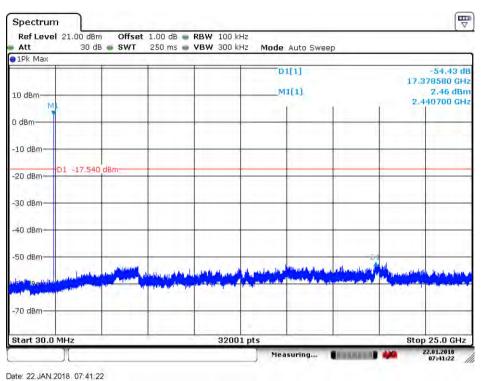
Test plot as follows:

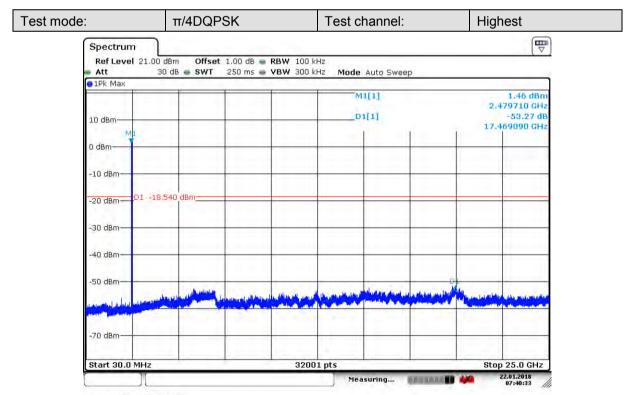




Date: 22.JAN.2018 07:36:41

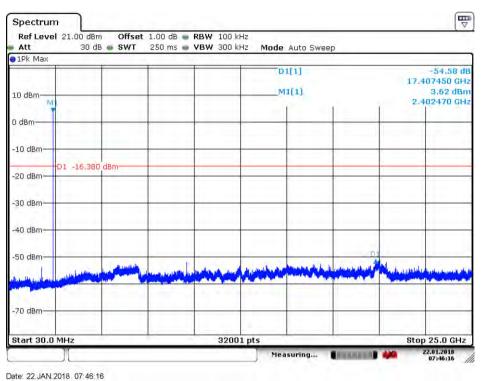
Report No.: SZEM171101178804 63 of 85 Page:

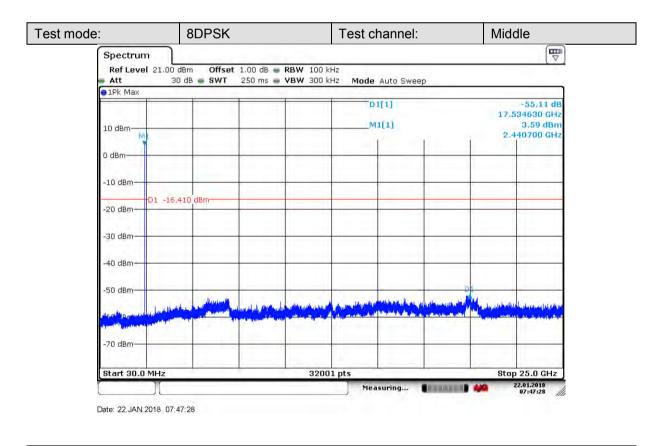



π/4DQPSK Test mode: Test channel: Middle

Link the set of the function of the set of the function of the set of the full of the full

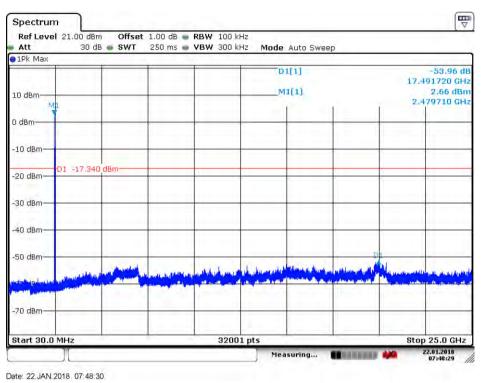
Report No.: SZEM171101178804 Page: 64 of 85




Date: 22.JAN.2018 07:40:33

|--|

Report No.: SZEM171101178804 Page: 65 of 85

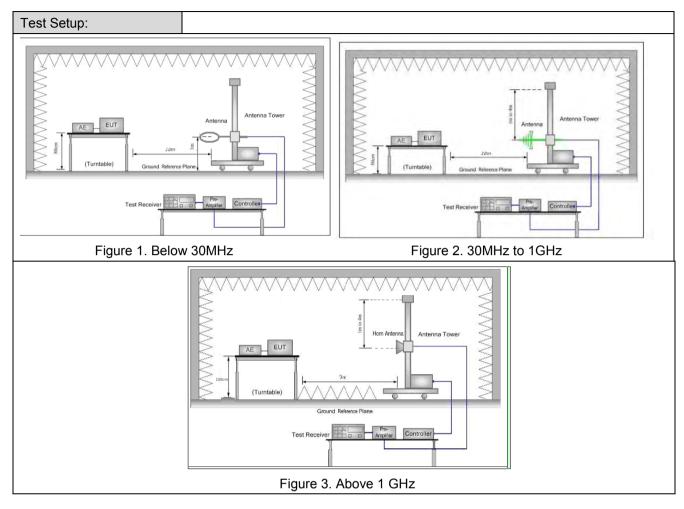


Test mode: 8DPSK Test channel: Highest

Report No.: SZEM171101178804 Page: 66 of 85

Remark:

Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

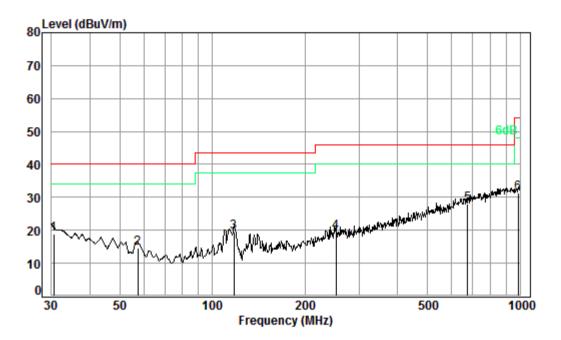

Report No.: SZEM171101178804 Page: 67 of 85

5.11 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)						
	Frequency		Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak	
Receiver Setup:	0.110MHz-0.490MH	0.110MHz-0.490MHz		10kHz	30kHz	Peak	
Receiver Selup.	0.110MHz-0.490MH	0.110MHz-0.490MHz		10kHz	30kHz	Average	
	0.490MHz -30MHz	0.490MHz -30MHz		10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	30MHz-1GHz			300kHz	Quasi-peak	
		Above 1GHz		1MHz	3MHz	Peak	
	Above IGHZ			1MHz	10Hz	Average	
	Frequency		strength rovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	.009MHz-0.490MHz	2400/F(kHz)		-	-	300	
	.490MHz-1.705MHz	240	00/F(kHz)	-	-	30	
	.705MHz-30MHz	30		-	-	30	
Limit:	30MHz-88MHz	100		40.0	Quasi- peak	3	
	88MHz-216MHz	150		43.5	Quasi- peak	3	
	216MHz-960MHz	200	46.0 Quas peak		Quasi- peak	3	
	960MHz-1GHz	500		54.0	Quasi- peak	3	
	Above 1GHz	500		54.0	Averag e	3	
	Note: 15.35(b), Unles emissions is 20 applicable to the peak emission I	dB ab e equi	ove the maxim pment under te	um permitte st. This pea	d average	emission limit	

Report No.: SZEM171101178804 Page: 68 of 85

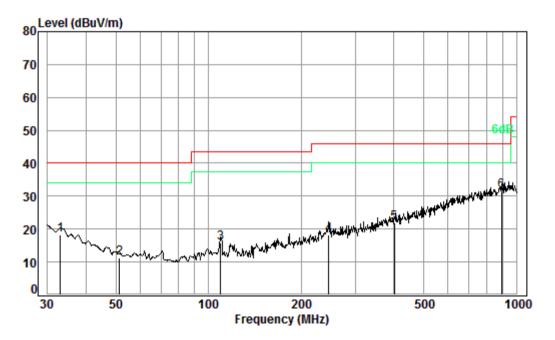
Report No.: SZEM171101178804 Page: 69 of 85


Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2402MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. 			
	Non-hopping transmitting mode with all kind of modulation and all kind of			
Exploratory Test Mode:	data type			
	Charge + Transmitting mode.			
	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case			
	worst case. Pretest the EUT at Charge + Transmitting mode			
Final Test Mode:	For below 1GHz part, through pre-scan, the worst case is the lowest			
	channel.			
	Only the worst case is recorded in the report.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

Report No.: SZEM171101178804 Page: 70 of 85

5.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

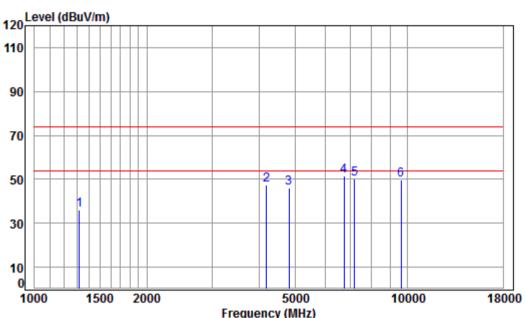

Condition: 3m VERTICAL Job No. : 11788CR Test Mode: a

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 pp 6	30.53 57.19 117.36 252.06 675.21 986.07	0.80 1.25 1.68	13.46 13.21 18.98 27.60	27.35 27.27 27.09 26.53 27.44 26.37	27.55 32.09 25.47 24.90	14.54 19.46 19.60 27.91	40.00 43.50 46.00 46.00	-25.46 -24.04 -26.40 -18.09

Report No.: SZEM171101178804 Page: 71 of 85

Test mode:	Charge + Transmitting	Horizontal
------------	-----------------------	------------

Condition: 3m HORIZONTAL Job No. : 11788CR Test Mode: a

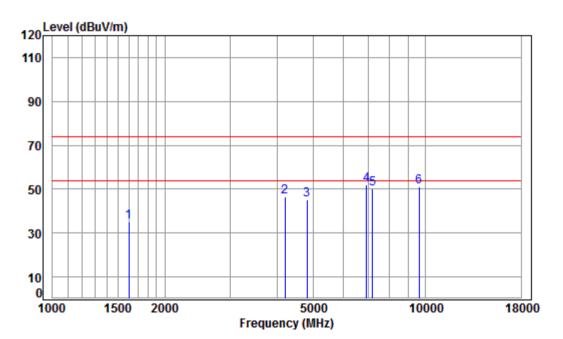

	Freq		Ant Preamp Factor Factor					Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6 pp	33.09 51.30 109.41 245.95 401.84 893.86	1.23 1.65 2.21	14.06 13.56 18.89 22.45	27.34 27.29 27.14 26.55 27.15 26.82	23.75 28.12 24.20 24.37	11.32 15.77 18.19 21.88	40.00 43.50 46.00 46.00	-28.68 -27.73 -27.81 -24.12

Report No.: SZEM171101178804 Page: 72 of 85

5.11.2 Transmitter Emission above 1GHz

Test mode: GFSK(DH5) Test channel: Lowest Remark: Peak Vertica	ıl
--	----

Freq	uen	CY (MH


Condition:	3m VERTICAL					
Job No :	11787RG/11788RG					
Mode :	2402 TX RSE					
Note :	BT					

lote	: DI								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1319.794	4.87	25.04	38.06	44.26	36.11	74.00	-37.89	peak
2	4181.768	7.20	33.60	38.10	44.59	47.29	74.00	-26.71	peak
3	4804.000	7.89	34.16	38.41	42.23	45.87	74.00	-28.13	peak
4 pp	6756.708	10.80	35.83	37.53	42.56	51.66	74.00	-22.34	peak
5	7206.000	10.08	36.42	37.10	40.95	50.35	74.00	-23.65	peak
6	9608.000	10.75	37.52	35.09	36.51	49.69	74.00	-24.31	peak

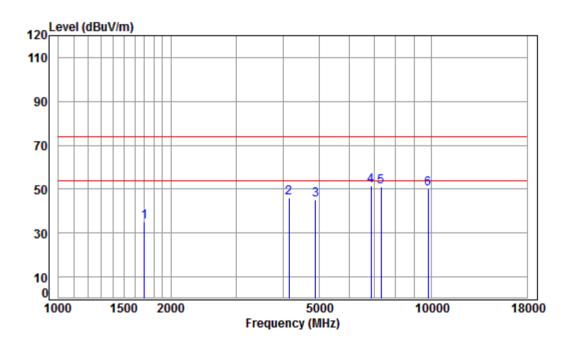
Report No.: SZEM171101178804 Page: 73 of 85

Test mode: GFSK(DH5) Test channel: Lowest Remark: Peak Horizo	ntal
---	------

Condition:	3m HORIZONTAL
Job No :	11787RG/11788RG

Mode	
Note	

: 2402 TX RSE


Note	: BT	
------	------	--

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1601.804	5.35	26.26	38.03	41.36	34.94	74.00	-39.06	peak
2	4193.872	7.21	33.60	38.11	43.67	46.37	74.00	-27.63	peak
3	4804.000	7.89	34.16	38.41	41.40	45.04	74.00	-28.96	peak
4 pp	6934.778	10.31	36.32	37.36	42.84	52.11	74.00	-21.89	peak
5	7206.000	10.08	36.42	37.10	40.92	50.32	74.00	-23.68	peak
6	9608.000	10.75	37.52	35.09	37.76	50.94	74.00	-23.06	peak

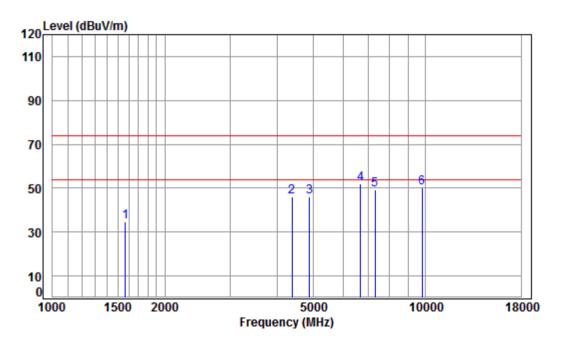
Report No.: SZEM171101178804 Page: 74 of 85

Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Vertical

Condition:	3m VERTICAL
Job No :	11787RG/1178

ob No :	11787RG/	/11788RG
---------	----------	----------

Mode	
Noto	


: 2441 TX RSE

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1607 100	E 22	26.66	20 02	41 04	24 01	74 00	20.00	naak
T	1697.129	5.25	20.00	20.02	41.04	54.91	74.00	-29.09	реак
2	4145.664	7.16	33.60	38.08	43.59	46.27	74.00	-27.73	peak
3	4882.000	7.97	34.30	38.45	41.38	45.20	74.00	-28.80	peak
4 pp	6874.906	10.47	36.16	37.42	42.29	51.50	74.00	-22.50	peak
5	7323.000	10.05	36.37	37.00	41.90	51.32	74.00	-22.68	peak
6	9764.000	10.82	37.55	35.01	37.01	50.37	74.00	-23.63	peak

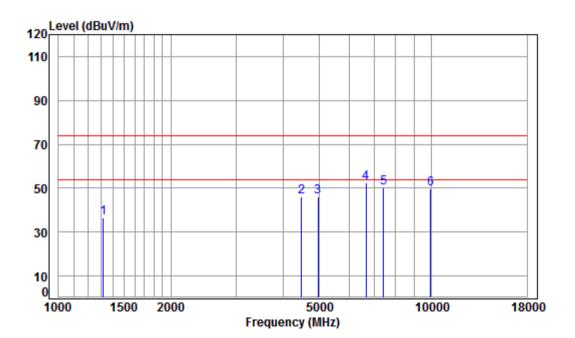
Report No.: SZEM171101178804 Page: 75 of 85

Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Horizontal

Condition:	3m HORIZONTAL
Job No :	11787RG/11788RG

Mode	
Note	

: 2441 TX RSE


	-	
Note	:	ВΤ

Freq								Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1569.721	5.39	26.12	38.03	41.36	34.84	74.00	-39.16	peak
4379.699	7.43	33.60	38.20	43.27	46.10	74.00	-27.90	peak
4882.000	7.97	34.30	38.45	42.15	45.97	74.00	-28.03	peak
6698.373	10.97	35.67	37.59	43.18	52.23	74.00	-21.77	peak
7323.000	10.05	36.37	37.00	39.98	49.40	74.00	-24.60	peak
9764.000	10.82	37.55	35.01	36.62	49.98	74.00	-24.02	peak
	MHz 1569.721 4379.699 4882.000 6698.373 7323.000	Freq Loss MHz dB 1569.721 5.39 4379.699 7.43 4882.000 7.97 6698.373 10.97 7323.000 10.05	Freq Loss Factor MHz dB dB/m 1569.721 5.39 26.12 4379.699 7.43 33.60 4882.000 7.97 34.30 6698.373 10.97 35.67 7323.000 10.05 36.37	Freq Loss Factor Factor MHz dB dB/m dB 1569.721 5.39 26.12 38.03 4379.699 7.43 33.60 38.20 4882.000 7.97 34.30 38.45 6698.373 10.97 35.67 37.59 7323.000 10.05 36.37 37.00	Freq Loss Factor Level MHz dB dB/m dB dBuV 1569.721 5.39 26.12 38.03 41.36 4379.699 7.43 33.60 38.20 43.27 4882.000 7.97 34.30 38.45 42.15 6698.373 10.97 35.67 37.59 43.18 7323.000 10.05 36.37 37.00 39.98	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1569.721 5.39 26.12 38.03 41.36 34.84 4379.699 7.43 33.60 38.20 43.27 46.10 4882.000 7.97 34.30 38.45 42.15 45.97 6698.373 10.97 35.67 37.59 43.18 52.23 7323.000 10.05 36.37 37.00 39.98 49.40	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1569.721 5.39 26.12 38.03 41.36 34.84 74.00 4379.699 7.43 33.60 38.20 43.27 46.10 74.00 4882.000 7.97 34.30 38.45 42.15 45.97 74.00 6698.373 10.97 35.67 37.59 43.18 52.23 74.00 7323.000 10.05 36.37 37.00 39.98 49.40 74.00	CableAntPreampReadLimitOverFreqLossFactorFactorLevelLevelLimitLimitMHzdBdB/mdBdBuVdBuV/mdBuV/mdBuV/mdB1569.7215.3926.1238.0341.3634.8474.00-39.164379.6997.4333.6038.2043.2746.1074.00-27.904882.0007.9734.3038.4542.1545.9774.00-28.036698.37310.9735.6737.5943.1852.2374.00-21.777323.00010.0536.3737.0039.9849.4074.00-24.609764.00010.8237.5535.0136.6249.9874.00-24.02

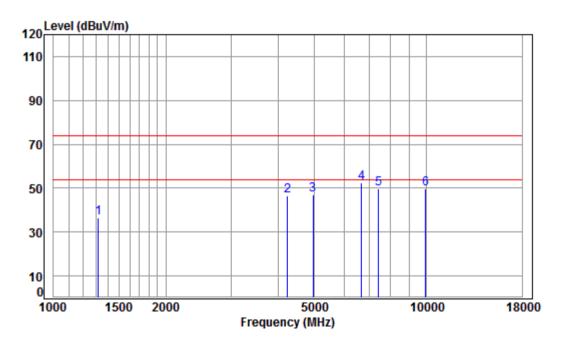
Report No.: SZEM171101178804 Page: 76 of 85

Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Vertic	al
--	----

Job	No	:	11787RG	/11788RG
-----	----	---	---------	----------

Mode	
Noto	

	-	
 2480	ТΧ	RSE


Note	:	ВΤ

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1319.794	4.87	25.04	38.06	44.52	36.37	74.00	-37.63	peak
2	4482.150	7.54	33.60	38.26	43.29	46.17	74.00	-27.83	peak
3	4960.000	8.05	34.43	38.48	42.23	46.23	74.00	-27.77	peak
4 pp	6659.763	11.08	35.56	37.62	43.34	52.36	74.00	-21.64	peak
5	7440.000	10.02	36.32	36.89	40.52	49.97	74.00	-24.03	peak
6	9920.000	10.90	37.58	34.94	36.25	49.79	74.00	-24.21	peak

Report No.: SZEM171101178804 Page: 77 of 85

Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal
--

Condition:	3m HORIZONTAL
Job No :	11787RG/11788RG
Mode :	2480 TX RSE

Note	: BT								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1319.794	4.87	25.04	38.06	44.52	36.37	74.00	-37.63	peak
2	4230.396	7.26	33.60	38.13	43.65	46.38	74.00	-27.62	peak
3	4960.000	8.05	34.43	38.48	42.86	46.86	74.00	-27.14	peak
4 pp	6698.373	10.97	35.67	37.59	43.40	52.45	74.00	-21.55	peak
5	7440.000	10.02	36.32	36.89	40.27	49.72	74.00	-24.28	peak
6	9920.000	10.90	37.58	34.94	36.36	49.90	74.00	-24.10	peak

Remark:

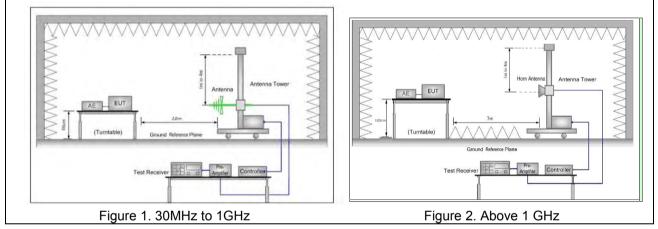
Report No.: SZEM171101178804 Page: 78 of 85

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

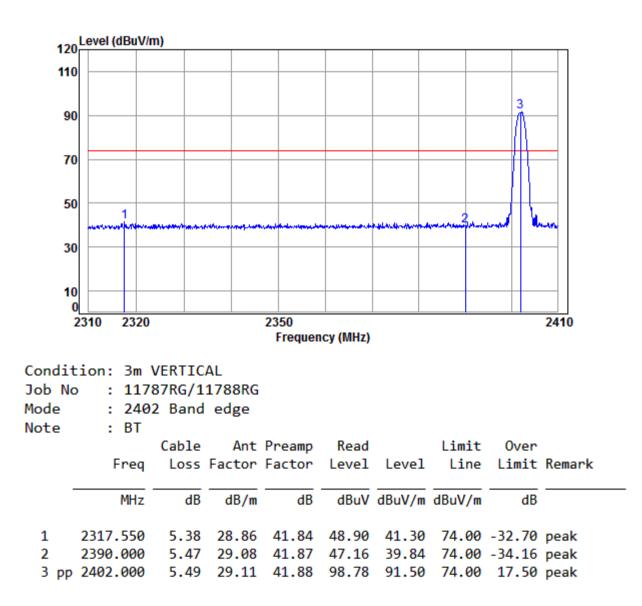

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM171101178804 Page: 79 of 85

5.12 Restricted bands around fundamental frequency

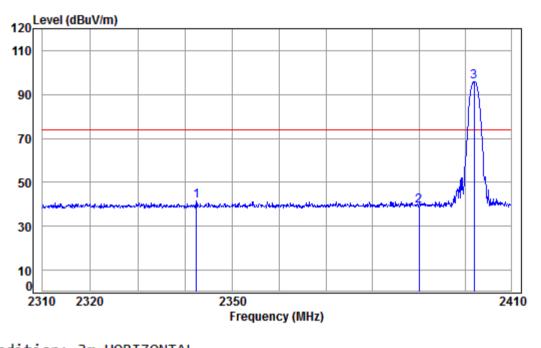
ANSI C63.10: 2013 Measurement Distance: 3m Frequency	(Semi-Anechoic Chambe	, 	
	1	, 	
Frequency	Limit (dBu\//m @3m)		
		Remark	
30MHz-88MHz	40.0	Quasi-peak Value	
88MHz-216MHz	43.5	Quasi-peak Value	
216MHz-960MHz	46.0	Quasi-peak Value	
960MHz-1GHz	54.0	Quasi-peak Value	
	54.0	Average Value	
Above 1GHz	74.0	Peak Value	
	88MHz-216MHz 216MHz-960MHz	88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 54.0	

Report No.: SZEM171101178804 Page: 80 of 85


Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. 			
	complete.			
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode.			
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

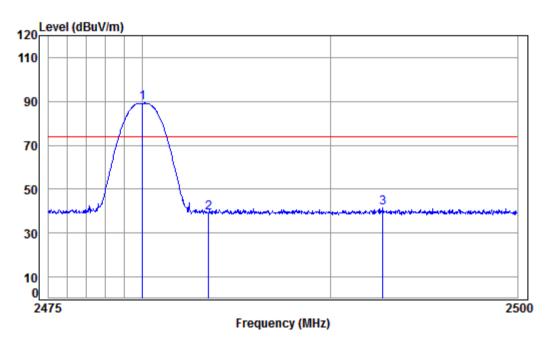
Report No.: SZEM171101178804 Page: 81 of 85

Test plot as follows:


Note: All the modulations have been tested, but only the worstest modulation data showed in the report							
Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Vertical	

Report No.: SZEM171101178804 Page: 82 of 85

Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Horizontal

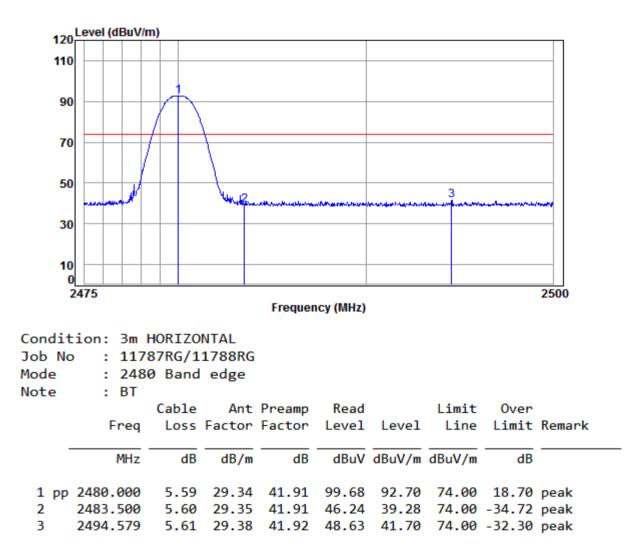


tion: 3m HORIZONTAL	
o : 11787RG/11788RG	
: 2402 Band edge	
: BT	
Cable Ant Preamp Read Limit O	ver
Freq Loss Factor Factor Level Level Line Li	mit Remark
MHz dB dB/m dB dBuV/mdBuV/m	dB
2342.433 5.41 28.93 41.85 49.05 41.54 74.00 -32	.46 peak
2390.000 5.47 29.08 41.87 46.77 39.45 74.00 -34	.55 peak
2402.000 5.49 29.11 41.88 102.92 95.64 74.00 21	.64 peak

Report No.: SZEM171101178804 Page: 83 of 85

Worse case mode:	GFSK (DH5)	Test channel:	Highest	Remark:	Peak	Vertical
------------------	------------	---------------	---------	---------	------	----------

Condition:	3m VERTICAL
Job No :	11787RG/11788RG


Mode	:	2480	Band	edge
Note	:	BT		

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2480.000 2483.500 2492.799	5.60	29.35	41.91	46.40	39.44	74.00	-34.56	peak

Report No.: SZEM171101178804 Page: 84 of 85

Worse case mode:	GFSK(DH5)	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	-----------	---------------	---------	---------	------	------------

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: SZEM171101178804 Page: 85 of 85

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

6 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1711011788RG.

The End