

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

300Mbps Wi-Fi Range Extender

MODEL NUMBER: TL-WA855RE

FCC ID: TE7WA855REV5

REPORT NUMBER: 4789222380.1-3

ISSUE DATE: December 24, 2019

Prepared for

TP-Link Technologies Co., Ltd.
Building 24(floors1,3,4,5) and 28(floors1-4) Central Science and Technology Park,
Shennan Rd, Nanshan, Shenzhen, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 257

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	12/24/2019	Initial Issue	

Page 3 of 257

	Summary of Test Results						
Clause	Test Items	FCC Rules	Test Results				
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2)	Pass				
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass				
3	Power Spectral Density	FCC Part 15.247 (e)	Pass				
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass				
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass				
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass				
7	Antenna Requirement	FCC Part 15.203	Pass				

Note: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

TABLE OF CONTENTS

1.	AT1	TESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAI	LIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	CMEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	9
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	THE WORSE CASE CONFIGURATIONS	10
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.8.	DESCRIPTION OF TEST SETUP	12
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	12
7.		TENNA PORT TEST RESULTS	
	7.1.	ON TIME AND DUTY CYCLE	
	7.2. 7.2.	6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	7.2.		
	7.2.	1. 802.11n20 MIMO MODE	30
	7.2.		35
		CONDUCTED OUTPUT POWER	
		POWER SPECTRAL DENSITY	
	7.4. 7.4	802.11b MIMO MODE 802.11g MIMO MODE	
		1. 802.11nHT20 MIMO MODE	54
		1. 802.11nHT40 MIMO MODE	58
	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	62
	7.5.	1. 802.11b MIMO MODE	64
	7.5.	5	
	7.5. 7.5	1. 802.11nHT20 MIMO MODE	
8.	RAI	DIATED TEST RESULTS	100

8.1. F	RESTRICTED BANDEDGE	106
8.1.1.	. 802.11b MIMO MODE	106
8.1.1.		
8.1.1.	. 802.11nHT20 MIMO MODE	135
8.1.1.	. 802.11nHT40 MIMO MODE	151
8.2. S	SPURIOUS EMISSIONS (3~18GHz)	167
8.2.1.		
8.2.3.		
8.2.1.		
8.2.1.		
8.3. S	SPURIOUS EMISSIONS (1~3GHz)	207
8.3.1.		
8.3.2.		
8.3.3.		
8.3.4.		
8.4. 5	SPURIOUS EMISSIONS (18~26GHz)	247
8.4.1.		247
85 5	SPURIOUS EMISSIONS (0.03 ~ 1 GHz)	240
8.5.1.		249
8.6.	SPURIOUS EMISSIONS BELOW 30M	
	. 802. 11n HT20 MIMO MODE	
0.0.1.	. 602. TITTTT20 WIIWO WODE	201
9. AC P	OWER LINE CONDUCTED EMISSIONS	254
9.1. 8	802. 11n HT20 MIMO MODE	255
10. AN	ITENNA REQUIREMENTS	257

Page 6 of 257

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: TP-Link Technologies Co., Ltd.

Address: Building 24(floors1,3,4,5) and 28(floors1-4) Central Science and

Technology Park, Shennan Rd, Nanshan, Shenzhen, China

Manufacturer Information

Company Name: TP-Link Technologies Co., Ltd.

Address: Building 24(floors1,3,4,5) and 28(floors1-4) Central Science and

Technology Park, Shennan Rd, Nanshan, Shenzhen, China

EUT Information

EUT Name: 300Mbps Wi-Fi Range Extender

Model: TL-WA855RE

Brand: tp-link
Sample Status: Normal
Sample ID: 2639620

Sample Received Date: October 23, 2019

Date of Tested: October 24, 2019 ~ December 24, 2019

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS			

Prepared By: Checked By:

Kebo Zhang Project Engineer Shawn Wen Laboratory Leader

Shemmy les

Approved By:

Stephen Guo

Laboratory Manager

REPORT No.: 4789222380.1-3 Page 7 of 257

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911 D01 Multiple Transmitter Output v02r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
Accreditation	ISED(Company No.: 21320)
Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note:

- 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

Page 8 of 257

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. **CMEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18Gz)
(1.5.12 to 2551.2)(mistage i undamental emission)	5.23dB (18GHz-26Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 257

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	300Mbps Wi-Fi Range Extender
Model	TL-WA855RE
Radio Technology	IEEE802.11b/g/n HT20/n HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Rated Input	AC120V,60Hz

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max AVG Conducted Power (dBm)
2	IEEE 802.11b	2412-2462	1-11[11]	23.28
2	IEEE 802.11g	2412-2462	1-11[11]	22.34
2	IEEE 802.11nHT20	2412-2462	1-11[11]	22.87
2	IEEE 802.11nHT40	2422-2452	3-9[7]	22.70

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	1	1

Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	1	/

Page 10 of 257

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency(MHz)
802.11b	CH 1, CH2 CH 6,CH10 CH 11	2412, 2417, 2437, 2457, 2462
802.11g	CH 1, CH2 CH 6,CH10 CH 11	2412, 2417, 2437, 2457, 2462
802.11n HT20	CH 1, CH2 CH 6,CH10 CH 11	2412, 2417, 2437, 2457, 2462
802.11n HT40	CH 3, CH4, CH 6, CH8, CH 9	2422, 2427,2437, 2447, 2452

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band											
Test Softv	vare					QAT	ool_Dbg				
	Transmit				Test	Softwar	e Settin	g Valu	ie		
Modulation Mode	Antenna		NC	B: 20	MHz			NC	B: 40N	ЛHz	
Wiode	Number	CH1	CH2	CH7	CH10	CH13	CH3	CH4	CH7	CH8	CH11
802.11b	2	1F	1D	22	1E	1D					
802.11g	2	17	1F	20	1C	15			NA		
802.11n HT20	2	17	1F	22	1A	14					
802.11n HT40	2	NA	NA	NA	NA	NA	11	13	20	10	0F

5.6. THE WORSE CASE CONFIGURATIONS

For 2TX MIMO modes, ANTENNA 0 and ANTENNA 1, used at the same time.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 11 of 257

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
0	2412-2462	Omni-Directional	2
1	2412-2462	Omni-Directional	2

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠2TX, 2RX	Antenna 0 or Antenna 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠2TX, 2RX	Antenna 0 or Antenna 1 can be used as transmitting/receiving antenna
IEEE 802.11n HT20	⊠2TX, 2RX	Antenna 0 and Antenna 1 can be used as transmitting/receiving antenna
IEEE 802.11n HT40	⊠2TX, 2RX	Antenna 0 and Antenna 1 can be used as transmitting/receiving antenna

Page 12 of 257

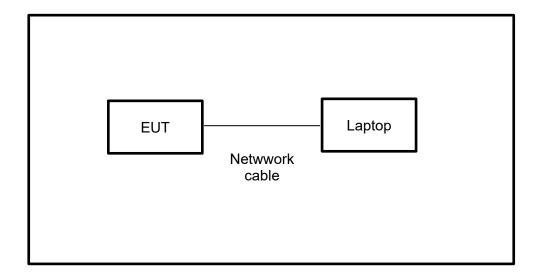
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2
2	USB TO UART	1	1	1

I/O CABLES

Item	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	1	0.50	1


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	1	1	1	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Page 13 of 257

6. MEASURING INSTRUMENT AND SOFTWARE USED

For the previous calibration information

	Conducted Emissions							
			Instrum	nent				
Used	Equipment	Manufacturer	Mode	l No.	Serial No.	Last Cal.	Next Cal.	
\checkmark	EMI Test Receiver	R&S	ESF	₹3	101961	Dec.10,2018	Dec.10,2019	
V	Two-Line V- Network	R&S	ENV	216	101983	Dec.10,2018	Dec.10,2019	
V	Artificial Mains Networks	Schwarzbeck	NSLK	8126	8126465	Dec.10,2018	Dec.10,2019	
			Softwa	are				
Used	Des	cription		Manu	ufacturer	Name	Version	
\checkmark	Test Software for C	Conducted distu	rbance	F	arad	EZ-EMC	Ver. UL-3A1	
		Rad	iated Er	nissio	ns			
			Instrum	nent				
Used	Equipment	Manufacturer	Mode	l No.	Serial No.	Last Cal.	Next Cal.	
V	MXE EMI Receiver	KESIGHT	N903	38A	MY56400 036	Dec.10,2018	Dec.10,2019	
V	Hybrid Log Periodic Antenna	TDK	HLP-3	003C	130960	Sep.17, 2018	Sep.17, 2021	
V	Preamplifier	HP	844	7D	2944A090 99	Dec.10,2018	Dec.10,2019	
V	EMI Measurement Receiver	R&S	ESR	26	101377	Dec.10,2018	Dec.10,2019	
\checkmark	Horn Antenna	TDK	HRN-	0118	130939	Sep.17, 2018	Sep.17, 2021	
V	High Gain Horn Antenna	Schwarzbeck	ВВНА-	9170	691	Aug.11, 2018	Aug.11, 2021	
V	Preamplifier	TDK	PA-02-	-0118	TRS-305- 00066	Dec.10,2018	Dec.10,2019	
V	Preamplifier	TDK	PA-0	2-2	TRS-307- 00003	Dec.10,2018	Dec.10,2019	
$\overline{\checkmark}$	Loop antenna	Schwarzbeck	151	9B	80000	Jan.07, 2019	Jan.07, 2022	
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		4	Dec.10,2018	Dec.10,2019	
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		23	Dec.10,2018	Dec.10,2019	
			Softwa	are				
Used	ed Description Manufacturer Name Version						Version	

REPORT No.: 4789222380.1-3 Page 14 of 257

	Test Software for Radiated disturbance		nce Fa	Farad		EZ-EMC	Ver. UL-3A1
Other instruments							
Used	Equipment	Manufacturer	Model No.	Serial	No.	Last Cal.	Next Cal.
	Spectrum Analyzer	Keysight	N9030A	MY5541	10512	Dec.10,2018	Dec.10,2019
	Power Meter	Keysight	N1911A	MY5541	16024	Dec.10,2018	Dec.10,2019
	Power Sensor	Keysight	U2021XA	MY510	0022	Dec.10,2018	Dec.10,2019

Note: This table records the previous calibration information

For the last calibration information

	Conducted Emissions							
	Instrument							
Used	Equipment	Manufacturer	Model	Model No. Se		Last Cal.	Next Cal.	
V	EMI Test Receiver	R&S	ESF	R3	101961	Dec.05,2019	Dec.05,2020	
V	Two-Line V- Network	R&S	ENV	216	101983	Dec.05,2019	Dec.05,2020	
V	Artificial Mains Networks	Schwarzbeck	NSLK	8126	8126465	Dec.05,2019	Dec.05,2020	
			Softwa	are				
Used	Des	cription		Manu	ufacturer	Name	Version	
$\overline{\checkmark}$	Test Software for 0	Conducted distu	rbance	F	arad	EZ-EMC	Ver. UL-3A1	
	Radiated Emissions							
			Instrum	ent				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Last Cal.	Next Cal.	
V	MXE EMI Receiver	KESIGHT	N903	88A	MY56400 036	Dec.06,2019	Dec.06,2020	
V	Hybrid Log Periodic Antenna	TDK	HLP-30	003C	130960	Sep.17, 2018	Sep.17, 2021	
V	Preamplifier	HP	8447	7D	2944A090 99	Dec.05,2019	Dec.05,2020	
V	EMI Measurement Receiver	R&S	ESR	26	101377	Dec.05,2019	Dec.05,2020	
V	Horn Antenna	TDK	HRN-()118	130939	Sep.17, 2018	Sep.17, 2021	
V	High Gain Horn Antenna	Schwarzbeck	ВВНА-	9170	691	Aug.11, 2018	Aug.11, 2021	
V	Preamplifier	TDK	PA-02-	0118	TRS-305- 00066	Dec.05,2019	Dec.05,2020	
V	Preamplifier	TDK	PA-0	2-2	TRS-307- 00003	Dec.05,2019	Dec.05,2020	
V	Loop antenna	Schwarzbeck	1519	9B	80000	Jan.07, 2019	Jan.07, 2022	

 $\sqrt{}$

REPORT No.: 4789222380.1-3 Page 15 of 257

Dec.06,2019

Dec.06,2020

WRCJV8-2350-2400- $\sqrt{}$ Wainwright 4 **Band Reject Filter** Dec.05,2019 Dec.05,2020 2483.5-2533.5-40SS WHKX10-Dec.05,2019 $\sqrt{}$ High Pass Filter Wi 23 2700-3000-Dec.05,2020 18000-40SS Software Description Manufacturer Used Name Version $\sqrt{}$ Test Software for Radiated disturbance Farad EZ-EMC Ver. UL-3A1 Other instruments Used Manufacturer Model No. Equipment Serial No. Last Cal. Next Cal. $\overline{\mathsf{A}}$ Spectrum Analyzer Keysight N9030A MY55410512 Dec.06,2019 Dec.06,2020 $\sqrt{}$ **Power Meter** Keysight N1911A MY55416024 Dec.06,2019 Dec.06,2020

U2021XA

MY5100022

Note: This table records the last calibration information

Keysight

Power Sensor

REPORT No.: 4789222380.1-3 Page 16 of 257

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	50%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

RESULTS

ANTENNA 0

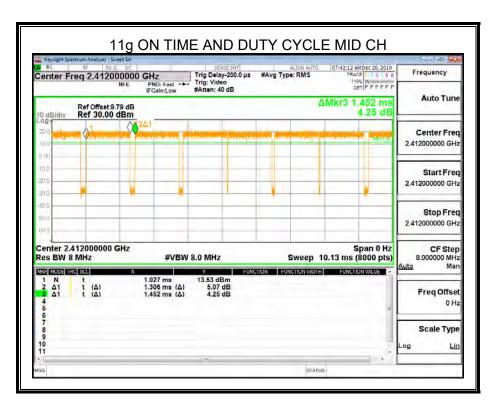
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b	8.42	8.56	0.984	98.4%	0.07	0.01	0.01
11g	1.306	1.452	0.899	89.9%	0.46	0.77	1
11n20	1.310	1.445	0.907	90.7%	0.42	0.76	1
11n40	0.6447	0.8081	0.798	79.8%	0.98	1.55	2

Note:

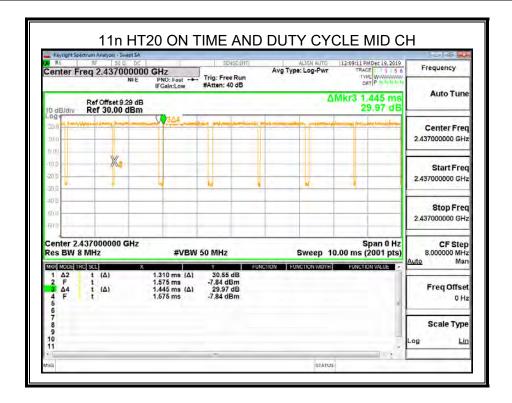
Duty Cycle Correction Factor=10log (1/x).

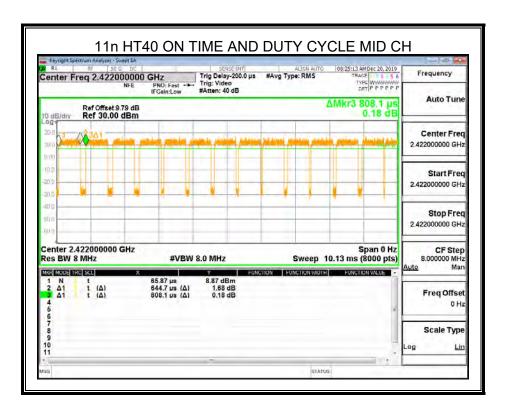
Where: x is Duty Cycle (Linear)


Where: T is On Time


If that calculated VBW is not available on the analyzer then the next higher value should be used.

Antenna 0 and Antenna 1 has the same duty cycle, only Antenna 0 data show here.


For mode 11b, the duty cycle is greater than 98%, so it can set VBW to 10Hz.

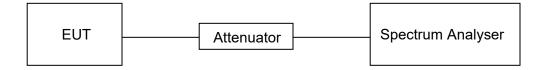


REPORT No.: 4789222380.1-3 Page 19 of 257

7.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2								
	19ED K99	-24/ ISSUE 2						
Section Test Item Limit Frequency Range (MHz)								
CFR 47 FCC 15.247(a)(2)								
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5					


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
IDRW	For 6dB Bandwidth :100kHz For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
IV/B/W	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 20 of 257

TEST ENVIRONMENT

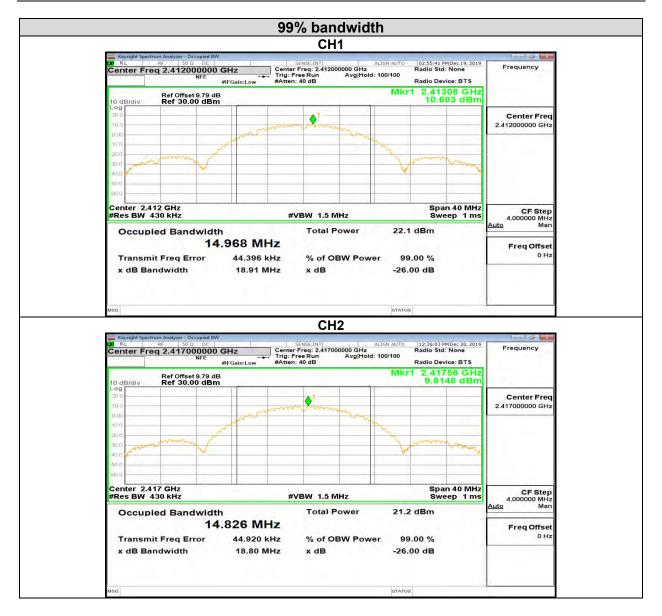
Temperature	23.4°C	Relative Humidity	50%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

RESULTS

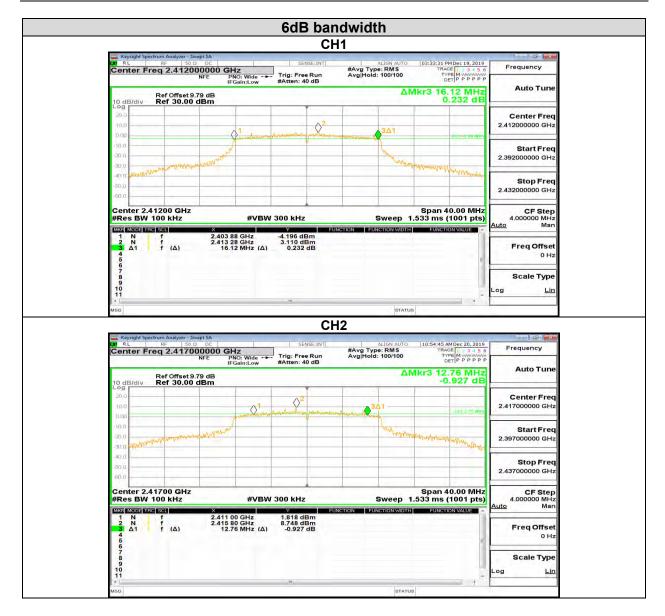
7.2.1. 802.11b MIMO MODE

ANTENNA 0

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit For 6dB BW (kHz)	Result
CH1	10.12	14.968	≥500	Pass
CH2	9.64	14.826	≥500	Pass
CH6	9.68	15.212	≥500	Pass
CH10	10.16	14.706	≥500	Pass
CH11	10.12	14.621	≥500	Pass



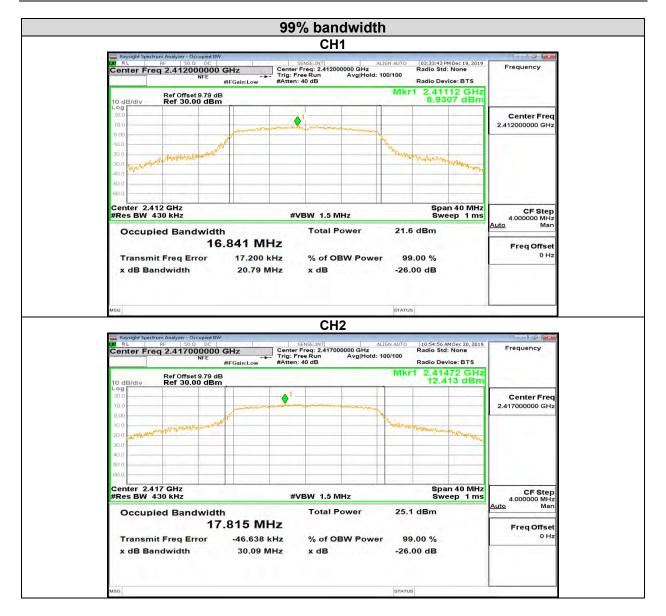
Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.


Page 25 of 257

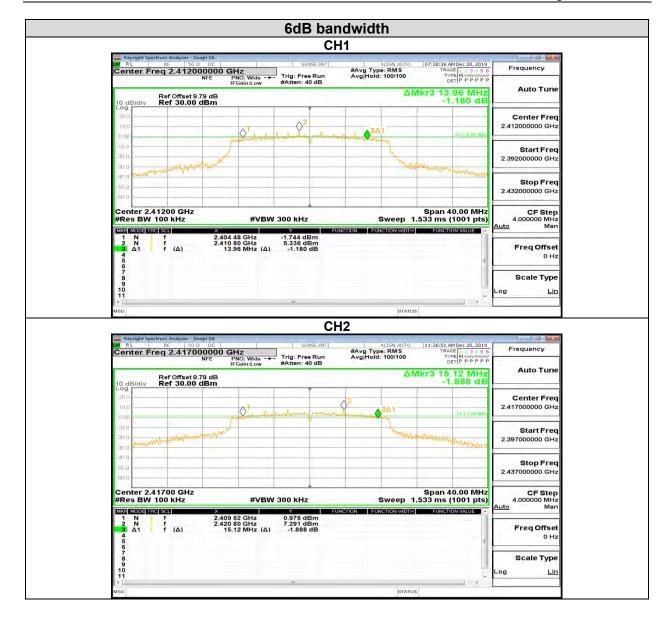
7.2.2. 802.11g MIMO MODE

ANTENNA 0

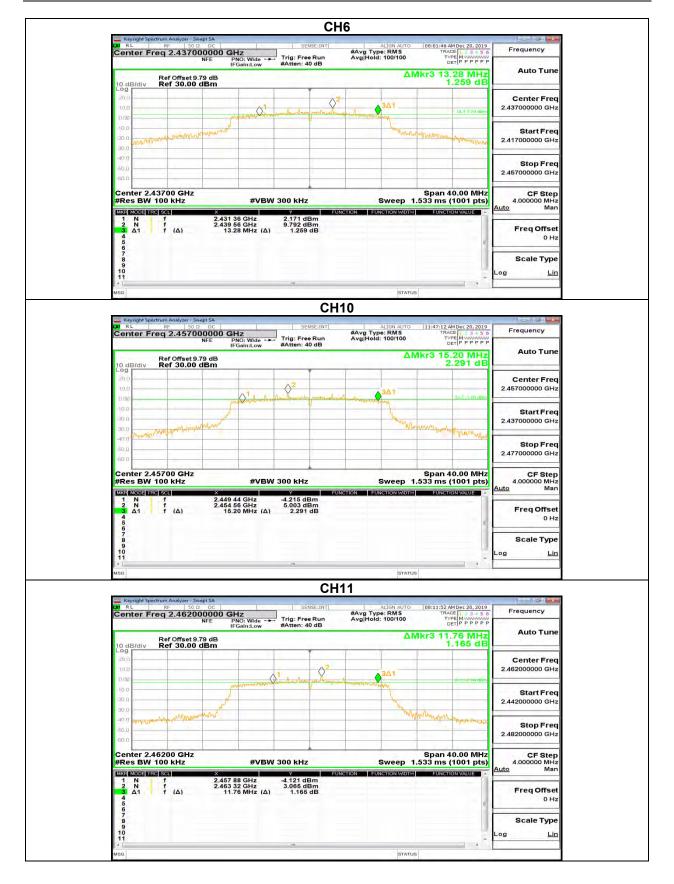
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit For 6dB BW (kHz)	Result
CH1	16.120	16.841	≥500	Pass
CH2	12.760	17.815	≥500	Pass
CH6	15.200	17.883	≥500	Pass
CH10	16.360	17.130	≥500	Pass
CH11	11.040	16.818	≥500	Pass



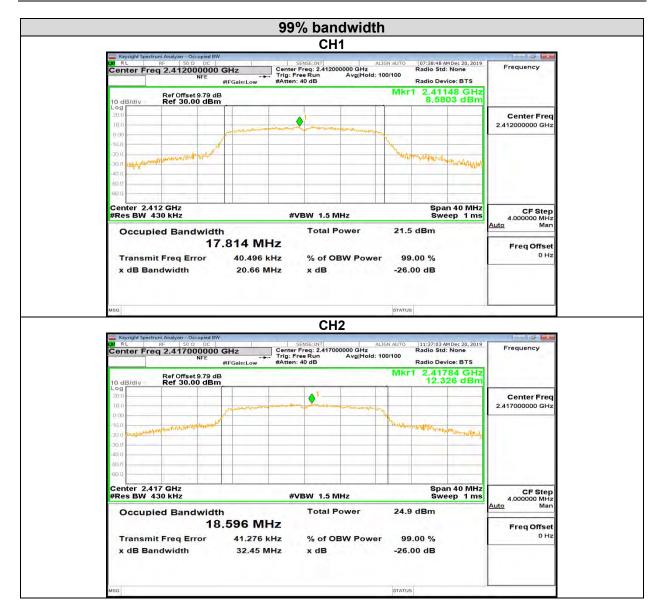
Note: All the modes and antenna ports had been tested, only the worst data recorded in the report


Page 30 of 257

7.2.1. 802.11n20 MIMO MODE


ANTENNA 0

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit For 6dB BW (kHz)	Result
CH1	13.960	17.814	≥500	Pass
CH2	15.120	18.596	≥500	Pass
CH6	13.280	19.978	≥500	Pass
CH10	15.200	17.879	≥500	Pass
CH11	11.760	17.703	≥500	Pass



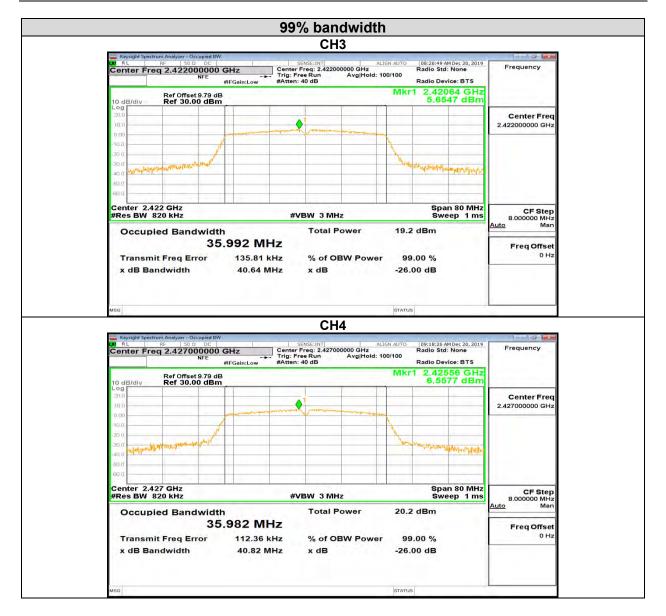
Note: All the modes and antenna ports had been tested, only the worst data recorded in the report

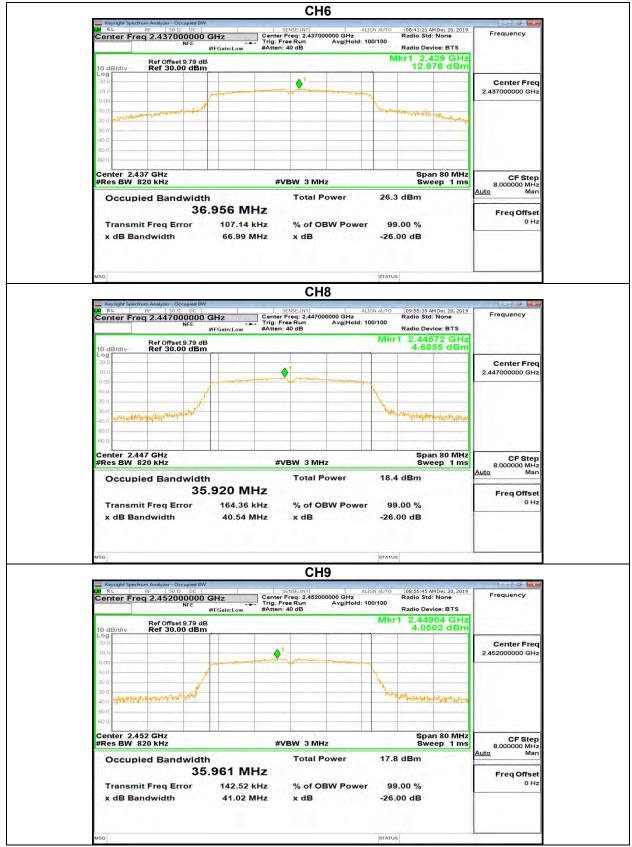
Page 35 of 257

7.2.1. 802.11n40 MIMO MODE

ANTENNA 0

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit For 6dB BW (kHz)	Result
CH3	31.520	35.992	≥500	Pass
CH4	32.800	35.982	≥500	Pass
CH6	32.720	36.956	≥500	Pass
CH8	32.720	35.920	≥500	Pass
CH9	34.000	35.961	≥500	Pass





Note: All the modes and antenna ports had been tested, only the worst data recorded in the report

REPORT No.: 4789222380.1-3 Page 40 of 257

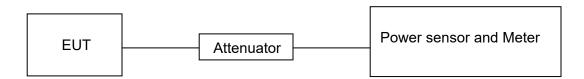
7.3. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Output Power	1 watt or 30dBm (See Note 1/2)	2400-2483.5	

^{1.} The total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure AVG power each channel.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	50%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

^{2.} Directional gain = G_{ANT} + 10 $log(N_{ANT})$ dBi, where N_{ANT} is the number of outputs, G_{ANT} is the Antenna gain.

REPORT No.: 4789222380.1-3

Page 41 of 257

RESULTS

Mode	Frequency (MHz)	ANT	AV Conducted Power (dBm)	Total (dBm)	
	2412	0	18.97	21.42	
	2712	1	17.76	21.72	
	2417	0	18.33	21.10	
	2717	1	17.84	21.10	
802.11b	2437	0	20.47	23.28	
002.116	2437	1	20.05	20.20	
	2457 2462	0	18.24	21.15	
		1	18.04	21.10	
		0	18.01	20.86	
		1	17.67	20.00	
	2412	0	15.73	18.58	
		1	15.40	10.00	
	2417	0	19.11	22.08	
	2717	1	19.02	22.00	
802.11g	2437	0	19.39	22.34	
002.11g	2107	1	19.26	22.0	
	2457	0	17.55	20.45	
	2.07	1	17.33	20.10	
	2462	0	14.35	17.18	
	2.02	1	13.98	17.10	

REPORT No.: 4789222380.1-3

Page 42 of 257

	2412	0	15.46	18.39
	2412	1	15.30	10.59
	2417	0	18.98	22.00
	2417	1	19.01	22.00
802.11n20	2437	0	19.90	22.87
002.111120	2437	1	19.82	22.01
	2457	0	16.26	19.32
	2437	1	16.37	19.52
	2462	0	13.39	16.44
		1	13.47	10.44
	2422 2427	0	12.78	15.70
		1	12.60	13.70
		0	13.78	16.61
		1	13.40	10.01
802.11n40	2437	0	19.83	22.70
802.111140	2437	1	19.54	22.70
	2447	0	13.78	16.61
		1	13.40	10.01
	2452	0	11.39	14.40
	2432	1	11.38	14.40

REPORT No.: 4789222380.1-3 Page 43 of 257

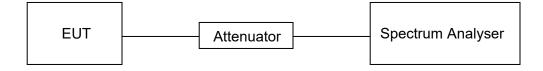
7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz (See Note 1)	2400-2483.5	

^{1.} If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

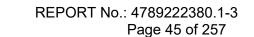
Center Frequency	The centre frequency of the channel under test
Detector	AVG
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace Mode	Trace averaging (rms) mode over a minimum of 100 traces
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

REPORT No.: 4789222380.1-3

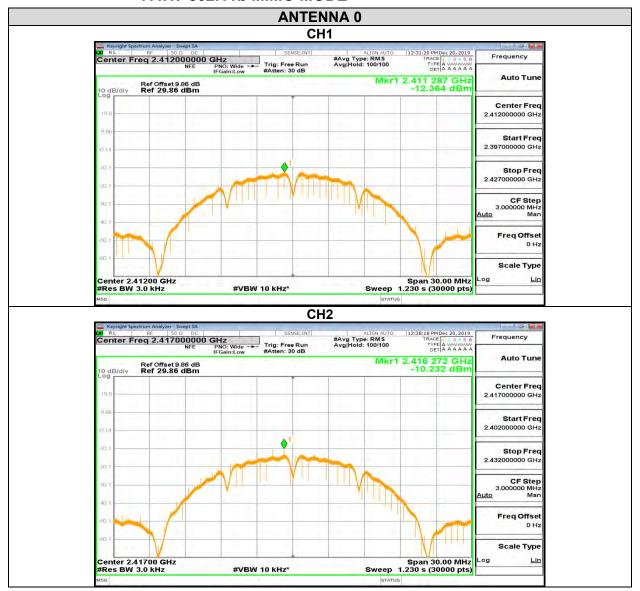

Page 44 of 257

TEST ENVIRONMENT

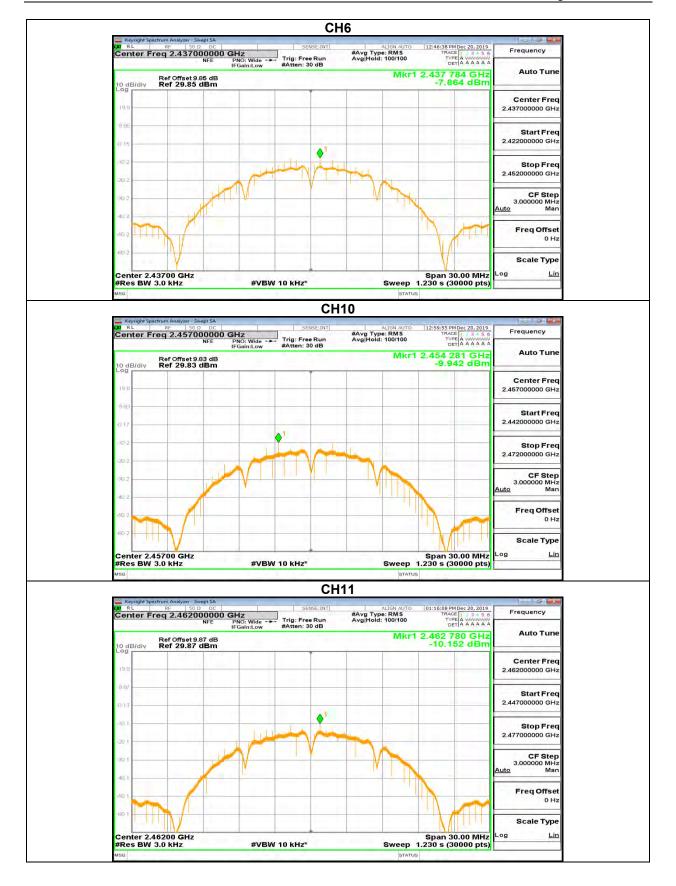
Temperature	23.4°C	Relative Humidity	50%
Atmosphere Pressure	101kPa	Test Voltage	AC120V, 60Hz

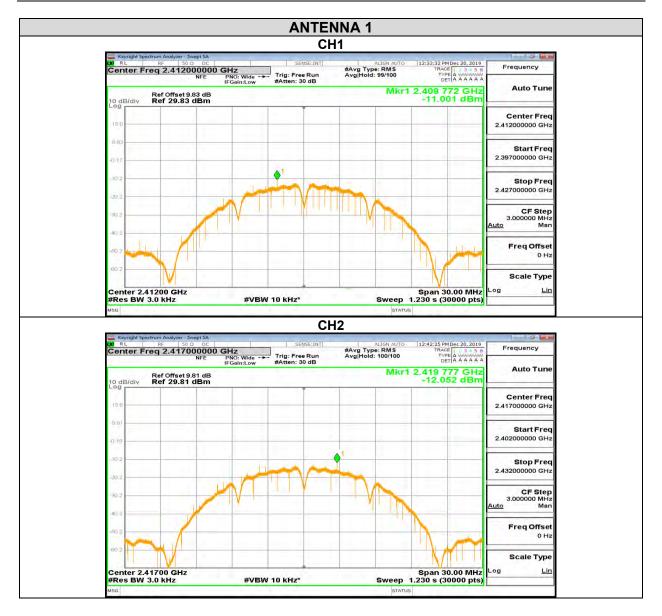
RESULTS

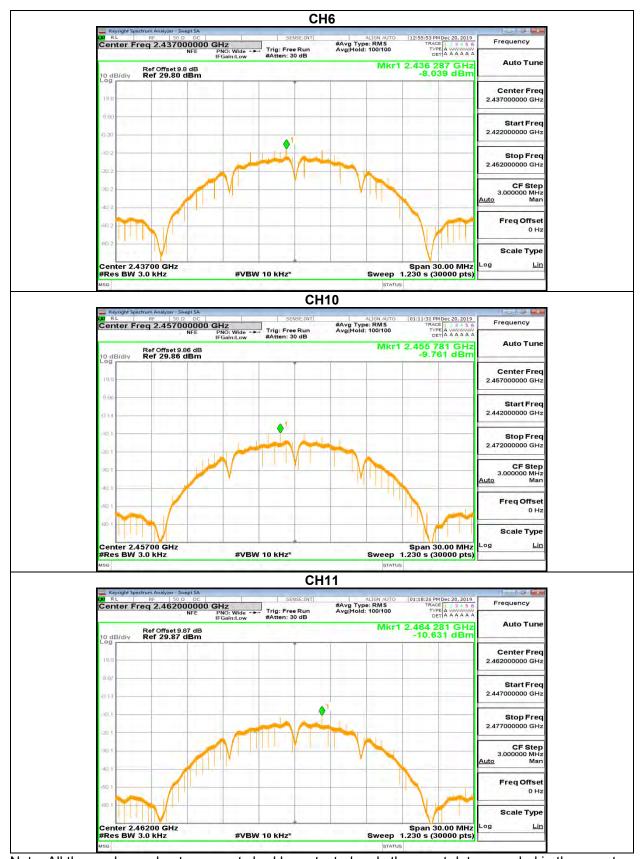
Mode	Frequency (MHz)	ANT	AV Power Spectral Density (dBm/3kHz)	DCCF (dB)	Total (dBm/3kHz)	Limit (dBm/3kHz)
	2412	0	-10.96	0.07	-7.90	
		1	-11.00			
	2417	0	-10.23	0.07	-7.97	
	2111	1	-12.05	0.01	7.07	
802.11b	2437	0	-7.86	0.07	-4.87	8
002.116	2407	1	-8.04	0.07	-4.07	
	2457	0	-9.94	0.07	-6.77	
	2437	1	-9.76			
	2462	0	-10.15	0.07	-7.30	
	2402	1	-10.63			
	2412	0	-6.38	0.46	-3.38	
	2412	1	-6.41	0.40		
	2417	0	-6.71	0.46	-2.83	
	2711	1	-5.12	0.40	-2.03	
802.11g	2437	0	-6.68	0.46	-3.98	
002.119	002.11g 2437	1	-7.33	0.40	-3.90	-
	2457	0	-7.61	0.46	-4.06	
		1	-6.59	0.40	-7.00	
	2462	0	-12.01	0.46	-8.85	
	2702	1	-11.72	0.40	-8.85	

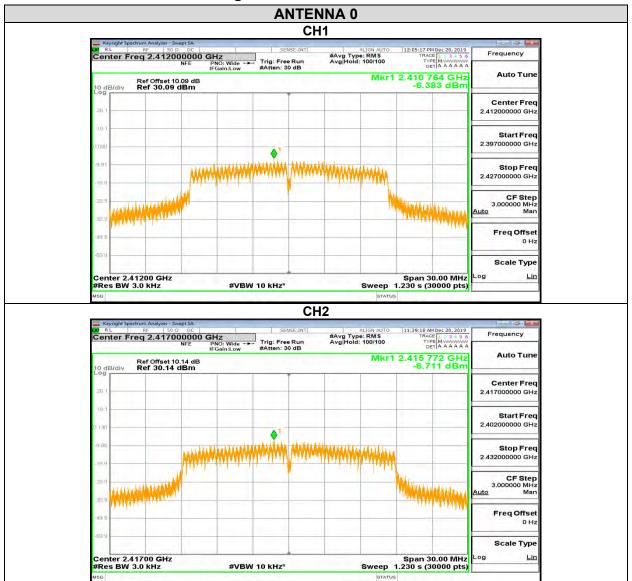

	2412	0	-10.34	0.42	-6.78	
	2412	1	-9.30	0.42	-0.78	
	2417	0	-6.71	0.42	-2.83	
	2417	1	-5.12	0.42		
802.11n20	2437	0	-6.72	0.42	-2.94	
802.111120	2431	1	-5.30	0.42	-2.94	
	2457	0	-7.61	0.42	4.06	
	2401	1	-6.59	0.42	-4.06	8
	2462	0	-11.39	0.42	-8.06	
	2402	1	-10.78	0.42		
	2422	0	-16.16	0.98	-12.97	
	2422	1	-15.80			
	2427	0	-14.98	0.98	-12.25	
	2421	1	-15.56	0.90		
802.11n40	2437	0	-9.39	0.98	-6.18	
802.111140	002.111140 2437	1	-8.99	0.90		
	2447	0	-17.00	0.98	-13.68	
2447	1	-16.40	0.30	-10.00		
	2452	0	-16.76	0.08	42.02	
2452	1	-16.93	0.98	-13.83		

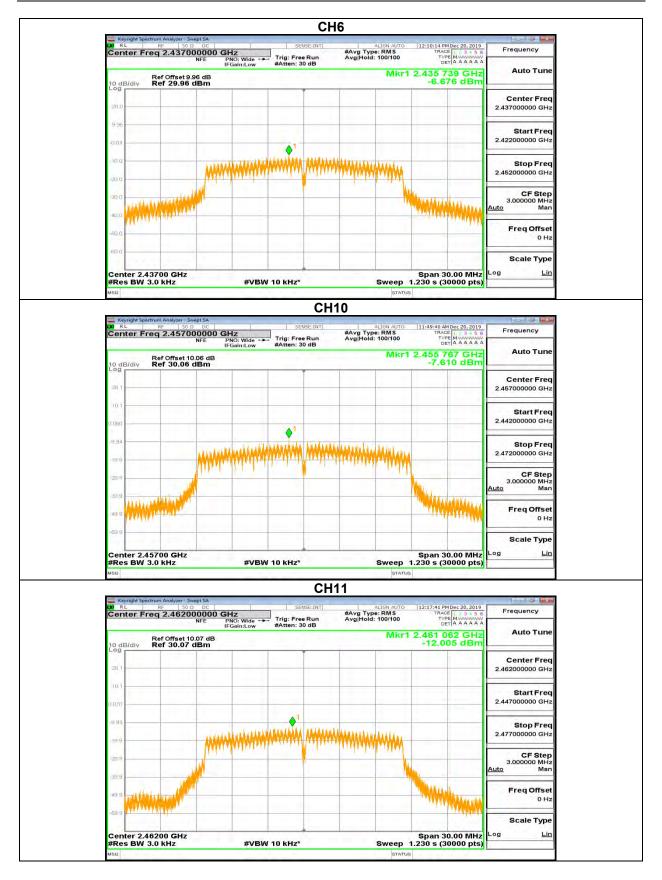
Note: 1.PSD=Meas. Level+ Correction Factor

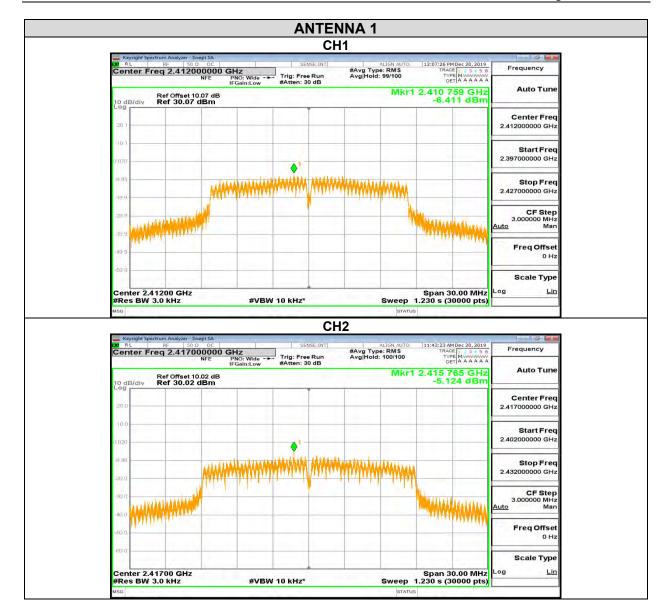

2. About correction Factor please refer to section 7.1

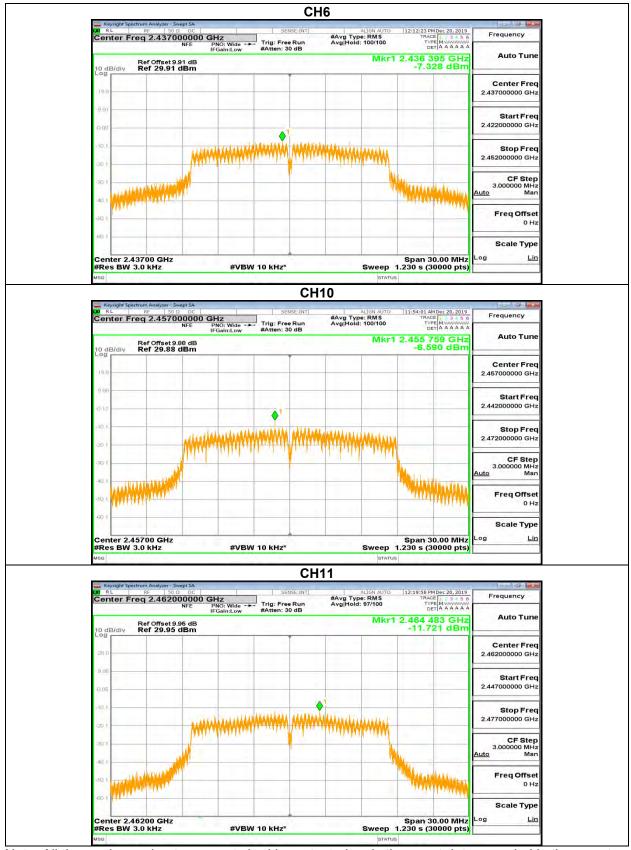

7.4.1. 802.11b MIMO MODE

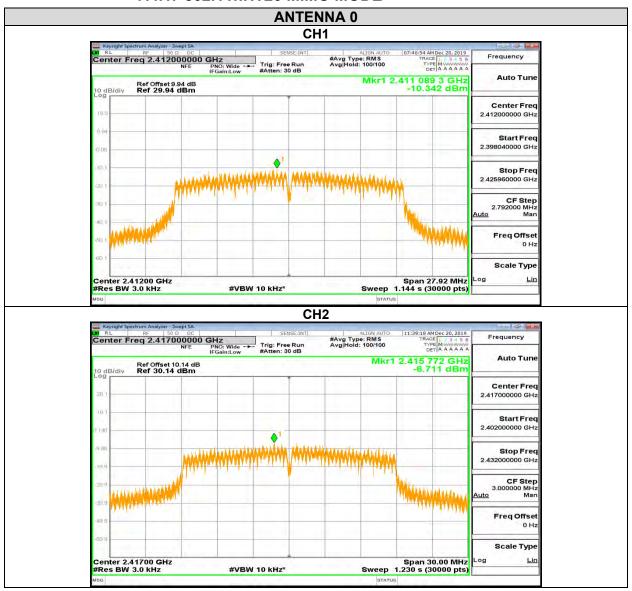




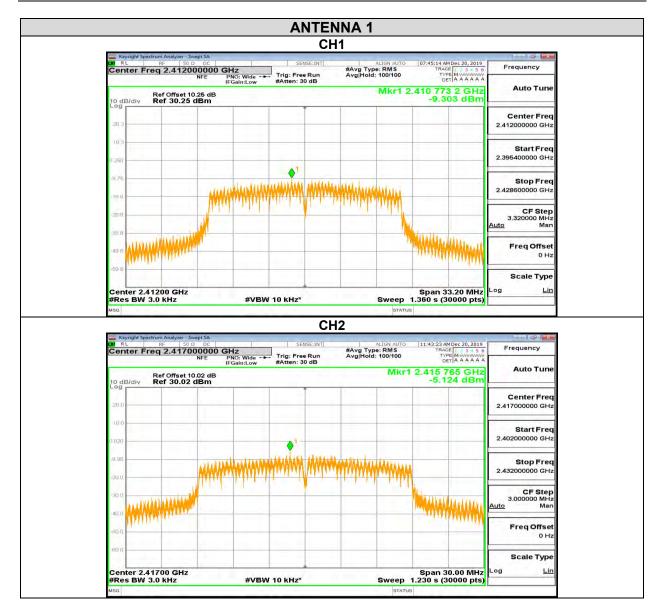

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report

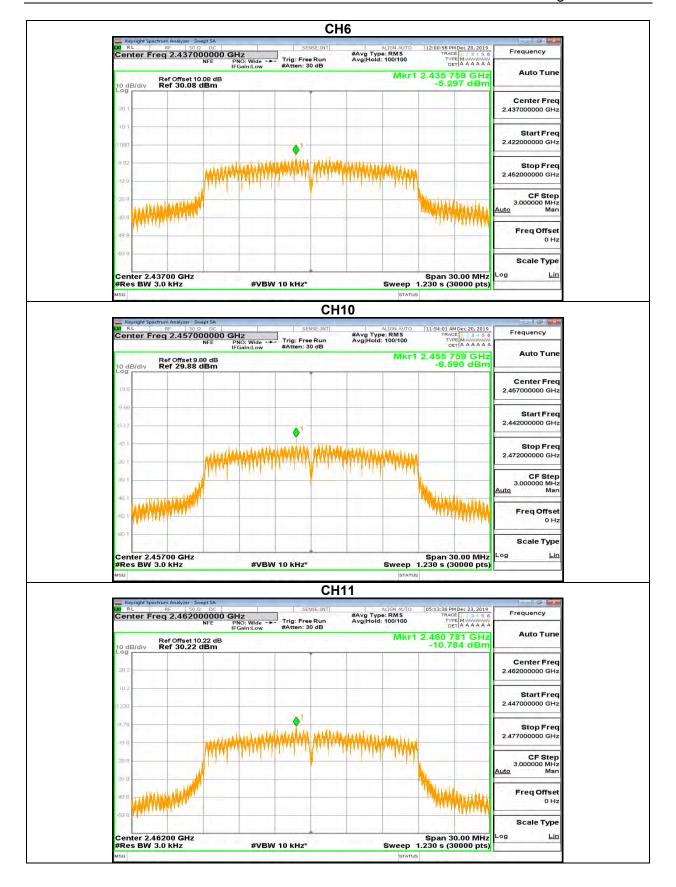

7.4.1. 802.11g MIMO MODE

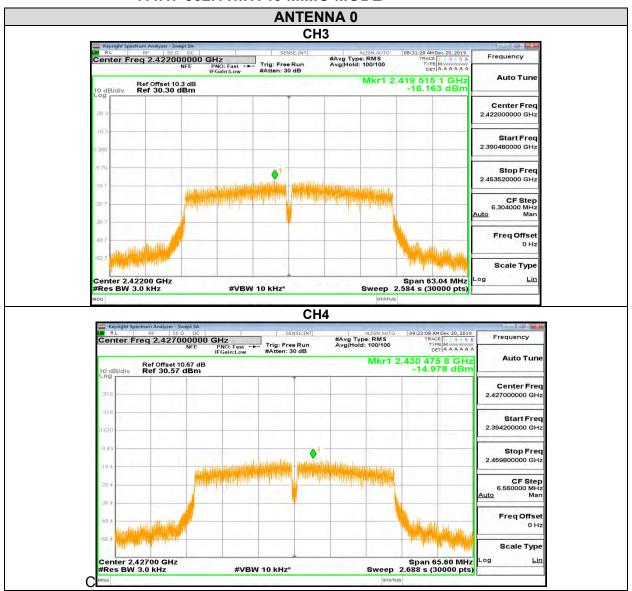


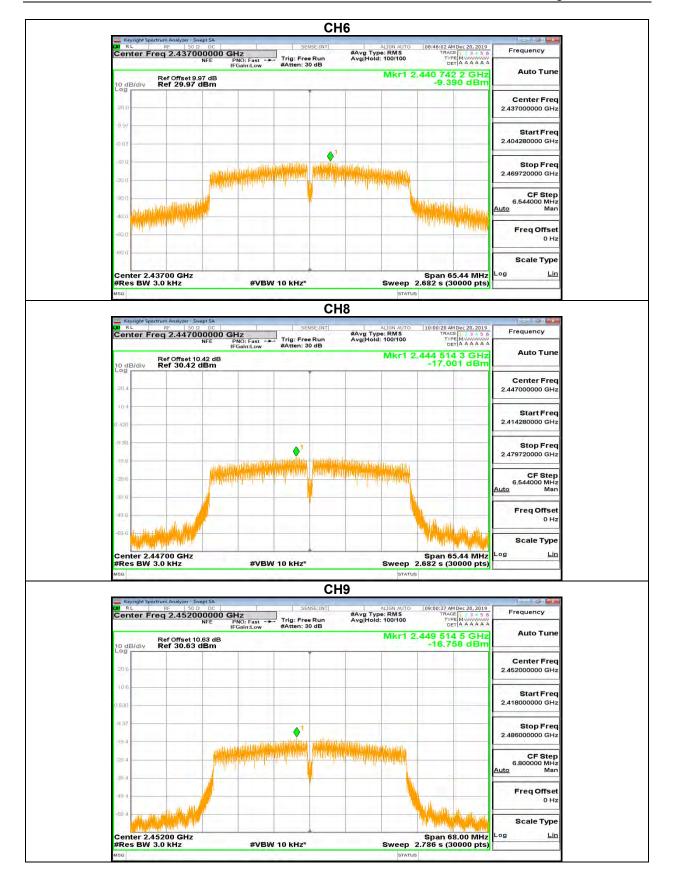


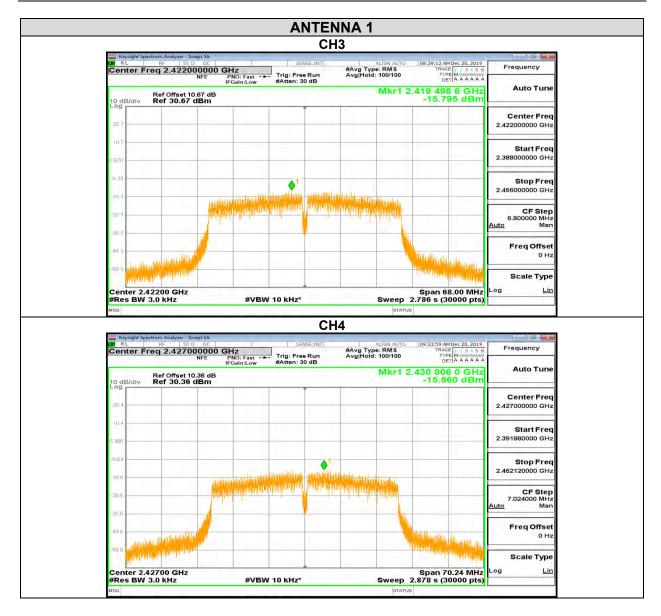

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report

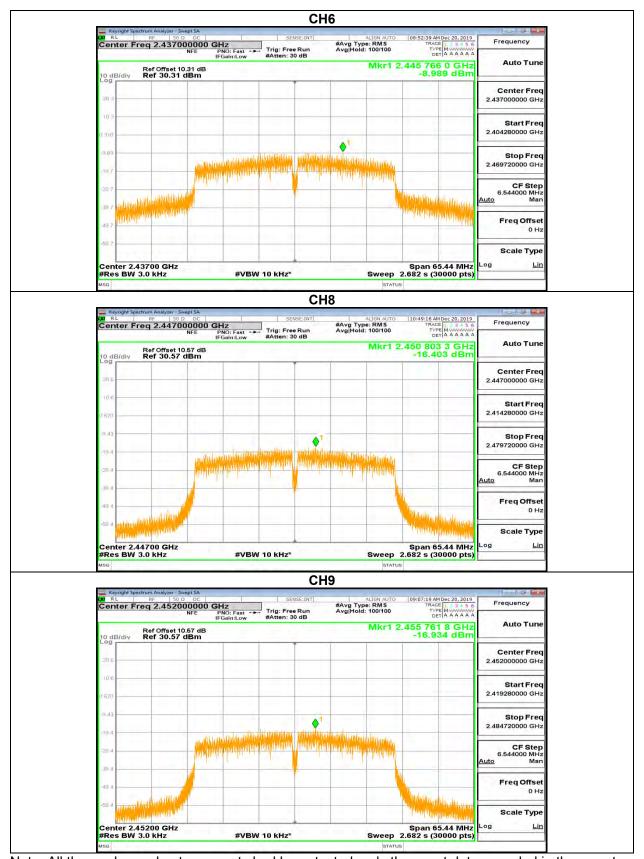

7.4.1. 802.11nHT20 MIMO MODE








7.4.1. 802.11nHT40 MIMO MODE



Note: All the modes and antenna ports had been tested, only the worst data recorded in the report

REPORT No.: 4789222380.1-3

Page 62 of 257

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

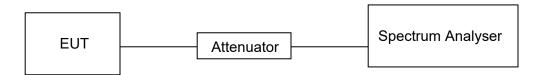
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit		
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum PSD level.

1209U	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

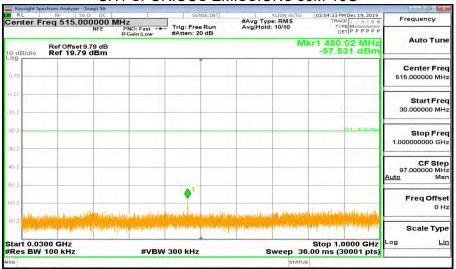
TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	50%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

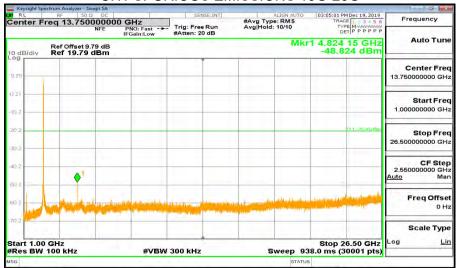
RESULTS

7.5.1. 802.11b MIMO MODE

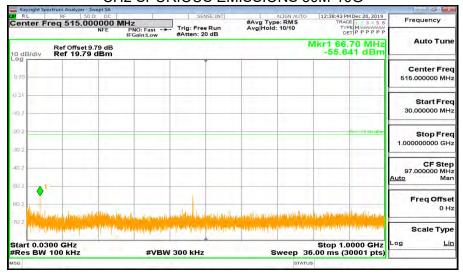
ANTENNA 0



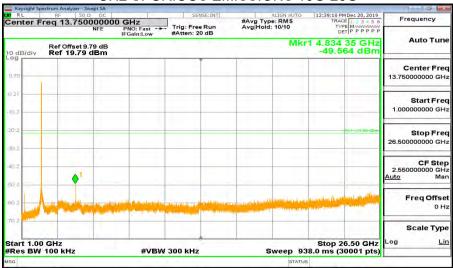
CH1 REFERENCE



CH1 SPURIOUS EMISSIONS 10G-26G

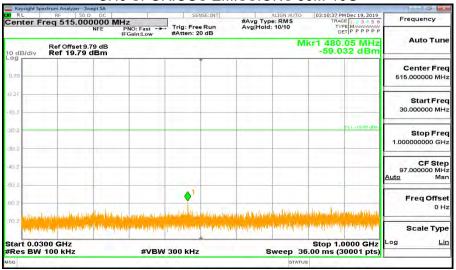


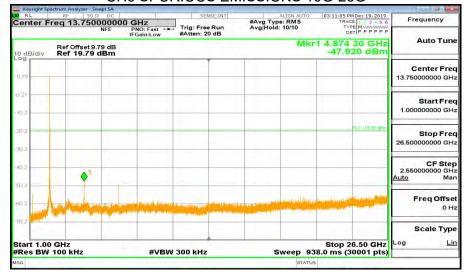
CH2 REFERENCE



CH2 SPURIOUS EMISSIONS 30M-10G

CH2 SPURIOUS EMISSIONS 10G-26G




CH6 REFERENCE

CH6 SPURIOUS EMISSIONS 30M-10G

CH6 SPURIOUS EMISSIONS 10G-26G

CH10 REFERENCE

