FCC SAR Test Report APPLICANT: TP-LINK TECHNOLOGIES CO., LTD. **EQUIPMENT**: AC1200 High Gain Wireless Dual Band USB Adapter **BRAND NAME**: TP-LINK MODEL NAME : T4UH FCC ID : TE7T4UH **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2003 We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Este man? Approved by: Jones Tsai / Manager ilac-MRA Report No. : FA470201 #### SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: TE7T4UH Page 1 of 31 Issued Date: Nov. 04, 2014 Form version.: 140820 # **Table of Contents** | 1. Statement of Compliance | | |---|----| | 2. Administration Data | 4 | | 3. Guidance Standard | | | 4. Equipment Under Test (EUT) | 5 | | 4.1 General Information | 5 | | 4.2 Maximum Tune-up Limit | 6 | | 5. RF Exposure Limits | 7 | | 5.1 Uncontrolled Environment | 7 | | 5.2 Controlled Environment | | | 6. Specific Absorption Rate (SAR) | 8 | | 6.1 Introduction | 8 | | 6.2 SAR Definition | 8 | | 7. System Description and Setup | 9 | | 8. Measurement Procedures | 10 | | 8.1 Spatial Peak SAR Evaluation | | | 8.2 Power Reference Measurement | 11 | | 8.3 Area Scan | | | 8.4 Zoom Scan | 12 | | 8.5 Volume Scan Procedures | 12 | | 8.6 Power Drift Monitoring | 12 | | 9. Test Equipment List | 13 | | 10. System Verification | 14 | | 10.1 Tissue Verification | | | 10.2 System Performance Check Results | | | 11. RF Exposure Positions | 16 | | 11.1 Wireless Router | 16 | | 12. Conducted RF Output Power (Unit: dBm) | 17 | | 13. Antenna Location | | | 14. SAR Test Results | | | 14.1 Body SAR | | | 14.2 Repeated SAR Measurement | 27 | | 15. Uncertainty Assessment | 28 | | 16. References | 31 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | # **Revision History** Report No. : FA470201 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | | | | |------------|---------|--|---------------|--|--|--| | FA470201 | Rev. 01 | Initial issue of report | Oct. 20, 2014 | | | | | FA470201 | Rev. 02 | Remove 5600MHz ~ 5650MHz conducted power and SAR result of the report. | Nov. 04, 2014 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 3 of 31 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **TP-LINK TECHNOLOGIES CO.**, **LTD.**, **AC1200 High Gain Wireless Dual Band USB Adapter**, **T4UH**, are as follows. Report No.: FA470201 | Equipment | Frequency | Highest SAR Summary | | | |------------------|------------------|-----------------------|--|--| | Class | Band | Body
1g SAR (W/kg) | | | | DTS | WLAN 2.4GHz Band | 1.41 | | | | סום | WLAN 5.8GHz Band | 0.65 | | | | | WLAN 5.2GHz Band | 0.73 | | | | NII | WLAN 5.3GHz Band | 0.76 | | | | | WLAN 5.5GHz Band | 0.84 | | | | Date of Testing: | | 09/25/2014~09/26/2014 | | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. # 2. Administration Data | Testing Laboratory | | | | | |--------------------|---|--|--|--| | Test Site | SPORTON INTERNATIONAL INC. | | | | | Test Site Location | No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,
Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
TEL: +886-3-327-3456
FAX: +886-3-328-4978 | | | | | Applicant Applicant | | | | | | |---------------------|---|--|--|--|--| | Company Name | TP-LINK TECHNOLOGIES CO., LTD. | | | | | | Address | Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central Science and Technology Park, Shennan Rd, Nanshan, Shenzhen, China | | | | | | Manufacturer | | | | | | |--------------|--|-------------------------------------|--|--|--| | Company Name | TP-LINK TECHNOLOGIES CO., LTD. | | | | | | Address | Building 24 (floors 1,3,4,5) and 28 (floors1-4) Shennan Rd, Nanshan, Shenzhen, China | Central Science and Technology Park | | | | ## 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: Report No. : FA470201 - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r02 - FCC KDB 248227 D01 SAR meas for 802 11abg v01r02 # 4. Equipment Under Test (EUT) ### 4.1 General Information | Product Feature & Specification | | | | | |--|---|--|--|--| | Equipment Name | AC1200 High Gain Wireless Dual Band USB Adapter | | | | | Brand Name | TP-LINK | | | | | Model Name | T4UH | | | | | FCC ID | TE7T4UH | | | | | S/N | 14-5 | | | | | Wireless Technology and
Frequency Range | WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz
WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz
WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz
WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz
WLAN 5.8GHz Band: 5745 MHz ~ 5805 MHz | | | | | Mode | • 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 | | | | | EUT Stage | Production Unit | | | | | Remark: 1. WLAN operation in 5600 MHz ~ 5650 MHz is notched | | | | | SPORTON INTERNATIONAL INC. # 4.2 Maximum Tune-up Limit | Band / Frequency (MHz) | | IEEE 802.11 Average Power (dBm) | | | | | | |------------------------|------|---------------------------------|-----|---------|------|------|------| | | | | Ar | Ant 0+1 | | | | | | | 11b | 11g | HT20 | HT40 | HT20 | HT40 | | | 2412 | 18 | 16 | 18 | | 20.5 | | | | 2422 | | | | 18 | | 20 | | 2.4GHz Band | 2437 | 18 | 18 | 18 | 18 | 20.5 | 20 | | | 2452 | | | | 18 | | 20 | | | 2462 | 18 | 15 | 18 | | 20.5 | | Report No. : FA470201 | | | IEEE 802.11 Average Power (dBm) | | | | | | | | | | |---------------------------|-------|---------------------------------|------|-------|-------|-------|------|---------|-------|-------|-------| | Band /
Frequency (MHz) | Ant 0 | | | | | | | Ant 0+1 | | | | | | 11a | HT20 | HT40 | VHT20 | VHT40 | VHT80 | HT20 | HT40 | VHT20 | VHT40 | VHT80 | | 5.2GHz Band | 16 | 16 | 17 | 16 | 17 | 17 | 16 | 16 | 15 | 18 | 20 | | 5.3GHz Band | 18 | 17 | 17 | 17 | 17 | 17 | 20 | 20 | 20 | 20 | 20 | | 5.5GHz Band | 18 | 17 | 17 | 17 | 17 | 17 | 20 | 20 | 20 | 20 | 20 | | 5.8GHz Band | 18 | 18 | 18 | 18 | 17 | 17 | 20 | 20 | 20 | 20 | 20 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 6 of 31 # 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA470201 #### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. # 6. Specific Absorption Rate (SAR) ### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA470201 #### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. # 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA470201 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ## 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA470201 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g FCC ID : TE7T4UH Page 10 of 31 Form version. : 140820 #### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA470201 #### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | | |--|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | SPORTON INTERNATIONAL INC. #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA470201 Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|--------------|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: }
\le 4 \text{ mm}^*$ | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$
$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | grid | | ≤ 1.5·Δz | Z _{Oom} (n-1) | | Minimum zoom scan volume x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. SPORTON INTERNATIONAL INC. When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # 9. Test Equipment List | Manufacturer | Name of Equipment | Type/Model | Serial Number | Calib | ration | | |---------------|-------------------------------|-------------|---------------|---------------|---------------|--| | Manufacturer | Name of Equipment | i ype/wodei | Seriai Number | Last Cal. | Due Date | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Aug. 21, 2014 | Aug. 20, 2015 | | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1040 | Jun. 20, 2014 | Jun. 19, 2015 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1279 | Jul. 23, 2014 | Jul. 22, 2015 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3873 | Aug. 26, 2014 | Aug. 25, 2015 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3954 | Nov. 04, 2013 | Nov. 03, 2014 | | | Wisewind | Thermometer | HTC-1 | TM642 | Oct. 22, 2013 | Oct. 21, 2014 | | | Wisewind | Thermometer | HTC-1 | TM281 | Oct. 22, 2013 | Oct. 21, 2014 | | | SPEAG | Device Holder | N/A | N/A | NCR | NCR | | | R&S | Signal Generator | SMU200A | 102502 | Jul. 07, 2014 | Jul. 06, 2015 | | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1138 | Nov. 03, 2013 | Nov. 02, 2014 | | | Agilent | ENA Network Analyzer | E5071C | MY46316648 | Feb. 07, 2014 | Feb. 06, 2015 | | | Anritsu | Power Meter | ML2495A | 1036004 | Aug. 09, 2014 | Aug. 08, 2015 | | | Anritsu | Power Sensor | MA2411B | 1027253 | Aug. 11, 2014 | Aug. 10, 2015 | | | R&S | Spectrum Analyzer | FSP 7 | 101131 | Jul. 10, 2014 | Jul. 09, 2015 | | | Agilent | Dual Directional Coupler | 778D | 50422 | No | te1 | | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te1 | | | PE | Attenuator 2 | PE7005-10 | N/A | Note1 | | | | PE | Attenuator 3 | PE7005- 3 | N/A | Note1 | | | | AR | Power Amplifier | 5S1G4M2 | 0328767 | Note1 | | | | Mini-Circuits | Power Amplifier | ZVE-3W | 162601250 | Note1 | | | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 13440021344 | No | te1 | | Report No. : FA470201 #### **General Note:** 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. # 10. System Verification # 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. **Report No. : FA470201** | | | | tissue parameters required for routine SAR evaluation. Frequency Water Sugar Cellulose Salt Preventol DGBE Conductivity Permittivity | | | | | | | | | | | | |--------------------|---------------|--------------|---|-------------|------------------|------|------------------|-------------------|--|--|--|--|--|--| | Frequency
(MHz) | vvater
(%) | Sugar
(%) | Cellulose
(%) | Sait
(%) | Preventor
(%) | (%) | Conductivity (σ) | Permittivity (Er) | | | | | | | | | | | | For Head | | | | | | | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | | | | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | | | | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | | | | | | | For Body | | | | | | | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | | | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | | | | | | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | | | | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | | | | | | 2600 | 68 1 | 0 | 0 | 0.1 | 0 | 31.8 | 2 16 | 52.5 | | | | | | | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | | | | | |--------------------|---------------|--|--|--|--| | Water | 64~78% | | | | | | Mineral oil | 11~18% | | | | | | Emulsifiers | 9~15% | | | | | | Additives and Salt | 2~3% | | | | | #### <Tissue Dielectric Parameter Check Results> | Frequency (MHz) | Tissue
Type | Liquid Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |-----------------|----------------|----------------------|------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|-----------| | 2450 | Body | 22.6 | 2.005 | 53.959 | 1.95 | 52.70 | 2.82 | 2.39 | ±5 | 2014/9/25 | | 2450 | Body | 22.6 | 2.005 | 53.959 | 1.95 | 52.70 | 2.82 | 2.39 | ±5 | 2014/9/25 | | 5200 | Body | 22.2 | 5.441 | 47.382 | 5.30 | 49.00 | 2.66 | -3.30 | ±5 | 2014/9/25 | | 5200 | Body | 22.5 | 5.388 | 48.732 | 5.30 | 49.00 | 1.66 | -0.55 | ±5 | 2014/9/26 | | 5300 | Body | 22.2 | 5.562 | 47.093 | 5.42 | 48.90 | 2.62 | -3.70 | ±5 | 2014/9/25 | | 5300 | Body | 22.5 | 5.522 | 48.584 | 5.42 | 48.90 | 1.88 | -0.65 | ±5 | 2014/9/26 | | 5600 | Body | 22.2 | 5.973 | 46.693 | 5.77 | 48.50 | 3.52 | -3.73 | ±5 | 2014/9/25 | | 5600 | Body | 22.5 | 5.902 | 48.043 | 5.77 | 48.50 | 2.29 | -0.94 | ±5 | 2014/9/26 | | 5800 | Body | 22.2 | 6.253 | 46.376 | 6.00 | 48.20 | 4.22 | -3.78 | ±5 | 2014/9/25 | | 5800 | Body | 22.5 | 6.162 | 47.730 | 6.00 | 48.20 | 2.70 | -0.98 | ±5 | 2014/9/26 | FCC ID : TE7T4UH Page 14 of 31 Form version. : 140820 ### 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|---------------|-----------------|-------------|------------------------------|------------------------------|--------------------------------|------------------| | 2014/9/25 | 2450 | Body | 250 | D2450V2-736 | EX3DV4 - SN3873 | DAE4 Sn1279 | 12.90 | 50.60 | 51.60 | 1.98 | | 2014/9/25 | 2450 | Body | 250 | D2450V2-736 | EX3DV4 - SN3954 | DAE4 Sn1279 | 13.10 | 50.60 | 52.40 | 3.56 | | 2014/9/25 | 5200 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 7.69 | 77.80 | 76.90 | -1.16 | | 2014/9/26 | 5200 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 7.62 | 77.80 | 76.20 | -2.06 | | 2014/9/25 | 5300 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 7.65 | 79.10 | 76.50 | -3.29 | | 2014/9/26 | 5300 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 7.60 | 79.10 | 76.00
 -3.92 | | 2014/9/25 | 5600 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 8.70 | 82.70 | 87.00 | 5.20 | | 2014/9/26 | 5600 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 8.60 | 82.70 | 86.00 | 3.99 | | 2014/9/25 | 5800 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 8.10 | 77.30 | 81.00 | 4.79 | | 2014/9/26 | 5800 | Body | 100 | D5GHzV2-1040 | EX3DV4 - SN3954 | DAE4 Sn1279 | 7.98 | 77.30 | 79.80 | 3.23 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo **Report No. : FA470201** # 11. RF Exposure Positions #### 11.1 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC HDB Publication 941225 D06v01r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. Report No.: FA470201 When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. # 12. Conducted RF Output Power (Unit: dBm) #### <WLAN Conducted Power> #### **General Note:** Per April 2013 TCB Workshop notes, full SAR tests for SISO IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition. Report No.: FA470201 - 2. For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were selected for SAR evaluation. 802.11g/n HT20/HT40 were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11b mode. - Following KDB 248227 D01 v01r02, 802.11g/n HT20/HT40 average output power is higher than 1/4dB higher than 802.11b mode, these modes SAR will be verified at the highest RF exposure position found in 802.11b SAR testing. - For 5 GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11a were 4. selected for SAR evaluation. 802.11n HT20/HT40 modes were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11a mode. - Following KDB 248227 D01 v01r02, 802.11n/ac HT20/HT40/VHT20/VHT40 average output power is higher than 1/4dB higher than 802.11b mode, these modes SAR will be verified at the highest RF exposure position found in 802.11a SAR testing. #### <2.4GHz WLAN Antenna 0> | | 1 | WLAN 2.4GHz 802.11k | Average Power (dBm |) | | | | | | | |---------|-------------------|---------------------|--------------------|---------|---------|--|--|--|--|--| | | Power vs. Channel | | | | | | | | | | | Channel | Frequency | Data Rate | OMboo | E EMbaa | 11Mbps | | | | | | | Channel | (MHz) | 1Mbps | 2Mbps | 5.5Mbps | i Hwops | | | | | | | CH 1 | 2412 | 17.70 | | | | | | | | | | CH 6 | CH 6 2437 17.94 | | 17.93 | 17.93 | 17.87 | | | | | | | CH 11 | 2462 | 17.83 | | | | | | | | | | | WLAN 2.4GHz 802.11g Average Power (dBm) | | | | | | | | | | | |---------|---|-----------|-------|-----------|----------|---------------------|----------|----------|--------|--|--| | Po | wer vs. Chan | nel | | | Pov | ver vs. Data F | Rate | | | | | | Channel | Frequency | Data Rate | OMbpo | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | | | Channel | (MHz) | 6Mbps | 9Mbps | 121010005 | roiviphs | z 4 Mbps | Solvibbs | 401VIDPS | 54Mups | | | | CH 1 | 2412 | 15.76 | | | | | | | | | | | CH 6 | 2437 | 17.85 | 17.77 | 17.77 | 17.83 | 17.69 | 17.73 | 17.76 | 17.75 | | | | CH 11 | 2462 | 14.26 | | | | | | | | | | | | WLAN 2.4GHz 802.11n-HT20 Average Power (dBm) | | | | | | | | | | | |---------|--|-----------|--------|---------------------|--------|--------|--------|--------|--------|--|--| | Po | wer vs. Chan | nel | | Power vs. MCS Index | | | | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | Chamer | (MHz) | MCS0 | IVICST | IVICOZ | IVICOS | 101034 | IVICSS | IVICSO | IVICOT | | | | CH 1 | 2412 | 16.65 | | | | | | | | | | | CH 6 | 2437 | 16.83 | 16.81 | 16.81 | 16.76 | 16.73 | 16.80 | 16.75 | 16.78 | | | | CH 11 | 2462 | 16.74 | | | | | | | | | | | | WLAN 2.4GHz 802.11n-HT40 Average Power (dBm) | | | | | | | | | | | |---------|--|-----------|-----------|---------------------|--------|--------|--------|--------|---------|--|--| | Po | wer vs. Chan | nel | | Power vs. MCS Index | | | | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | Chamer | (MHz) | MCS0 | MCS1 MCS2 | | IVICOS | 101034 | IVICOS | IVICSO | IVICS / | | | | CH 3 | 2422 | 17.06 | | | | | | | | | | | CH 6 | 2437 | 16.78 | 16.98 | 17.02 | 16.98 | 17.01 | 16.97 | 17.05 | 16.96 | | | | CH 9 | 2452 | 16.74 | | | | | | | | | | #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 17 of 31 ### <2.4GHz WLAN Antenna 0+1> | | WLAN 2.4GHz 802.11n-HT20 Average Power (dBm) | | | | | | | | | | | |---------|--|-----------|--------|--------|--------|----------------|--------|--------|--------|--|--| | P | ower vs. Chan | nel | | | Pow | ver vs. MCS Ir | ndex | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | Charine | (MHz) | MCS0 | IVICOT | IVICOZ | IVICOS | 10004 | IVICOS | IVICOO | IVICST | | | | CH 1 | 2412 | 20.07 | | | | | | | | | | | CH 6 | 2437 | 19.84 | 19.70 | 19.66 | 19.70 | 19.59 | 19.62 | 19.61 | 19.61 | | | | CH 11 | 2462 | 19.96 | | | | | | | | | | Report No. : FA470201 | | WLAN 2.4GHz 802.11n-HT40 Average Power (dBm) | | | | | | | | | | |---------|--|-----------|--------|---------------------|--------|--------|--------|--------|--------|--| | Po | wer vs. Chan | nel | | Power vs. MCS Index | | | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | Channel | (MHz) | MCS0 | IVICST | IVICSZ | IVICSS | IVIC34 | IVICSS | IVICSO | IVICS/ | | | CH 3 | 2422 | 19.87 | | | | | | | | | | CH 6 | 2437 | 19.95 | 19.72 | 19.63 | 19.47 | 19.45 | 19.38 | 19.38 | 19.55 | | | CH 9 | 2452 | 18.73 | | | | | | | | | ### <5GHz WLAN Antenna 0> | | | | WLAN 5 | GHz 802.11a | Average Pow | , , | | | | |---------|--------------|-----------|---------|-------------|-------------|----------------|---------|----------|--------| | Po | wer vs. Chan | nel | | | Pov | ver vs. Data F | Rate | | | | Channel | Frequency | Data Rate | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | Chamer | (MHz) | 6Mbps | Olvibpo | 12111000 | Tolvibpo | 2-111000 | CONIDPO | HOIVIDPO | онивро | | CH 36 | 5180 | 15.21 | | | | | | | | | CH 40 | 5200 | 15.01 | 15.16 | 15.08 | 15.19 | 15.16 | 15.13 | 15.09 | 15.15 | | CH 44 | 5220 | 14.76 | 13.10 | 15.00 | 15.19 | 15.10 | 13.13 | 15.09 | 13.13 | | CH 48 | 5240 | 15.02 | | | | | | | | | CH 52 | 5260 | 17.81 | | | | | 47.00 | 47.74 | | | CH 56 | 5280 | 17.80 | 47.00 | 17.84 | 47.00 | 17.83 | | | 47.00 | | CH 60 | 5300 | 17.85 | 17.88 | | 17.90 | 17.83 | 17.90 | 17.74 | 17.83 | | CH 64 | 5320 | 17.93 | | | | | | | | | CH 100 | 5500 | 17.54 | | | | | | | | | CH 104 | 5520 | 17.63 | | | | | | | | | CH 108 | 5540 | 17.66 | | | | | | | | | CH 112 | 5560 | 17.72 | 47.00 | 47.77 | 47.04 | 47.00 | 47.05 | 47.74 | 47.75 | | CH 116 | 5580 | 17.92 | 17.88 | 17.77 | 17.64 | 17.83 | 17.85 | 17.74 | 17.75 | | CH 132 | 5660 | 17.75 | | | | | | | | | CH 136 | 5680 | 17.77 | | | | | | | | | CH 140 | 5700 | 17.47 | | | | | | | | | CH 149 | 5745 | 17.76 | | | | | | | | | CH 153 | 5765 | 17.71 | 17.74 | 47.07 | 47.75 | 47.07 | 47.07 | 47.70 | 47.07 | | CH 157 | 5785 | 17.70 | | 17.67 | 17.75 | 17.67 | 17.67 | 17.73 | 17.67 | | CH 161 | 5805 | 17.50 | | | | | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 18 of 31 | | | | WLAN 5GH | lz 802.11n-HT | 20 Average P | ower (dBm) | | | | |---------|--------------|-----------|----------|---------------|--------------|----------------|----------|----------|----------| | Po | wer vs. Chan | nel | | | Pov | ver vs. MCS Ir | ndex | | | | Channel | Frequency | Data Rate | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | Chamer | (MHz) | 6Mbps | alvinha | 12IVIDPS | Tolvibha | 241VIDPS | Solvibhs | 401VIDPS | 34IVIDPS | | CH 36 | 5180 | 15.36 | | | | | | | | | CH 40 | 5200 | 15.12 | 15.27 | 15.25 | 15.19 | 15.28 | 15.34 | 15.25 | 15.21 | | CH 44 |
5220 | 14.82 | 13.27 | 15.25 | 15.19 | 13.20 | | 15.25 | 13.21 | | CH 48 | 5240 | 15.10 | | | | | | | | | CH 52 | 5260 | 16.82 | | | | | | | | | CH 56 | 5280 | 16.72 | 16.74 | 16.74 16.78 | 16.69 | 16.77 | 16.80 | 16.75 | 16.69 | | CH 60 | 5300 | 16.69 | 10.74 | | | | 10.00 | 10.73 | | | CH 64 | 5320 | 16.66 | | | | | | | | | CH 100 | 5500 | 16.87 | | | | | | | | | CH 104 | 5520 | 16.81 | | | | | | | | | CH 108 | 5540 | 16.76 | | | | | | | | | CH 112 | 5560 | 16.70 | 16.74 | 16.69 | 16.76 | 16.83 | 16.67 | 16.72 | 16.64 | | CH 116 | 5580 | 16.69 | 10.74 | 16.69 | 10.70 | 10.03 | 10.07 | 10.72 | 10.04 | | CH 132 | 5660 | 16.70 | | | | | | | | | CH 136 | 5680 | 16.73 | | | | | | | | | CH 140 | 5700 | 16.64 | | | | | | | | | CH 149 | 5745 | 17.18 | | | | | | | | | CH 153 | 5765 | 17.10 | 17.05 | 17.06 | 17.00 | 16.04 | 16.02 | 16.91 | 16.00 | | CH 157 | 5785 | 17.15 | 17.05 | 17.06 | 17.00 | 16.94 | 16.92 | 16.91 | 16.80 | | CH 161 | 5805 | 17.12 | | | | | | | | Report No. : FA470201 | | | | WLAN 5GH | z 802.11n-HT | 40 Average P | ower (dBm) | | | | |---------|--------------|-----------|----------|--------------|--------------|---------------|--------|--------|--------| | Po | wer vs. Chan | nel | | | Pow | er vs. MCS Ir | ndex | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | Channel | (MHz) | MCS0 | IVICST | IVICSZ | IVICSS | IVIC 34 | IVICSS | IVICSO | IVICS/ | | CH 38 | 5190 | 16.81 | 16.76 | 16.71 | 16.70 | 16.77 | 16.73 | 16.69 | 16.74 | | CH 46 | 5230 | 16.75 | 10.76 | 10.71 | 10.70 | 10.77 | 10.73 | 10.09 | 10.74 | | CH 54 | 5270 | 16.68 | 16.54 | 16.61 | 16.66 | 16.63 | 16.66 | 16.59 | 16.55 | | CH 62 | 5310 | 16.61 | 10.54 | 10.01 | 10.00 | 10.03 | 10.00 | 10.59 | 10.55 | | CH 102 | 5510 | 16.72 | | | | | | | | | CH 110 | 5550 | 16.58 | 16.65 | 16.66 | 16.69 | 16.61 | 16.63 | 16.67 | 16.61 | | CH 134 | 5670 | 16.68 | | | | | | | | | CH 151 | 5755 | 17.20 | 17.12 | 17.04 | 16.99 | 16.90 | 16.83 | 16.91 | 16.81 | | CH 159 | 5795 | 17.17 | 17.12 | 17.04 | 10.99 | 10.90 | 10.03 | 10.91 | 10.01 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 19 of 31 | | | | WLAN 5 | GHz 802.11 | ac-VHT20 A | verage Powe | er (dBm) | | | | |---------|--------------|-----------|--------|------------|------------|-------------|-----------|--------|--------|--------| | Po | wer vs. Char | nel | | | | Power vs. | MCS Index | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | | Chamile | (MHz) | MCS0 | WICOT | IVICOZ | IVICOS | WICOT | IVICOO | IVICOU | IVICOT | IVICOU | | CH 36 | 5180 | 14.74 | | | | | | | | | | CH 40 | 5200 | 14.50 | 14.71 | 14.64 | 14.59 | 14.63 | 14.56 | 14.61 | 14.70 | 14.66 | | CH 44 | 5220 | 14.22 | 14.71 | 14.04 | 14.59 | 14.03 | 14.50 | 14.01 | 14.70 | 14.00 | | CH 48 | 5240 | 14.68 | | | | | | | | | | CH 52 | 5260 | 16.64 | | | | | | | | | | CH 56 | 5280 | 16.60 | 16.60 | 16.56 | 16.63 | 16.59 | 16.54 | 16.61 | 16.56 | 16.52 | | CH 60 | 5300 | 16.60 | 10.00 | 10.50 | 10.03 | | | 10.01 | 10.50 | 10.52 | | CH 64 | 5320 | 16.65 | | | | | | | | | | CH 100 | 5500 | 16.65 | | | | | | | | | | CH 104 | 5520 | 16.60 | | | | | | | | | | CH 108 | 5540 | 16.71 | | | | | | | | | | CH 112 | 5560 | 16.66 | 16.72 | 16.68 | 16.64 | 16.67 | 16.70 | 16.57 | 16.66 | 16.62 | | CH 116 | 5580 | 16.74 | 10.72 | 10.00 | 10.04 | 10.07 | 10.70 | 10.57 | 10.00 | 10.02 | | CH 132 | 5660 | 16.67 | | | | | | | | | | CH 136 | 5680 | 16.69 | | | | | | | | | | CH 140 | 5700 | 16.72 | | | | | | | | | | CH 149 | 5745 | 17.12 | 16.88 | | | | | | | | | CH 153 | 5765 | 17.08 | | 16.01 | 16.79 | 16.60 | 16.72 | 16.67 | 16.62 | 16.57 | | CH 157 | 5785 | 17.06 | | 16.91 | 16.78 | 16.69 | 16.72 | 10.07 | 10.02 | 10.07 | | CH 161 | 5805 | 16.96 | | | | | | | | | Report No. : FA470201 | | | | WL | AN 5GHz 80 | 02.11ac-VH | T40 Averag | e Power (d | Bm) | | | | | | | | |---------|--------------------|----------------------|-------|---------------------|------------|------------|------------|-------|-------|-------|-------|--|--|--|--| | Pov | wer vs. Char | nnel | | Power vs. MCS Index | | | | | | | | | | | | | Channel | Frequency
(MHz) | MCS
Index
MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | MCS9 | | | | | | CH 38 | 5190 | 16.93 | 16.75 | 16.73 | 16.87 | 16.84 | 16.71 | 16.68 | 16.86 | 16.78 | 16.83 | | | | | | CH 46 | 5230 | 16.87 | 10.75 | 10.73 | 10.07 | 10.04 | 10.71 | 10.00 | 10.00 | 10.76 | 10.03 | | | | | | CH 54 | 5270 | 16.69 | 16.67 | 16.53 | 16.61 | 16.59 | 16.60 | 16.54 | 16.68 | 16.56 | 16.68 | | | | | | CH 62 | 5310 | 16.72 | 10.07 | 10.55 | 10.01 | 10.59 | 10.00 | 10.54 | 10.00 | 10.50 | 10.00 | | | | | | CH 102 | 5510 | 16.76 | | | | | | | | | | | | | | | CH 110 | 5550 | 16.78 | 16.73 | 16.67 | 16.71 | 16.61 | 16.54 | 16.59 | 16.61 | 16.59 | 16.74 | | | | | | CH 134 | 5670 | 16.69 | | | | | | | | | | | | | | | CH 151 | 5755 | 16.72 | 16.62 | 16.68 | 16.53 | 16.60 | 16.51 | 16.55 | 16.48 | 16.53 | 16.43 | | | | | | CH 159 | 5795 | 16.65 | 10.02 | 10.00 | 10.55 | 10.00 | 10.51 | 10.55 | 10.40 | 10.55 | 10.43 | | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 20 of 31 | | | | WL | AN 5GHz 80 | 02.11ac-VH | WLAN 5GHz 802.11ac-VHT80 Average Power (dBm) | | | | | | | | | | | | |--|-----------|--------------|-------|------------|------------|--|-------|-------|-------|-------|-------|--|--|--|--|--|--| | Power vs. Channel Power vs. MCS Index | | | | | | | | | | | | | | | | | | | Channel | Frequency | MCS
Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | MCS9 | | | | | | | | | (MHz) | MCS0 | | | | | | | | | | | | | | | | | CH 42 | 5210 | 16.77 | 16.68 | 16.65 | 16.59 | 16.66 | 16.73 | 16.72 | 16.64 | 16.69 | 16.61 | | | | | | | | CH 58 | 5290 | 16.75 | 16.71 | 16.67 | 16.64 | 16.71 | 16.59 | 16.73 | 16.61 | 16.59 | 16.65 | | | | | | | | CH 106 | 5530 | 16.60 | 16.59 | 16.56 | 16.49 | 16.57 | 16.43 | 16.56 | 16.58 | 16.53 | 16.54 | | | | | | | | CH 155 5775 16.92 16.88 16.85 16.83 16.87 16.79 16.84 16.89 16.81 16.3 | | | | | | | | 16.78 | | | | | | | | | | Report No. : FA470201 #### <5GHz WLAN Antenna 0+1> | | | | WLAN 5GH | lz 802.11n-HT | 20 Average P | ower (dBm) | | | | |----------|---------------|-----------|----------|---------------|--------------|----------------|----------|----------|--------| | Po | wer vs. Chanı | nel | | | Pov | ver vs. MCS Ir | ndex | | | | Channel | Frequency | Data Rate | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | Chamilei | (MHz) | 6Mbps | alvinha | 12IVIDPS | Tolvibha | 241VIDPS | Solvibhs | 401VIDPS | 54Mbps | | CH 36 | 5180 | 15.24 | | | | | | | | | CH 40 | 5200 | 15.19 | 15.29 | 15.29 | 15.25 | 15.24 | 15.24 | 15.30 | 15.26 | | CH 44 | 5220 | 15.17 | 13.29 | 13.29 | 13.23 | 15.24 | 15.24 | 13.30 | 13.20 | | CH 48 | 5240 | 15.36 | | | | | | | | | CH 52 | 5260 | 19.65 | | | | | | 19.67 | | | CH 56 | 5280 | 19.70 | 19.70 | 70 19.67 | 19.68 | 19.64 | 19.60 | | 19.70 | | CH 60 | 5300 | 19.80 | 19.70 | | 19.00 | 19.04 | 19.00 | | 19.70 | | CH 64 | 5320 | 19.79 | | | | | | | | | CH 100 | 5500 | 19.92 | | | | | | | | | CH 104 | 5520 | 19.88 | | | | | | | | | CH 108 | 5540 | 19.80 | | | | | | | | | CH 112 | 5560 | 19.79 | 19.81 | 19.79 | 19.72 | 19.79 | 19.69 | 19.74 | 19.76 | | CH 116 | 5580 | 19.76 | 19.01 | 19.79 | 19.72 | 19.79 | 19.09 | 19.74 | 19.70 | | CH 132 | 5660 | 19.74 | | | | | | | | | CH 136 | 5680 | 19.69 | | | | | | | | | CH 140 | 5700 | 19.76 | | | | | | | | | CH 149 | 5745 | 19.71 | _ | | | | | _ | | | CH 153 | 5765 | 19.63 | 19.80 | 10.60 | 19.78 | 10.50 | 10.46 | 10.40 | 10.62 | | CH 157 | 5785 | 19.58 | 19.80 | 19.69 | 19.78 | 3 19.50 | 19.46 | 19.40 | 19.63 | | CH 161 | 5805 | 19.88 | | | | | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 21 of 31 | | | | WLAN 5GH | z 802.11n-HT | 40 Average P | ower (dBm) | | | | |---------|--------------|-----------|----------|--------------|--------------|---------------|--------|--------|--------| | Po | wer vs. Chan | nel | | | Pow | er vs. MCS Ir | ndex | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | Channel | (MHz) | MCS0 | IVICST | IVICSZ | IVICSS | IVIC 34 | IVICSS | IVICSO | IVICS/ | | CH 38 | 5190 | 15.45 | 15.49 | 15.45 | 15.42 | 15.37 | 15.49 | 15.45 | 15.47 | | CH 46 | 5230 | 15.52 | 15.49 | 15.45 | 10.42 | 15.57 | 15.49 | 15.45 | 15.47 | | CH 54 | 5270 | 19.74 | 19.68 | 19.72 | 19.64 | 19.72 | 19.72 | 19.77 | 19.71 | | CH 62 | 5310 | 19.79 | 19.00 | 19.72 | 19.04 | 19.72 | 19.72 | 19.77 | 19.71 | | CH 102 | 5510 | 19.76 | | | | | | | | | CH 110 | 5550 | 19.64 | 19.61 | 19.60 | 19.70 | 19.57 | 19.64 | 19.62 | 19.69 | | CH 134 | 5670 | 19.81 | | | | | | | | | CH 151 | 5755 | 19.83 | 19.71 | 19.61 | 19.60 | 19.32 | 19.30 | 19.22 | 19.21 | | CH 159 | 5795 | 19.69 | 19.71 | 19.01 | 19.00 | 19.32 | 19.30 | 13.22 | 19.21 | | | | | WLAN 5GHz 802.11ac-VHT20 Average Power (dBm) | | | | | | | | |---------|--------------|-----------|--|-------|--------|-----------|-----------|--------|-------|--------| | Po | wer vs. Char | nel | | | | Power vs. | MCS Index | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | | Charmer | (MHz) | MCS0 | IVICOT | WICOZ | IVICOS | WICOT | IVICOO | IVICOU | WCS7 | IVICOO | | CH 36 | 5180 | 14.43 | | | | | | | | | | CH 40 | 5200 | 14.40 | 14.34 | 14.28 | 14.34 | 14.20 | 14.30 | 14.40 | 14.34 | 14.28 | | CH 44 | 5220 | 14.31 | 14.54 | 14.20 | 14.34 | 14.20 | 14.30 | 14.40 | 14.54 | 14.20 | | CH 48 | 5240 | 14.29 | | | | | | | | | | CH 52 | 5260 | 19.77 | | | | | 19.61 | | | | | CH 56 | 5280 | 19.73 | 19.62 | 19.67 |
40.00 | 19.68 | | 19.64 | 19.68 | 19.71 | | CH 60 | 5300 | 19.75 | 19.02 | 19.67 | 19.68 | 19.00 | 19.61 | | | 19.71 | | CH 64 | 5320 | 19.70 | | | | | | | | | | CH 100 | 5500 | 19.77 | | | | | | | | | | CH 104 | 5520 | 19.71 | | | | | | 19.67 | | | | CH 108 | 5540 | 19.68 | | | | | | | | | | CH 112 | 5560 | 19.66 | 19.61 | 19.66 | 19.64 | 19.68 | 19.57 | | 19.74 | 19.70 | | CH 116 | 5580 | 19.79 | 19.01 | 19.00 | 19.04 | 19.00 | 19.57 | 19.07 | 19.74 | 19.70 | | CH 132 | 5660 | 19.59 | | | | | | | | | | CH 136 | 5680 | 19.64 | | | | | | | | | | CH 140 | 5700 | 19.71 | | | | | | | | | | CH 149 | 5745 | 19.76 | 19.93 | | | | | | | | | CH 153 | 5765 | 19.65 | | 10.90 | 19.88 | 10.72 | 10.70 | 10.74 | 19.73 | 19.65 | | CH 157 | 5785 | 19.62 | | 19.89 | 19.00 | 19.73 | 19.70 | 19.74 | 19.73 | 19.05 | | CH 161 | 5805 | 19.99 | | | | | | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID : TE7T4UH Page 22 of 31 | | | | WL | AN 5GHz 80 | 02.11ac-VH | T40 Averag | je Power (d | Bm) | | | | | |---------|--------------------|----------------------|-------|---------------------|------------|------------|-------------|-------|-------|-------|-------|--| | Pov | wer vs. Char | nnel | | Power vs. MCS Index | | | | | | | | | | Channel | Frequency
(MHz) | MCS
Index
MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | MCS9 | | | CH 38 | 5190 | 17.10 | 16.98 | 17.01 | 17.00 | 17.01 | 17.01 | 16.93 | 16.94 | 16.87 | 16.92 | | | CH 46 | 5230 | 16.88 | 10.90 | 17.01 | 17.00 | 17.01 | 17.01 | 10.93 | 10.94 | 10.07 | 10.92 | | | CH 54 | 5270 | 19.66 | 19.72 | 19.70 | 19.71 | 19.67 | 19.71 | 19.73 | 19.73 | 19.61 | 19.62 | | | CH 62 | 5310 | 19.78 | 19.72 | 19.70 | 19.71 | 19.07 | 19.71 | 19.73 | 19.73 | 19.01 | 19.02 | | | CH 102 | 5510 | 19.77 | | | | | | | | | | | | CH 110 | 5550 | 19.75 | 19.68 | 19.62 | 19.67 | 19.67 | 19.66 | 19.60 | 19.71 | 19.71 | 19.67 | | | CH 134 | 5670 | 19.79 | | | | | | | | | | | | CH 151 | 5755 | 19.87 | 19.73 | 19.46 | 19.37 | 19.30 | 19.22 | 19.12 | 19.15 | 19.05 | 19.16 | | | CH 159 | 5795 | 19.71 | 18.73 | 19.40 | 19.37 | 19.30 | 13.22 | 19.12 | 19.10 | 19.00 | 19.10 | | Report No. : FA470201 | | | | WL | AN 5GHz 80 | 02.11ac-VH | T80 Averag | e Power (d | Bm) | | | | | | | |---------|---|--------------|-------|---------------------|------------|------------|------------|-------|-------|-------|-------|--|--|--| | Pov | wer vs. Char | nnel | | Power vs. MCS Index | | | | | | | | | | | | Channel | Frequency | MCS
Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | MCS9 | | | | | 31.a5. | (MHz) | MCS0 | | 00_ | | | | | | | | | | | | CH 42 | 5210 | 19.83 | 19.69 | 19.76 | 19.74 | 19.73 | 19.71 | 19.73 | 19.68 | 19.78 | 19.65 | | | | | CH 58 | 5290 | 19.80 | 19.66 | 19.68 | 19.70 | 19.64 | 19.67 | 19.68 | 19.64 | 19.67 | 19.73 | | | | | CH 106 | 5530 | 19.70 | 19.60 | 19.59 | 19.54 | 19.65 | 19.49 | 19.61 | 19.58 | 19.61 | 19.61 | | | | | CH 155 | CH 155 5775 19.87 19.73 19.57 19.48 19.37 19.38 19.29 19.41 19.39 19. | | | | | | | | 19.46 | | | | | | # Report No. : FA470201 # 13. Antenna Location **Back View** TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 24 of 31 ## 14. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA470201 - b. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Tune-up scaling factor - 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. During SAR testing the WLAN transmission was verified using a spectrum analyzer. #### 14.1 **Body SAR** #### <WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Antenna | Antenna
Angle | Ch. | Freq.
(MHz) | | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------------|------------------|-------------|---------|------------------|-----|----------------|-------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 01 | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 0 | 6 | 2437 | 17.94 | 18.00 | 1.014 | 0.07 | 1.390 | 1.409 | | | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 0 | 1 | 2412 | 17.70 | 18.00 | 1.072 | -0.1 | 1.120 | 1.200 | | | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 0 | 11 | 2462 | 17.83 | 18.00 | 1.040 | -0.12 | 1.150 | 1.196 | | | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 90 | 6 | 2437 | 17.94 | 18.00 | 1.014 | 0.07 | 0.020 | 0.020 | | | WLAN2.4GHz | 802.11b 1Mbps | Tip | 1.0cm | 0 | 90 | 6 | 2437 | 17.94 | 18.00 | 1.014 | -0.04 | 0.598 | 0.606 | | | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 180 | 6 | 2437 | 17.94 | 18.00 | 1.014 | 0.06 | 1.240 | 1.257 | | | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 180 | 1 | 2412 | 17.70 | 18.00 | 1.072 | 80.0 | 1.040 | 1.114 | | | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 180 | 11 | 2462 | 17.83 | 18.00 | 1.040 | 0.08 | 1.170 | 1.217 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 0 | 1 | 2412 | 20.07 | 20.50 | 1.104 | -0.01 | 0.930 | 1.026 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 0 | 6 | 2437 | 19.84 | 20.50 | 1.165 | -0.02 | 1.010 | 1.177 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 0 | 11 | 2462 | 19.96 | 20.50 | 1.132 | 0.01 | 0.977 | 1.106 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 90 | 1 | 2412 | 20.07 | 20.50 | 1.104 | 0.01 | 0.030 | 0.033 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Tip | 1.0cm | 0+1 | 90 | 1 | 2412 | 20.07 | 20.50 | 1.104 | 0.06 | 0.624 | 0.689 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 180 | 1 | 2412 | 20.07 | 20.50 | 1.104 | 0.16 | 0.856 | 0.945 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 180 | 6 | 2437 | 19.84 | 20.50 | 1.165 | 0.07 | 0.850 | 0.990 | | | WLAN2.4GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 180 | 11 | 2462 | 19.96 | 20.50 | 1.132 | 0.07 | 0.906 | 1.026 | FCC ID : TE7T4UH Page 25 of 31 Form version. : 140820 | | | | | | | | | | Average | Tuna Ha | T | Dawer | Manageman | Danastad | |------|----------|---------------------|----------|-------|---------|---------|-----|-------|---------------|------------------|--------------------|----------------|--------------------|--------------------| | Plot | Band | Mode | Test | Gap | Antenna | Antenna | Ch. | Freq. | Average Power | Tune-Up
Limit | Tune-up
Scaling | Power
Drift | Measured
1q SAR | Reported
1g SAR | | No. | | | Position | (cm) | | Angle | | (MHz) | (dBm) | (dBm) | Factor | (dB) | (W/kg) | (W/kg) | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 0 | 36 | 5180 | 15.21 | 16.00 | 1.199 | -0.01 | 0.428 | 0.513 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 90 | 36 | 5180 | 15.21 | 16.00 | 1.199 | 0.07 | 0.029 | 0.035 | | | WLAN5GHz | 802.11a 6Mbps | Tip | 1.0cm | 0 | 90 | 36 | 5180 | 15.21 | 16.00 | 1.199 | 0.1 | 0.199 | 0.239 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 180 | 36 | 5180 | 15.21 | 16.00 | 1.199 | -0.03 | 0.478 | 0.573 | | 02 | WLAN5GHz | 802.11n-HT40 MCS0 | Back | 0.5cm | 0 | 180 | 38 | 5190 | 16.81 | 17.00 | 1.045 | -0.12 | 0.699 | <mark>0.730</mark> | | | WLAN5GHz | 802.11ac-VHT40 MCS0 | Back | 0.5cm | 0 | 180 | 38 | 5190 | 16.93 | 17.00 | 1.016 | -0.08 | 0.631 | 0.641 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Back | 0.5cm | 0 | 180 | 42 | 5210 | 16.77 | 17.00 | 1.054 | -0.12 | 0.443 | 0.467 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 0 | 48 | 5240 | 15.36 | 16.00 | 1.160 | -0.13 | 0.137 | 0.159 | | | WLAN5GHz | 802.11ac-VHT40 MCS0 | Back | 0.5cm | 0+1 | 0 | 38 | 5190 | 17.10 | 18.00 | 1.230 | -0.04 | 0.270 | 0.332 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Back | 0.5cm | 0+1 | 0 | 42 | 5210 | 19.83 | 20.00 | 1.040 | 0.04 | 0.198 | 0.206 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 90 | 48 | 5240 | 15.36 | 16.00 | 1.160 | 0.1 | 0.005 | 0.005 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Tip | 1.0cm | 0+1 | 90 | 48 | 5240 | 15.36 | 16.00 | 1.160 | 0.11 | 0.055 | 0.064 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 180 | 48 | 5240 | 15.36 | 16.00 | 1.160 | -0.13 | 0.063 | 0.073 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 0 | 64 | 5320 | 17.93 | 18.00 | 1.016 | 0.05 | 0.384 | 0.390 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 90 | 64 | 5320 | 17.93 | 18.00 | 1.016 | 0.19 | 0.074 | 0.075 | | | WLAN5GHz | 802.11a 6Mbps | Tip | 1.0cm | 0 | 90 | 64 | 5320 | 17.93 | 18.00 | 1.016 | 0 | 0.456 | 0.463 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 180 | 64 | 5320 | 17.93 | 18.00 | 1.016 | -0.08 | 0.605 | 0.615 | | 03 | WLAN5GHz | 802.11ac-VHT80 MCS0 | Back | 0.5cm | 0 | 180 | 58 | 5290 | 16.75 | 17.00 | 1.059 | 0.09 | 0.717 | <mark>0.759</mark> | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 0 | 60 | 5300 | 19.80 | 20.00 | 1.047 | -0.02 | 0.372 | 0.389 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Back | 0.5cm | 0+1 | 0 | 58 | 5290 | 19.80 | 20.00 | 1.048 | -0.04 | 0.117 | 0.123 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 90 | 60 | 5300 | 19.80 |
20.00 | 1.047 | 0.17 | 0.039 | 0.041 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Tip | 1.0cm | 0+1 | 90 | 60 | 5300 | 19.80 | 20.00 | 1.047 | -0.15 | 0.164 | 0.172 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 180 | 60 | 5300 | 19.80 | 20.00 | 1.047 | -0.12 | 0.188 | 0.197 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 0 | 116 | 5580 | 17.92 | 18.00 | 1.019 | 0.07 | 0.567 | 0.578 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 0 | 108 | 5540 | 17.66 | 18.00 | 1.081 | 0.02 | 0.484 | 0.523 | | 04 | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 0 | 136 | 5680 | 17.77 | 18.00 | 1.054 | 0.12 | 0.794 | 0.837 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 90 | 116 | 5580 | 17.92 | 18.00 | 1.019 | 0.03 | 0.112 | 0.114 | | | WLAN5GHz | 802.11a 6Mbps | Tip | 1.0cm | 0 | 90 | 116 | 5580 | 17.92 | 18.00 | 1.019 | -0.15 | 0.542 | 0.552 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 180 | 116 | 5580 | 17.92 | 18.00 | 1.019 | -0.12 | 0.735 | 0.749 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 180 | 108 | 5540 | 17.66 | 18.00 | 1.081 | -0.02 | 0.639 | 0.691 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 180 | 136 | 5680 | 17.77 | 18.00 | 1.054 | -0.06 | 0.787 | 0.830 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Back | 0.5cm | 0 | 180 | 106 | 5530 | 16.60 | 17.00 | 1.096 | -0.08 | 0.484 | 0.531 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 0 | 100 | 5500 | 19.92 | 20.00 | 1.020 | -0.1 | 0.193 | 0.197 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 90 | 100 | 5500 | 19.92 | 20.00 | 1.020 | 0.17 | 0.040 | 0.041 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Tip | 1.0cm | 0+1 | 90 | 100 | 5500 | 19.92 | 20.00 | 1.020 | 0.03 | 0.144 | 0.147 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 180 | 100 | 5500 | 19.92 | 20.00 | 1.020 | -0.14 | 0.248 | 0.253 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Back | 0.5cm | 0+1 | 180 | 106 | 5530 | 19.70 | 20.00 | 1.073 | 0.07 | 0.069 | 0.074 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 0 | 149 | 5745 | 17.76 | 18.00 | 1.057 | 0.14 | 0.550 | 0.581 | | 05 | WLAN5GHz | 802.11ac-VHT80 MCS0 | | 0.5cm | 0 | 0 | | 5775 | 16.92 | 17.00 | 1.019 | 0.06 | 0.640 | 0.652 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 90 | | 5745 | 17.76 | 18.00 | 1.057 | 0.12 | 0.076 | 0.080 | | | WLAN5GHz | 802.11a 6Mbps | Tip | 1.0cm | 0 | 90 | | 5745 | 17.76 | 18.00 | 1.057 | -0.05 | 0.411 | 0.434 | | | WLAN5GHz | 802.11a 6Mbps | Back | 0.5cm | 0 | 180 | _ | 5745 | 17.76 | 18.00 | 1.057 | 0.02 | 0.498 | 0.526 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 0 | | 5805 | 19.88 | 20.00 | 1.027 | 0.04 | 0.280 | 0.288 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | | 0.5cm | 0+1 | 0 | _ | 5775 | 19.87 | 20.00 | 1.031 | -0.15 | 0.077 | 0.079 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 90 | 161 | | 19.88 | 20.00 | 1.027 | 0.11 | 0.052 | 0.053 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Tip | 1.0cm | 0+1 | 90 | 161 | | 19.88 | 20.00 | 1.027 | 0.04 | 0.166 | 0.171 | | | WLAN5GHz | 802.11n-HT20 MCS8 | Back | 0.5cm | 0+1 | 180 | | 5805 | 19.88 | 20.00 | 1.027 | 0.05 | 0.231 | 0.237 | Report No. : FA470201 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH Page 26 of 31 ## 14.2 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(cm) | Antenna | Antenna
Angle | Ch. | Freq.
(MHz) | Power | | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | | Reported
1g SAR
(W/kg) | |-----|------------|---------------|------------------|-------------|---------|------------------|-----|----------------|-------|-------|------------------------------|------|------------------------------|------|------------------------------| | 1st | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 0 | 6 | 2437 | 17.94 | 18.00 | 1.014 | 0.07 | 1.390 | | 1.409 | | 2nd | WLAN2.4GHz | 802.11b 1Mbps | Back | 0.5cm | 0 | 0 | 6 | 2437 | 17.94 | 18.00 | 1.014 | -0.1 | 1.330 | 1.05 | 1.349 | **Report No.: FA470201** #### **General Note:** - 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. Test Engineer: Ken Li, Aaron Chen, Domo Hsiao and Jerry Hu TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 FCC ID: TE7T4UH Form version. : 140820 Page 27 of 31 ## 15. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA470201 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### Table 15.1. Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |--------------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % |
| Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | ± 11.0 % | ± 10.8 % | | | | | | | Coverage Factor for 95 % | K: | =2 | | | | | | | Expanded Uncertainty | | | | | | ± 22.0 % | ± 21.5 % | Report No. : FA470201 Table 15.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Nov. 04, 2014 Form version. : 140820 FCC ID: TE7T4UH | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | | | | |------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------|--|--|--| | Measurement System | | | | | | | | | | | | Probe Calibration | 6.55 | Normal | 1 | 1 | 1 | ± 6.55 % | ± 6.55 % | | | | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | | | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | | | | Boundary Effects | 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | | | | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | | | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | | | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | | | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | | | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | Probe Positioner | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | | | | Probe Positioning | 9.9 | Rectangular | √3 | 1 | 1 | ± 5.7 % | ± 5.7 % | | | | | Max. SAR Eval. | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | | | | Test Sample Related | | - | I | I | I | I | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | | | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | | Phantom and Setup | | | | | 1 | ı | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | | | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | | | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | | | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | | | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | | | | Combined Standard Uncertaint | y | 1 | 1 | 1 | 1 | ± 12.8 % | ± 12.6 % | | | | | Coverage Factor for 95 % | - | | | | | | | | | | | - | | | | | | + | 1 | | | | Report No. : FA470201 ± 25.6 % Issued Date : Nov. 04, 2014 Form version. : 140820 ± 25.2 % Table 15.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz **Expanded Uncertainty** TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: TE7T4UH Page 30 of 31 ## 16. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No. : FA470201 - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014 - [7] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014. - [8] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013.