

7.7. Frequency Stability Measurement

7.7.1.Test Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5GHz band (IEEE 802.11 specification).

7.7.2.Test Procedure Used

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

7.7.3.Test Setup

7.7.4.Test Result

Product	AC1200 Wireless Dual Band	Tomporatura	-30 ~ 50°C	
	PCI Express Adapter	Temperature		
Test Engineer	Flag Yang	Relative Humidity	46 ~ 55%RH	
Test Site	TR3	Test Time	2018/11/19	
Test Mode	5180MHz (Carrier Mode)			

Voltage	Power	Temp	Frequency Tolerance
(%)	(VAC)	(°C)	(ppm)
		- 30	-2.23
		- 20	-3.12
		- 10	-3.59
		0	-3.67
100%	120	+ 10	-2.94
		+ 20 (Ref)	-3.81
		+ 30	-4.41
		+ 40	-4.06
		+ 50	-3.92
115%	138	+ 20	-3.67
85%	102	+ 20	-3.28

Note: Frequency Tolerance (ppm) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)} $*10^{6}$.

7.8. Radiated Spurious Emission Measurement

7.8.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title

47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209						
Frequency	Measured Distance					
[MHz]	[uV/m]	[Meters]				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

7.8.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.8.3.Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.
- If the EUT duty cycle is < 98%, set VBW \geq 1/T. T is the minimum transmission duration.
- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

7.8.4.Test Setup

9kHz ~30MHz Test Setup:

1GHz ~18GHz Test Setup:

7.8.5.Test Result

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	36
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8726.5	10.3	36.9	47.2	68.2	-21.0	Peak	Horizontal
*	9899.5	11.4	38.7	50.1	68.2	-18.1	Peak	Horizontal
	11004.5	11.0	40.3	51.3	74.0	-22.7	Peak	Horizontal
	12509.0	12.9	38.7	51.6	74.0	-22.4	Peak	Horizontal
*	8769.0	11.4	37.0	48.4	68.2	-19.8	Peak	Vertical
*	9814.5	13.0	38.6	51.6	68.2	-16.6	Peak	Vertical
	10936.5	12.6	40.3	52.9	74.0	-21.1	Peak	Vertical
	12245.5	12.7	39.2	51.9	74.0	-22.1	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C		
Test Engineer	Dandy Li	Relative Humidity	57 %		
Test Site	AC1	Test Date	2018/11/19		
Test Mode:	802.11a - Ant A	Test Channel:	44		
Remark:	1. Average measurement was not performed if peak level lower than average				
	 Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report. 				

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8667.0	11.4	36.9	48.3	68.2	-19.9	Peak	Horizontal
*	9899.5	12.0	38.7	50.7	68.2	-17.5	Peak	Horizontal
	11081.0	12.2	40.1	52.3	74.0	-21.7	Peak	Horizontal
	12237.0	13.6	39.2	52.8	74.0	-21.2	Peak	Horizontal
*	8837.0	11.4	36.9	48.3	68.2	-19.9	Peak	Vertical
*	9831.5	12.8	38.7	51.5	68.2	-16.7	Peak	Vertical
	10843.0	13.2	40.1	53.3	74.0	-20.7	Peak	Vertical
	12347.5	13.3	38.9	52.2	74.0	-21.8	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	48
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8769.0	10.4	37.0	47.4	68.2	-20.8	Peak	Horizontal
*	9891.0	12.6	38.7	51.3	68.2	-16.9	Peak	Horizontal
	10877.0	13.4	40.2	53.6	74.0	-20.4	Peak	Horizontal
	12585.5	13.2	38.8	52.0	74.0	-22.0	Peak	Horizontal
*	8709.5	11.9	36.9	48.8	68.2	-19.4	Peak	Vertical
*	9831.5	12.6	38.7	51.3	68.2	-16.9	Peak	Vertical
	10834.5	12.5	40.1	52.6	74.0	-21.4	Peak	Vertical
	12534.5	13.7	38.7	52.4	74.0	-21.6	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	52
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8794.5	9.9	37.0	46.9	68.2	-21.3	Peak	Horizontal
*	9831.5	12.1	38.7	50.8	68.2	-17.4	Peak	Horizontal
	10843.0	12.7	40.1	52.8	74.0	-21.2	Peak	Horizontal
	12390.0	13.1	38.8	51.9	74.0	-22.1	Peak	Horizontal
*	8760.5	12.0	37.0	49.0	68.2	-19.2	Peak	Vertical
*	9899.5	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	10817.5	12.7	40.0	52.7	74.0	-21.3	Peak	Vertical
	12092.5	13.0	39.3	52.3	74.0	-21.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	60
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8786.0	10.6	37.0	47.6	68.2	-20.6	Peak	Horizontal
*	9967.5	14.1	38.6	52.7	68.2	-15.5	Peak	Horizontal
	11013.0	12.8	40.3	53.1	74.0	-20.9	Peak	Horizontal
	12594.0	12.9	38.8	51.7	74.0	-22.3	Peak	Horizontal
*	8684.0	11.7	36.9	48.6	68.2	-19.6	Peak	Vertical
*	9916.5	13.4	38.7	52.1	68.2	-16.1	Peak	Vertical
	11089.5	12.8	40.1	52.9	74.0	-21.1	Peak	Vertical
	12441.0	12.3	38.7	51.0	74.0	-23.0	Peak	Vertical
	<i>"</i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	64
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8777.5	10.3	37.0	47.3	68.2	-20.9	Peak	Horizontal
*	9831.5	12.8	38.7	51.5	68.2	-16.7	Peak	Horizontal
	11030.0	12.1	40.2	52.3	74.0	-21.7	Peak	Horizontal
	12441.0	11.9	38.7	50.6	74.0	-23.4	Peak	Horizontal
*	8760.5	10.9	37.0	47.9	68.2	-20.3	Peak	Vertical
*	9848.5	12.3	38.7	51.0	68.2	-17.2	Peak	Vertical
	10868.5	12.6	40.2	52.8	74.0	-21.2	Peak	Vertical
	12398.5	11.3	38.7	50.0	74.0	-24.0	Peak	Vertical
	12000.0			00.0	71.0	21.0	I COIR	Vertice

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	100
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8735.0	10.4	36.9	47.3	68.2	-20.9	Peak	Horizontal
*	9882.5	12.0	38.7	50.7	68.2	-17.5	Peak	Horizontal
	10877.0	12.3	40.2	52.5	74.0	-21.5	Peak	Horizontal
	12466.5	12.2	38.7	50.9	74.0	-23.1	Peak	Horizontal
*	8845.5	11.0	36.9	47.9	68.2	-20.3	Peak	Vertical
*	10027.0	12.8	38.6	51.4	68.2	-16.8	Peak	Vertical
	10894.0	13.5	40.3	53.8	74.0	-20.2	Peak	Vertical
	12500.5	11.7	38.7	50.4	74.0	-23.6	Peak	Vertical
	"							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	116
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8752.0	9.5	37.0	46.5	68.2	-21.7	Peak	Horizontal
*	9653.0	12.0	38.1	50.1	68.2	-18.1	Peak	Horizontal
	10817.5	13.1	40.0	53.1	74.0	-20.9	Peak	Horizontal
	12381.5	12.4	38.8	51.2	74.0	-22.8	Peak	Horizontal
*	8735.0	10.0	36.9	46.9	68.2	-21.3	Peak	Vertical
*	9976.0	13.4	38.6	52.0	68.2	-16.2	Peak	Vertical
	10877.0	13.6	40.2	53.8	74.0	-20.2	Peak	Vertical
	12568.5	12.9	38.7	51.6	74.0	-22.4	Peak	Vertical
				· · · · · · · · ·				

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	140
Remark:	1. Average measurement was not p	performed if peak level low	wer than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8769.0	11.0	37.0	48.0	68.2	-20.2	Peak	Horizontal
*	9840.0	11.8	38.7	50.5	68.2	-17.7	Peak	Horizontal
	10783.5	10.5	39.9	50.4	74.0	-23.6	Peak	Horizontal
	12441.0	12.4	38.7	51.1	74.0	-22.9	Peak	Horizontal
*	8735.0	9.8	36.9	46.7	68.2	-21.5	Peak	Vertical
*	9857.0	10.7	38.7	49.4	68.2	-18.8	Peak	Vertical
	10843.0	11.1	40.1	51.2	74.0	-22.8	Peak	Vertical
	12449.5	11.3	38.7	50.0	74.0	-24.0	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	149
Remark:	1. Average measurement was not p	performed if peak level low	wer than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8701.0	9.7	36.9	46.6	68.2	-21.6	Peak	Horizontal
*	9763.5	11.7	38.5	50.2	68.2	-18.0	Peak	Horizontal
	10758.0	12.5	39.8	52.3	74.0	-21.7	Peak	Horizontal
	12492.0	11.4	38.7	50.1	74.0	-23.9	Peak	Horizontal
*	8692.5	9.6	36.9	46.5	68.2	-21.7	Peak	Vertical
*	9984.5	12.3	38.6	50.9	68.2	-17.3	Peak	Vertical
	10843.0	12.6	40.1	52.7	74.0	-21.3	Peak	Vertical
	12381.5	12.0	38.8	50.8	74.0	-23.2	Peak	Vertical
	12001.0	12.0	00.0	00.0	74.0	-20.2	T Cak	Vertice

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	157
Remark:	1. Average measurement was not p	performed if peak level low	wer than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8658.5	10.4	36.9	47.3	68.2	-20.9	Peak	Horizontal
*	9857.0	11.3	38.7	50.0	68.2	-18.2	Peak	Horizontal
	11140.5	12.9	40.0	52.9	74.0	-21.1	Peak	Horizontal
	12330.5	11.7	38.9	50.6	74.0	-23.4	Peak	Horizontal
*	8845.5	9.5	36.9	46.4	68.2	-21.8	Peak	Vertical
*	9721.0	10.8	38.2	49.0	68.2	-19.2	Peak	Vertical
	10826.0	10.7	40.1	50.8	74.0	-23.2	Peak	Vertical
	12509.0	12.0	38.7	50.7	74.0	-23.3	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11a - Ant A	Test Channel:	165
Remark:	1. Average measurement was not p	performed if peak level low	wer than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8837.0	11.1	36.9	48.0	68.2	-20.2	Peak	Horizontal
*	9908.0	12.4	38.7	51.1	68.2	-17.1	Peak	Horizontal
	10809.0	13.2	40.0	53.2	74.0	-20.8	Peak	Horizontal
	12245.5	12.7	39.2	51.9	74.0	-22.1	Peak	Horizontal
*	8709.5	11.3	36.9	48.2	68.2	-20.0	Peak	Vertical
*	9899.5	12.2	38.7	50.9	68.2	-17.3	Peak	Vertical
	11004.5	12.5	40.3	52.8	74.0	-21.2	Peak	Vertical
	12483.5	12.5	38.7	51.2	74.0	-22.8	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	36
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8786.0	10.4	37.0	47.4	68.2	-20.8	Peak	Horizontal
*	9908.0	12.6	38.7	51.3	68.2	-16.9	Peak	Horizontal
	10868.5	11.9	40.2	52.1	74.0	-21.9	Peak	Horizontal
	11973.5	12.1	39.3	51.4	74.0	-22.6	Peak	Horizontal
*	8726.5	9.1	36.9	46.0	68.2	-22.2	Peak	Vertical
*	9814.5	11.8	38.6	50.4	68.2	-17.8	Peak	Vertical
	10775.0	12.4	39.9	52.3	74.0	-21.7	Peak	Vertical
	12390.0	12.0	38.8	50.8	74.0	-23.2	Peak	Vertical
	"+11 · · ·					6.0		

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	44
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8692.5	10.3	36.9	47.2	68.2	-21.0	Peak	Horizontal
*	9993.0	12.5	38.6	51.1	68.2	-17.1	Peak	Horizontal
	10877.0	12.8	40.2	53.0	74.0	-21.0	Peak	Horizontal
	12466.5	12.9	38.7	51.6	74.0	-22.4	Peak	Horizontal
*	8726.5	10.8	36.9	47.7	68.2	-20.5	Peak	Vertical
*	10154.5	13.0	38.8	51.8	68.2	-16.4	Peak	Vertical
	10860.0	12.4	40.2	52.6	74.0	-21.4	Peak	Vertical
	12407.0	12.8	38.7	51.5	74.0	-22.5	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	48
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8811.5	10.8	37.0	47.8	68.2	-20.4	Peak	Horizontal
*	9950.5	12.6	38.6	51.2	68.2	-17.0	Peak	Horizontal
	10749.5	12.3	39.8	52.1	74.0	-21.9	Peak	Horizontal
	12500.5	11.7	38.7	50.4	74.0	-23.6	Peak	Horizontal
*	8658.5	10.7	36.9	47.6	68.2	-20.6	Peak	Vertical
*	9933.5	12.4	38.6	51.0	68.2	-17.2	Peak	Vertical
	10953.5	12.4	40.3	52.7	74.0	-21.3	Peak	Vertical
	12271.0	11.1	39.1	50.2	74.0	-23.8	Peak	Vertical
	() - H							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	52
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8692.5	10.6	36.9	47.5	68.2	-20.7	Peak	Horizontal
*	9772.0	11.8	38.5	50.3	68.2	-17.9	Peak	Horizontal
	11149.0	12.6	40.0	52.6	74.0	-21.4	Peak	Horizontal
	12373.0	12.3	38.8	51.1	74.0	-22.9	Peak	Horizontal
*	8837.0	11.4	36.9	48.3	68.2	-19.9	Peak	Vertical
*	9891.0	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	11149.0	12.6	40.0	52.6	74.0	-21.4	Peak	Vertical
	12475.0	12.9	38.7	51.6	74.0	-22.4	Peak	Vertical
	12470.0	12.0	00.7	01.0	14.0	22.7	T Call	Vertice

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	60
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8735.0	10.4	36.9	47.3	68.2	-20.9	Peak	Horizontal
*	9899.5	12.7	38.7	51.4	68.2	-16.8	Peak	Horizontal
	10792.0	13.1	40.0	53.1	74.0	-20.9	Peak	Horizontal
	12560.0	13.1	38.7	51.8	74.0	-22.2	Peak	Horizontal
*	8828.5	11.5	36.9	48.4	68.2	-19.8	Peak	Vertical
*	9857.0	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	10953.5	12.6	40.3	52.9	74.0	-21.1	Peak	Vertical
	12517.5	12.9	38.7	51.6	74.0	-22.4	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	64
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8667.0	11.6	36.9	48.5	68.2	-19.7	Peak	Horizontal
*	9857.0	12.8	38.7	51.5	68.2	-16.7	Peak	Horizontal
	11055.5	12.3	40.2	52.5	74.0	-21.5	Peak	Horizontal
	12475.0	12.7	38.7	51.4	74.0	-22.6	Peak	Horizontal
*	8743.5	10.7	37.0	47.7	68.2	-20.5	Peak	Vertical
*	9865.5	13.6	38.7	52.3	68.2	-15.9	Peak	Vertical
	10834.5	12.9	40.1	53.0	74.0	-21.0	Peak	Vertical
	12577.0	13.5	38.8	52.3	74.0	-21.7	Peak	Vertical
	12577.0	15.5	30.0	52.5	74.0	-21.7	reak	VEILIC

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	100
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8769.0	11.3	37.0	48.3	68.2	-19.9	Peak	Horizontal
*	9857.0	12.1	38.7	50.8	68.2	-17.4	Peak	Horizontal
	11004.5	13.2	40.3	53.5	74.0	-20.5	Peak	Horizontal
	12415.5	12.1	38.7	50.8	74.0	-23.2	Peak	Horizontal
*	8735.0	9.9	36.9	46.8	68.2	-21.4	Peak	Vertical
*	9602.0	12.0	38.1	50.1	68.2	-18.1	Peak	Vertical
	10928.0	12.5	40.3	52.8	74.0	-21.2	Peak	Vertical
	12390.0	12.1	38.8	50.9	74.0	-23.1	Peak	Vertical
	12000.0	12.1	00.0	00.0	74.0	-20.1	T Cak	VCITICE

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	116
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7885.0	11.3	37.0	48.3	68.2	-19.9	Peak	Horizontal
*	8871.0	10.5	36.9	47.4	68.2	-20.8	Peak	Horizontal
	10826.0	11.2	40.1	51.3	74.0	-22.7	Peak	Horizontal
	12381.5	10.8	38.8	49.6	74.0	-24.4	Peak	Horizontal
*	8828.5	11.7	36.9	48.6	68.2	-19.6	Peak	Vertical
*	9976.0	12.3	38.6	50.9	68.2	-17.3	Peak	Vertical
	11047.0	12.0	40.2	52.2	74.0	-21.8	Peak	Vertical
	12441.0	11.8	38.7	50.5	74.0	-23.5	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	140
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8726.5	9.8	36.9	46.7	68.2	-21.5	Peak	Horizontal
*	9746.5	11.8	38.4	50.2	68.2	-18.0	Peak	Horizontal
	10758.0	12.6	39.8	52.4	74.0	-21.6	Peak	Horizontal
	12441.0	11.1	38.7	49.8	74.0	-24.2	Peak	Horizontal
*	8658.5	11.2	36.9	48.1	68.2	-20.1	Peak	Vertical
*	9857.0	12.7	38.7	51.4	68.2	-16.8	Peak	Vertical
	11390.2	28.2	17.6	45.8	54.0	-8.2	Average	Vertical
	11395.5	36.9	17.7	54.6	74.0	-19.4	Peak	Vertical
	15781.5	13.2	37.7	50.9	74.0	-23.1	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	149
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8735.0	10.4	36.9	47.3	68.2	-20.9	Peak	Horizontal
*	9857.0	12.1	38.7	50.8	68.2	-17.4	Peak	Horizontal
	10758.0	12.9	39.8	52.7	74.0	-21.3	Peak	Horizontal
	12449.5	12.5	38.7	51.2	74.0	-22.8	Peak	Horizontal
*	8811.5	10.7	37.0	47.7	68.2	-20.5	Peak	Vertical
*	9806.0	12.1	38.6	50.7	68.2	-17.5	Peak	Vertical
	10860.0	12.3	40.2	52.5	74.0	-21.5	Peak	Vertical
	12500.5	12.5	38.7	51.2	74.0	-22.8	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	157
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8811.5	10.7	37.0	47.7	68.2	-20.5	Peak	Horizontal
*	10095.0	12.6	38.6	51.2	68.2	-17.0	Peak	Horizontal
	10758.0	13.7	39.8	53.5	74.0	-20.5	Peak	Horizontal
	12577.0	13.0	38.8	51.8	74.0	-22.2	Peak	Horizontal
*	8752.0	9.0	37.0	46.0	68.2	-22.2	Peak	Vertical
*	9814.5	11.0	38.6	49.6	68.2	-18.6	Peak	Vertical
	10877.0	11.7	40.2	51.9	74.0	-22.1	Peak	Vertical
	12458.0	11.4	38.7	50.1	74.0	-23.9	Peak	Vertical
	() - H							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT20 - Ant A + B	Test Channel:	165
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8828.5	11.7	36.9	48.6	68.2	-19.6	Peak	Horizontal
*	10163.0	11.9	38.8	50.7	68.2	-17.5	Peak	Horizontal
	10877.0	12.8	40.2	53.0	74.0	-21.0	Peak	Horizontal
	12271.0	12.8	39.1	51.9	74.0	-22.1	Peak	Horizontal
*	8735.0	9.6	36.9	46.5	68.2	-21.7	Peak	Vertical
*	10239.5	11.4	39.0	50.4	68.2	-17.8	Peak	Vertical
	10792.0	12.5	40.0	52.5	74.0	-21.5	Peak	Vertical
	12458.0	12.7	38.7	51.4	74.0	-22.6	Peak	Vertical
	12458.0	12.7	38.7	51.4	74.0	-21.5	Peak	Ve

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	38
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8692.5	10.3	36.9	47.2	68.2	-21.0	Peak	Horizontal
*	9746.5	12.2	38.4	50.6	68.2	-17.6	Peak	Horizontal
	10775.0	12.8	39.9	52.7	74.0	-21.3	Peak	Horizontal
	12381.5	11.8	38.8	50.6	74.0	-23.4	Peak	Horizontal
*	8675.5	11.6	36.9	48.5	68.2	-19.7	Peak	Vertical
*	9865.5	11.6	38.7	50.3	68.2	-17.9	Peak	Vertical
	10902.5	12.3	40.3	52.6	74.0	-21.4	Peak	Vertical
	12475.0	12.8	38.7	51.5	74.0	-22.5	Peak	Vertical
						6.0		

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	46
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8709.5	11.0	36.9	47.9	68.2	-20.3	Peak	Horizontal
*	9976.0	12.5	38.6	51.1	68.2	-17.1	Peak	Horizontal
	10783.5	13.1	39.9	53.0	74.0	-21.0	Peak	Horizontal
	12245.5	12.8	39.2	52.0	74.0	-22.0	Peak	Horizontal
*	8769.0	10.4	37.0	47.4	68.2	-20.8	Peak	Vertical
*	9695.5	12.4	38.1	50.5	68.2	-17.7	Peak	Vertical
	10605.0	13.1	39.7	52.8	74.0	-21.2	Peak	Vertical
	12330.5	12.9	38.9	51.8	74.0	-22.2	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	54
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8616.0	10.2	36.9	47.1	68.2	-21.1	Peak	Horizontal
*	9738.0	12.2	38.3	50.5	68.2	-17.7	Peak	Horizontal
	10868.5	10.6	40.2	50.8	74.0	-23.2	Peak	Horizontal
	12441.0	11.4	38.7	50.1	74.0	-23.9	Peak	Horizontal
*	8735.0	10.4	36.9	47.3	68.2	-20.9	Peak	Vertical
*	9967.5	13.4	38.6	52.0	68.2	-16.2	Peak	Vertical
	10979.0	12.7	40.3	53.0	74.0	-21.0	Peak	Vertical
	12500.5	12.8	38.7	51.5	74.0	-22.5	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	62
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8616.0	11.3	36.9	48.2	68.2	-20.0	Peak	Horizontal
*	9967.5	13.4	38.6	52.0	68.2	-16.2	Peak	Horizontal
	10970.5	12.5	40.3	52.8	74.0	-21.2	Peak	Horizontal
	12475.0	12.8	38.7	51.5	74.0	-22.5	Peak	Horizontal
*	8692.5	11.6	36.9	48.5	68.2	-19.7	Peak	Vertical
*	10027.0	12.5	38.6	51.1	68.2	-17.1	Peak	Vertical
	10792.0	12.8	40.0	52.8	74.0	-21.2	Peak	Vertical
	12339.0	12.6	38.9	51.5	74.0	-22.5	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	102
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8692.5	11.3	36.9	48.2	68.2	-20.0	Peak	Horizontal
*	9823.0	12.7	38.7	51.4	68.2	-16.8	Peak	Horizontal
	11013.0	12.6	40.3	52.9	74.0	-21.1	Peak	Horizontal
	12356.0	10.9	38.8	49.7	74.0	-24.3	Peak	Horizontal
*	8760.5	10.1	37.0	47.1	68.2	-21.1	Peak	Vertical
*	9899.5	11.9	38.7	50.6	68.2	-17.6	Peak	Vertical
	10741.0	12.5	39.8	52.3	74.0	-21.7	Peak	Vertical
	12441.0	11.7	38.7	50.4	74.0	-23.6	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	110
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8837.0	11.7	36.9	48.6	68.2	-19.6	Peak	Horizontal
*	9874.0	12.0	38.7	50.7	68.2	-17.5	Peak	Horizontal
	10843.0	11.8	40.1	51.9	74.0	-22.1	Peak	Horizontal
	12390.0	11.8	38.8	50.6	74.0	-23.4	Peak	Horizontal
*	8684.0	11.0	36.9	47.9	68.2	-20.3	Peak	Vertical
*	9704.0	13.3	38.1	51.4	68.2	-16.8	Peak	Vertical
	10766.5	12.6	39.9	52.5	74.0	-21.5	Peak	Vertical
	12169.0	11.5	39.3	50.8	74.0	-23.2	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	134
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8845.5	11.3	36.9	48.2	68.2	-20.0	Peak	Horizontal
*	9797.5	11.7	38.6	50.3	68.2	-17.9	Peak	Horizontal
	10817.5	12.3	40.0	52.3	74.0	-21.7	Peak	Horizontal
	12228.5	12.6	39.2	51.8	74.0	-22.2	Peak	Horizontal
*	7859.5	12.0	36.9	48.9	68.2	-19.3	Peak	Vertical
*	9874.0	12.2	38.7	50.9	68.2	-17.3	Peak	Vertical
	11106.5	12.3	40.1	52.4	74.0	-21.6	Peak	Vertical
	12551.5	12.1	38.7	50.8	74.0	-23.2	Peak	Vertical
		· · · · · ·			<u> </u>			

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	151
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8701.0	11.2	36.9	48.1	68.2	-20.1	Peak	Horizontal
*	9831.5	12.2	38.7	50.9	68.2	-17.3	Peak	Horizontal
	10826.0	12.5	40.1	52.6	74.0	-21.4	Peak	Horizontal
	12305.0	12.9	39.0	51.9	74.0	-22.1	Peak	Horizontal
*	8811.5	11.3	37.0	48.3	68.2	-19.9	Peak	Vertical
*	9840.0	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	10783.5	12.7	39.9	52.6	74.0	-21.4	Peak	Vertical
	12475.0	12.4	38.7	51.1	74.0	-22.9	Peak	Vertical
	<i>"</i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11n-HT40 - Ant A + B	Test Channel:	159
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7902.0	12.3	37.0	49.3	68.2	-18.9	Peak	Horizontal
*	8777.5	10.5	37.0	47.5	68.2	-20.7	Peak	Horizontal
	10911.0	12.5	40.3	52.8	74.0	-21.2	Peak	Horizontal
	12347.5	12.1	38.9	51.0	74.0	-23.0	Peak	Horizontal
*	7876.5	12.9	36.9	49.8	68.2	-18.4	Peak	Vertical
*	9772.0	10.7	38.5	49.2	68.2	-19.0	Peak	Vertical
	10894.0	13.4	40.3	53.7	74.0	-20.3	Peak	Vertical
	12390.0	12.7	38.8	51.5	74.0	-22.5	Peak	Vertical
	12390.0	12.7	38.8	51.5	74.0	-22.5	Peak	Vert

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	36
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8769.0	10.3	37.0	47.3	68.2	-20.9	Peak	Horizontal
*	9967.5	13.3	38.6	51.9	68.2	-16.3	Peak	Horizontal
	10834.5	13.0	40.1	53.1	74.0	-20.9	Peak	Horizontal
	12500.5	12.3	38.7	51.0	74.0	-23.0	Peak	Horizontal
*	8811.5	11.1	37.0	48.1	68.2	-20.1	Peak	Vertical
*	9857.0	10.6	38.7	49.3	68.2	-18.9	Peak	Vertical
	10809.0	13.3	40.0	53.3	74.0	-20.7	Peak	Vertical
	12432.5	12.2	38.7	50.9	74.0	-23.1	Peak	Vertical
			-1 - 14 - 13 - 14 - 14 - 14					* . I. I

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	44
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8624.5	11.9	36.9	48.8	68.2	-19.4	Peak	Horizontal
*	9933.5	12.5	38.6	51.1	68.2	-17.1	Peak	Horizontal
	10877.0	10.2	40.2	50.4	74.0	-23.6	Peak	Horizontal
	12441.0	11.5	38.7	50.2	74.0	-23.8	Peak	Horizontal
*	8811.5	11.5	37.0	48.5	68.2	-19.7	Peak	Vertical
*	10239.5	12.5	39.0	51.5	68.2	-16.7	Peak	Vertical
	10970.5	12.2	40.3	52.5	74.0	-21.5	Peak	Vertical
	12398.5	11.0	38.7	49.7	74.0	-24.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	48
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Frequer	equency Reading F	actor	Measure	Limit	Margin	Detector	Polarization
(MHz)	MHz) Level	(dB)	Level	(dBµV/m)	(dB)		
	(dBµV)	((dBµV/m)				
8845.{	845.5 11.8	36.9	48.7	68.2	-19.5	Peak	Horizontal
9993.(993.0 12.5	38.6	51.1	68.2	-17.1	Peak	Horizontal
10962.	0962.0 13.0	40.3	53.3	74.0	-20.7	Peak	Horizontal
12347.	2347.5 12.0	38.9	50.9	74.0	-23.1	Peak	Horizontal
8735.(735.0 10.3	36.9	47.2	68.2	-21.0	Peak	Vertical
9959.(959.0 12.1	38.6	50.7	68.2	-17.5	Peak	Vertical
10911.	0911.0 12.3	40.3	52.6	74.0	-21.4	Peak	Vertical
12271.	2271.0 12.4	39.1	51.5	74.0	-22.5	Peak	Vertical
8735.0 9959.0 10911. 12271.	2347.5 12.0 735.0 10.3 959.0 12.1 0911.0 12.3 2271.0 12.4	38.9 36.9 38.6 40.3 39.1	50.9 47.2 50.7 52.6 51.5	74.0 68.2 68.2 74.0 74.0	-23.1 -21.0 -17.5 -21.4 -22.5	Peak Peak Peak Peak Peak	

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	52
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8616.0	11.5	36.9	48.4	68.2	-19.8	Peak	Horizontal
*	9848.5	12.2	38.7	50.9	68.2	-17.3	Peak	Horizontal
	10868.5	13.1	40.2	53.3	74.0	-20.7	Peak	Horizontal
	12415.5	12.7	38.7	51.4	74.0	-22.6	Peak	Horizontal
*	8811.5	12.7	37.0	49.7	68.2	-18.5	Peak	Vertical
*	9891.0	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	11038.5	13.0	40.2	53.2	74.0	-20.8	Peak	Vertical
	12398.5	12.5	38.7	51.2	74.0	-22.8	Peak	Vertical
				· · · · · · · · ·				

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	60
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8811.5	12.0	37.0	49.0	68.2	-19.2	Peak	Horizontal
*	9967.5	12.8	38.6	51.4	68.2	-16.8	Peak	Horizontal
	11106.5	13.0	40.1	53.1	74.0	-20.9	Peak	Horizontal
	12509.0	12.5	38.7	51.2	74.0	-22.8	Peak	Horizontal
*	8718.0	11.6	36.9	48.5	68.2	-19.7	Peak	Vertical
*	9857.0	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	10775.0	12.9	39.9	52.8	74.0	-21.2	Peak	Vertical
	12517.5	13.2	38.7	51.9	74.0	-22.1	Peak	Vertical
	12017.0	10.2	00.7	01.0	14.0		T Call	

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	64
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Polarization
Horizontal
Horizontal
Horizontal
Horizontal
Vertical
Vertical
Vertical
Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	100
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8794.5	11.1	37.0	48.1	68.2	-20.1	Peak	Horizontal
*	9959.0	13.1	38.6	51.7	68.2	-16.5	Peak	Horizontal
	10928.0	12.0	40.3	52.3	74.0	-21.7	Peak	Horizontal
	12441.0	12.7	38.7	51.4	74.0	-22.6	Peak	Horizontal
*	8701.0	10.2	36.9	47.1	68.2	-21.1	Peak	Vertical
*	9891.0	11.6	38.7	50.3	68.2	-17.9	Peak	Vertical
	10783.5	11.5	39.9	51.4	74.0	-22.6	Peak	Vertical
	12500.5	11.7	38.7	50.4	74.0	-23.6	Peak	Vertical
	((+)) · · · ·							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	116
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7953.0	12.1	37.1	49.2	68.2	-19.0	Peak	Horizontal
*	8896.5	12.0	36.9	48.9	68.2	-19.3	Peak	Horizontal
	10826.0	13.3	40.1	53.4	74.0	-20.6	Peak	Horizontal
	12577.0	10.9	38.8	49.7	74.0	-24.3	Peak	Horizontal
*	8820.0	12.5	37.0	49.5	68.2	-18.7	Peak	Vertical
*	9925.0	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	11106.5	12.6	40.1	52.7	74.0	-21.3	Peak	Vertical
	12441.0	13.0	38.7	51.7	74.0	-22.3	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	140
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8641.5	11.1	36.9	48.0	68.2	-20.2	Peak	Horizontal
*	9823.0	12.0	38.7	50.7	68.2	-17.5	Peak	Horizontal
	10783.5	11.6	39.9	51.5	74.0	-22.5	Peak	Horizontal
	12330.5	11.7	38.9	50.6	74.0	-23.4	Peak	Horizontal
*	8794.5	9.0	37.0	46.0	68.2	-22.2	Peak	Vertical
*	10358.5	10.9	39.3	50.2	68.2	-18.0	Peak	Vertical
	11735.5	13.1	39.6	52.7	74.0	-21.3	Peak	Vertical
	15866.5	13.1	37.7	50.8	74.0	-23.2	Peak	Vertical
	<i>"</i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	149
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8752.0	9.4	37.0	46.4	68.2	-21.8	Peak	Horizontal
*	10307.5	11.1	39.1	50.2	68.2	-18.0	Peak	Horizontal
	12126.5	11.3	39.3	50.6	74.0	-23.4	Peak	Horizontal
	16002.5	13.1	37.7	50.8	74.0	-23.2	Peak	Horizontal
*	8667.0	10.6	36.9	47.5	68.2	-20.7	Peak	Vertical
*	10452.0	12.9	39.1	52.0	68.2	-16.2	Peak	Vertical
	12177.5	11.0	39.3	50.3	74.0	-23.7	Peak	Vertical
	15560.5	13.6	38.3	51.9	74.0	-22.1	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	157
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8743.5	9.3	37.0	46.3	68.2	-21.9	Peak	Horizontal
*	10027.0	13.0	38.6	51.6	68.2	-16.6	Peak	Horizontal
	11565.5	13.0	40.2	53.2	74.0	-20.8	Peak	Horizontal
	15815.5	13.0	37.7	50.7	74.0	-23.3	Peak	Horizontal
*	8692.5	10.5	36.9	47.4	68.2	-20.8	Peak	Vertical
*	10120.5	11.1	38.7	49.8	68.2	-18.4	Peak	Vertical
	12109.5	11.5	39.3	50.8	74.0	-23.2	Peak	Vertical
	15790.0	12.8	37.7	50.5	74.0	-23.5	Peak	Vertical
	"+ U · · ·							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT20 - Ant A + B	Test Channel:	165
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GH	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8735.0	11.4	36.9	48.3	68.2	-19.9	Peak	Horizontal
*	9899.5	11.4	38.7	50.1	68.2	-18.1	Peak	Horizontal
	11914.0	13.0	39.3	52.3	74.0	-21.7	Peak	Horizontal
	15747.5	13.7	37.8	51.5	74.0	-22.5	Peak	Horizontal
*	8760.5	11.4	37.0	48.4	68.2	-19.8	Peak	Vertical
*	9840.0	12.4	38.7	51.1	68.2	-17.1	Peak	Vertical
	11531.5	11.3	40.2	51.5	74.0	-22.5	Peak	Vertical
	15611.5	13.0	38.1	51.1	74.0	-22.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	38
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level lov v limit line within 1-18GH:	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8692.5	11.2	36.9	48.1	68.2	-20.1	Peak	Horizontal
*	10197.0	11.0	38.9	49.9	68.2	-18.3	Peak	Horizontal
	11846.0	9.7	39.3	49.0	74.0	-25.0	Peak	Horizontal
	15773.0	13.9	37.8	51.7	74.0	-22.3	Peak	Horizontal
*	8633.0	9.6	36.9	46.5	68.2	-21.7	Peak	Vertical
*	10426.5	10.2	39.2	49.4	68.2	-18.8	Peak	Vertical
	12169.0	11.1	39.3	50.4	74.0	-23.6	Peak	Vertical
	15841.0	13.2	37.7	50.9	74.0	-23.1	Peak	Vertical
	"+11 · · ·					6.0		

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	46
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8743.5	10.7	37.0	47.7	68.2	-20.5	Peak	Horizontal
*	9976.0	12.7	38.6	51.3	68.2	-16.9	Peak	Horizontal
	12024.5	13.4	39.3	52.7	74.0	-21.3	Peak	Horizontal
	15773.0	14.2	37.8	52.0	74.0	-22.0	Peak	Horizontal
*	8871.0	11.4	36.9	48.3	68.2	-19.9	Peak	Vertical
*	9942.0	11.9	38.6	50.5	68.2	-17.7	Peak	Vertical
	11378.5	11.4	40.1	51.5	74.0	-22.5	Peak	Vertical
	15849.5	14.5	37.7	52.2	74.0	-21.8	Peak	Vertical
	() - H							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	54
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8905.0	12.5	36.9	49.4	68.2	-18.8	Peak	Horizontal
*	10392.5	13.1	39.3	52.4	68.2	-15.8	Peak	Horizontal
	11922.5	10.9	39.3	50.2	74.0	-23.8	Peak	Horizontal
	15917.5	14.6	37.7	52.3	74.0	-21.7	Peak	Horizontal
*	8658.5	10.1	36.9	47.0	68.2	-21.2	Peak	Vertical
*	10163.0	12.5	38.8	51.3	68.2	-16.9	Peak	Vertical
	11591.0	11.9	40.1	52.0	74.0	-22.0	Peak	Vertical
	15790.0	14.1	37.7	51.8	74.0	-22.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	62
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8692.5	11.4	36.9	48.3	68.2	-19.9	Peak	Horizontal
*	10171.5	11.7	38.8	50.5	68.2	-17.7	Peak	Horizontal
	11735.5	11.3	39.6	50.9	74.0	-23.1	Peak	Horizontal
	15849.5	13.9	37.7	51.6	74.0	-22.4	Peak	Horizontal
*	8769.0	11.5	37.0	48.5	68.2	-19.7	Peak	Vertical
*	10129.0	11.5	38.7	50.2	68.2	-18.0	Peak	Vertical
	11633.5	12.1	40.0	52.1	74.0	-21.9	Peak	Vertical
	15577.5	13.6	38.2	51.8	74.0	-22.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	102
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8854.0	12.9	36.9	49.8	68.2	-18.4	Peak	Horizontal
*	10197.0	12.9	38.9	51.8	68.2	-16.4	Peak	Horizontal
	11659.0	13.3	39.9	53.2	74.0	-20.8	Peak	Horizontal
	15637.0	14.4	38.1	52.5	74.0	-21.5	Peak	Horizontal
*	8692.5	11.9	36.9	48.8	68.2	-19.4	Peak	Vertical
*	9984.5	12.2	38.6	50.8	68.2	-17.4	Peak	Vertical
	12109.5	12.3	39.3	51.6	74.0	-22.4	Peak	Vertical
	15960.0	14.2	37.6	51.8	74.0	-22.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	110
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8777.5	12.0	37.0	49.0	68.2	-19.2	Peak	Horizontal
*	9984.5	13.8	38.6	52.4	68.2	-15.8	Peak	Horizontal
	12160.5	14.0	39.3	53.3	74.0	-20.7	Peak	Horizontal
	15951.5	13.5	37.6	51.1	74.0	-22.9	Peak	Horizontal
*	8803.0	12.5	37.0	49.5	68.2	-18.7	Peak	Vertical
*	10188.5	13.1	38.9	52.0	68.2	-16.2	Peak	Vertical
	12211.5	10.7	39.3	50.0	74.0	-24.0	Peak	Vertical
	15713.5	13.7	37.9	51.6	74.0	-22.4	Peak	Vertical
	<u> </u>		· · · · · ·			· · ·	· · · ·	1

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	134
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8735.0	9.6	36.9	46.5	68.2	-21.7	Peak	Horizontal
*	9755.0	12.6	38.5	51.1	68.2	-17.1	Peak	Horizontal
	11429.5	12.9	40.2	53.1	74.0	-20.9	Peak	Horizontal
	15722.0	14.1	37.9	52.0	74.0	-22.0	Peak	Horizontal
*	8854.0	12.1	36.9	49.0	68.2	-19.2	Peak	Vertical
*	10350.0	12.1	39.2	51.3	68.2	-16.9	Peak	Vertical
	12033.0	12.4	39.3	51.7	74.0	-22.3	Peak	Vertical
	15866.5	13.3	37.7	51.0	74.0	-23.0	Peak	Vertical
	() - H							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	151
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8769.0	11.8	37.0	48.8	68.2	-19.4	Peak	Horizontal
*	10129.0	13.9	38.7	52.6	68.2	-15.6	Peak	Horizontal
	12050.0	13.0	39.3	52.3	74.0	-21.7	Peak	Horizontal
	15960.0	13.6	37.6	51.2	74.0	-22.8	Peak	Horizontal
*	8667.0	10.9	36.9	47.8	68.2	-20.4	Peak	Vertical
*	9950.5	12.8	38.6	51.4	68.2	-16.8	Peak	Vertical
	11633.5	12.2	40.0	52.2	74.0	-21.8	Peak	Vertical
	15875.0	13.7	37.7	51.4	74.0	-22.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT40 - Ant A + B	Test Channel:	159
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	verformed if peak level lov	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8879.5	11.7	36.9	48.6	68.2	-19.6	Peak	Horizontal
*	10035.5	12.1	38.6	50.7	68.2	-17.5	Peak	Horizontal
	11846.0	12.3	39.3	51.6	74.0	-22.4	Peak	Horizontal
	15764.5	13.7	37.8	51.5	74.0	-22.5	Peak	Horizontal
*	8837.0	12.2	36.9	49.1	68.2	-19.1	Peak	Vertical
*	10137.5	12.7	38.7	51.4	68.2	-16.8	Peak	Vertical
	11548.5	13.4	40.2	53.6	74.0	-20.4	Peak	Vertical
	15560.5	13.0	38.3	51.3	74.0	-22.7	Peak	Vertical
	<i></i>							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT80 - Ant A + B	Test Channel:	42
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8658.5	9.7	36.9	46.6	68.2	-21.6	Peak	Horizontal
*	10171.5	10.7	38.8	49.5	68.2	-18.7	Peak	Horizontal
	11931.0	12.1	39.3	51.4	74.0	-22.6	Peak	Horizontal
	15934.5	13.3	37.6	50.9	74.0	-23.1	Peak	Horizontal
*	8837.0	11.4	36.9	48.3	68.2	-19.9	Peak	Vertical
*	10282.0	10.4	39.1	49.5	68.2	-18.7	Peak	Vertical
	11973.5	10.9	39.3	50.2	74.0	-23.8	Peak	Vertical
	16019.5	13.5	37.7	51.2	74.0	-22.8	Peak	Vertical
			al. 16 a. 15 and 16 1	07-10				أعلما مليتم يعطه

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT80 - Ant A + B	Test Channel:	58
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8862.5	11.4	36.9	48.3	68.2	-19.9	Peak	Horizontal
*	9959.0	11.6	38.6	50.2	68.2	-18.0	Peak	Horizontal
	11565.5	12.9	40.2	53.1	74.0	-20.9	Peak	Horizontal
	15858.0	13.2	37.7	50.9	74.0	-23.1	Peak	Horizontal
*	8684.0	11.7	36.9	48.6	68.2	-19.6	Peak	Vertical
*	9993.0	11.2	38.6	49.8	68.2	-18.4	Peak	Vertical
	11897.0	12.0	39.3	51.3	74.0	-22.7	Peak	Vertical
	15824.0	13.3	37.7	51.0	74.0	-23.0	Peak	Vertical
Nata 4	. "*" is used in u		al :ta lina;t :					أعلما مليتم يعطه

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT80 - Ant A + B	Test Channel:	106
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8616.0	11.2	36.9	48.1	68.2	-20.1	Peak	Horizontal
*	9857.0	11.3	38.7	50.0	68.2	-18.2	Peak	Horizontal
	11633.5	12.3	40.0	52.3	74.0	-21.7	Peak	Horizontal
	16053.5	12.9	37.7	50.6	74.0	-23.4	Peak	Horizontal
*	8769.0	11.0	37.0	48.0	68.2	-20.2	Peak	Vertical
*	9993.0	10.6	38.6	49.2	68.2	-19.0	Peak	Vertical
	11990.5	11.1	39.3	50.4	74.0	-23.6	Peak	Vertical
	15492.5	12.7	38.5	51.2	74.0	-22.8	Peak	Vertical
	"+"		a	07-10				ماليا ماريم به ميلام

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	AC1200 Wireless Dual Band PCI Express Adapter	Temperature	26°C
Test Engineer	Dandy Li	Relative Humidity	57 %
Test Site	AC1	Test Date	2018/11/19
Test Mode:	802.11ac-VHT80 - Ant A + B	Test Channel:	155
Remark:	 Average measurement was not p limit. Other frequency was 20dB below in the report. 	performed if peak level low v limit line within 1-18GHz	wer than average z, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	8769.0	9.8	37.0	46.8	68.2	-21.4	Peak	Horizontal
*	10001.5	11.4	38.5	49.9	68.2	-18.3	Peak	Horizontal
	11897.0	12.1	39.3	51.4	74.0	-22.6	Peak	Horizontal
	16045.0	13.5	37.7	51.2	74.0	-22.8	Peak	Horizontal
*	8854.0	11.9	36.9	48.8	68.2	-19.4	Peak	Vertical
*	10265.0	11.0	39.0	50.0	68.2	-18.2	Peak	Vertical
	11820.5	10.5	39.4	49.9	74.0	-24.1	Peak	Vertical
	15773.0	13.9	37.8	51.7	74.0	-22.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

The Worst Case of Radiated Emission below 1GHz:

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	31.940	32.621	20.140	-7.379	40.000	12.481	QP
2			45.520	32.529	17.500	-7.471	40.000	15.029	QP
3			432.065	30.520	13.030	-15.480	46.000	17.491	QP
4			610.545	29.257	8.670	-16.743	46.000	20.586	QP
5			664.380	30.036	8.700	-15.964	46.000	21.336	QP
6			800.180	31.106	7.840	-14.894	46.000	23.266	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 40GHz), therefore no data appear in the report.

Site: AC1	Time: 2018/12/08 - 07:42
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: VULB 9168 _20-2000MHz	Polarity: Vertical
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

Test Mode: Worst case

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			46.975	23.693	8.600	-16.307	40.000	15.093	QP
2			59.100	23.357	9.200	-16.643	40.000	14.158	QP
3			210.905	28.028	15.330	-15.472	43.500	12.698	QP
4			432.065	30.000	12.510	-16.000	46.000	17.491	QP
5		*	664.380	36.736	15.400	-9.264	46.000	21.336	QP
6			800.180	32.286	9.020	-13.714	46.000	23.266	QP

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 40GHz), therefore no data appear in the report.

7.9. Radiated Restricted Band Edge Measurement

7.9.1.Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

For 15.407(b) requirement:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing

linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Refer to KDB 789033 D02v02r01 G)2)c), as specified in § 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a maximum emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in § 15.407(b)(4)). However, an out-of-band emission that complies with both the peak and average limits of § 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209									
Frequency	Field Strength	Measured Distance							
[MHz]	[uV/m]	[Meters]							
0.009 - 0.490	2400/F (kHz)	300							
0.490 - 1.705	24000/F (kHz)	30							
1.705 - 30	30	30							
30 - 88	100	3							
88 - 216	150	3							
216 - 960	200	3							
Above 960	500	3							

7.9.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.9.3.Test Setting

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest

2. RBW = 1MHz

3. VBW If the EUT is configured to transmit with duty cycle ≥ 98%, set VBW ≤ RBW/100 (i.e., 10

kHz) but not less than 10 Hz. If the EUT duty cycle is < 98%, set VBW \ge 1/T.

- 4. Detector = Peak
- 5. Sweep time = auto

6. Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98% duty cycle. For lower duty cycles, increase the minimum number of traces by a factor of 1/x, where x is the duty cycle.

7.9.4.Test Setup

7.9.5.Test Result

Site: AC1	Time: 2018/11/17 - 10:05
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	
Test Mode: Transmit by 802.11a at channel 5180MHz	

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Site: AC1				Time: 2018/11/17 - 10:43						
Limi		Dort15	200 DE(2m	\ \						
LIMIC FCC_Part15.209_RE(3M)				Eng						
Prot	be: BBH	HA9120	D_1-18GHz			Pola	arity: Horiz	ontal		
EUT	: AC12	00 Wire	eless Dual Ba	nd PCI Expre	ess	Pow	er: AC 12	0V/60Hz		
Ada	pter									
Test	Mode:	Transn	nit by 80211a	at channel 5	180MHz					
	120	5								
									2	
								m	mound	
1	80							1		
Wdt	70									
- Internet	60							mund		han
-	5 00				1		- and the second			www
	50									
	40									
	30									
	20									
	5110	5115	5120 5125 513	0 5135 5140	5145 5150 Free	5155 quency(5160 516 MHz)	5 5170 5175	5180 5185 5	5190 5195 5200
No	Flag	Mark	Frequency	Measure	Reading	C	ver Limit	Limit	Factor	Туре
			(MHz)	Level	Level	((lB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)		-			
1			5150.000	48.920	42.358	-{	5.080	54.000	6.562	AV
2		*	5183.035	90.358	83.936	N	/A	N/A	6.422	AV

Site: AC1				Time: 2018/11/17 - 10:44					
Limit: FCC_Part15.209_RE(3m)					Engineer: Clou	ud Guo			
Prot	be: BBH	HA9120	D_1-18GHz			Polarity: Vertic	al		
EUT	: AC12	00 Wire	eless Dual Ba	nd PCI Expre	ess	Power: AC 120	0V/60Hz		
Ada	pter								
Test	Mode:	Transn	nit by 802.11a	a at channel 5	5180MHz				
	120	li.							
(ver) Mr. d Pylevier 1	80 70 60 40 30 20 5110	5115	5120 5125 513	0 5135 5140	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5155 5160 516 uency(MHz)	5 5170 5175	5180 5185 51	190 5195 5200
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5147.125	72.352	65.788	-1.648	74.000	6.564	PK
2			5150.000	68.900	62.338	-5.100	74.000	6.562	PK
3		*	5184.565	106.888	100.475	N/A	N/A	6.413	PK

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Sito: AC1					Time: 2018/11/17 - 10:48				
				11111e. 2010/11/17 - 10.46					
Limit: FCC_Part15.209_RE(3m)				Engineer: Clou	id Guo				
Prob	be: BB	HA9120	D_1-18GHz			Polarity: Vertic	al		
EUT	: AC12	200 Wire	eless Dual Ba	nd PCI Expre	ess	Power: AC 120	0V/60Hz		
Ada	pter								
Test	Mode	: Transn	nit by 802.11a	a at channel 5	5180MHz				
	120	6			The second secon		1		
							2		
								m and	
1	Ê 80		_						
E Alex							man		have
-	<u>କ</u> 60				1	- Andrews			men
	50					2			
	40								
	40								
	30								
	20								
	5110	5115	5120 5125 513	0 5135 5140	5145 5150 Frequ	5155 5160 516 iency(MHz)	5 5170 5175	5180 5185 51	190 5195 5200
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5150.000	51.433	44.871	-2.567	54.000	6.562	AV
2		*	5174.620	95.318	88.831	N/A	N/A	6.487	AV

Site: AC1	Time: 2018/11/17 - 10:55
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	
Test Made: Transmit by 802 11s at shannel 5220MUz	

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Site: AC1	Time: 2018/11/17 - 10:57			
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo			
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal			
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz			
Adapter				
Test Mode: Transmit by 802.11a at channel 5320MHz				
120 120 1 10 10 10 10 10 10 10 10 10	2 2 5350 5355 5360 5365 5370 5375 5380 5385 5390			

	Frequency(MHz)											
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре			
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)				
				(dBuV/m)	(dBuV)							
1		*	5327.000	92.838	86.505	N/A	N/A	6.333	AV			
2			5350.000	46.438	39.978	-7.562	54.000	6.460	AV			

Site: AC1	Time: 2018/11/17 - 10:50							
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo							
Probe: BBHA9120D_1-18GHz	Polarity: Vertical							
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz							
Adapter								
Test Mode: Transmit by 802.11a at channel 5320MHz								
120 120 120 10 10 10 10 10 10 10 10 10 1	2 2 3 4 5350 5355 5360 5365 5370 5375 5380 5385 5390 quency(MHz)							

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5326.040	104.392	98.064	N/A	N/A	6.328	PK
2			5350.000	65.472	59.012	-8.528	74.000	6.460	PK
3			5351.080	67.898	61.432	-6.102	74.000	6.465	PK

Site: AC1	Time: 2018/11/17 - 10:55			
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo			
Probe: BBHA9120D_1-18GHz	Polarity: Vertical			
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz			
Adapter				
Test Mode: Transmit by 802.11a at channel 5320MHz				

20 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 Frequency(MHz) T T

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5313.880	94.722	88.448	N/A	N/A	6.274	AV
2			5350.000	47.589	41.129	-6.411	54.000	6.460	AV

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Г

Site	: AC1				Time: 2018/11/17 - 11:11						
Limi	t: FCC	_Part15	5.209_RE(3m)		Engineer: Cloud Guo					
Prob	be: BBH	HA9120	D_1-18GHz			Polarity: Horiz	ontal				
EUT	: AC12	00 Wire	eless Dual Ba	nd PCI Expre	ess	Power: AC 120	0V/60Hz				
Ada	pter										
Test	Mode:	Transr	nit by 802.11a	a at channel 5	5500MHz						
V-7/V-OF/I1	120 80 70 60 50 40 30 20 5430	herbeder-anjant 5435	1 44 d	2	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5475 5480 548	5 5490 5495	5500 5505 55	510 5515 5520		
No	Flag	Mark	Frequency	Measure	Peading	Over Limit	Limit	Factor	Туре		
	Tay	Mark	(MH ₇)				(dBu\//m)		i ype		
1			5448 910	(000 V/III) 60 444	(UDUV) 53 706	13 550	74.000	6 736	סג		
			5440.010	50.400	55.700	-13.009	74.000	0.730			
2			5460.000	58.42U	51.018	-15.580	74.000	0.802	PK		
3			5469.060	63.739	56.898	-4.461	68.200	6.840	PK		
4			5470.000	59.768	52.923	-8.432	68.200	6.845	РК		
5		*	5493.450	97.086	90.256	N/A	N/A	6.830	PK		

Site	· AC1					Time: 2018/11	/17 _ 11.14			
Lingi	Limit: ECC_Part15.209_RE(3m)									
LIMI	t: FCC	_Part15	5.209_RE(3m)		Engineer: Clou	la Guo			
Prot	be: BBI	HA9120	D_1-18GHz			Polarity: Horiz	ontal			
EUT	: AC12	200 Wire	eless Dual Ba	nd PCI Expre	ess	Power: AC 120	0V/60Hz			
Ada	pter									
Test	Mode	Transn	nit by 802.11a	a at channel 5	500MHz					
	120									
							2			
							1			
	Ē 80									
A. OF	70		_							
- Internet										
-	5 00									
	50									
	40									
	30									
	20									
	5430	5435	5440 5445 545	0 5455 5460	5465 5470	5475 5480 548	5 5490 5495	5500 5505 55	510 5515 5520	
_		1			Frequ	uency(MHz)				
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1			5460.000	46.434	39.632	-7.566	54.000	6.802	AV	
2		*	5493.630	87.238	80.408	N/A	N/A	6.830	AV	

Site	: AC1				Time: 2018/11/17 - 11:09					
Limi	t: FCC	_Part15	5.209_RE(3m)	E	Engineer: Cloud Guo				
Prot	be: BBH	HA9120	D_1-18GHz		F	Polarity: Vertic	al			
EUT	: AC12	00 Wire	eless Dual Ba	nd PCI Expre	ess F	Power: AC 120)V/60Hz			
Ada	pter									
Test	: Mode:	Transn	nit by 802.11a	a at channel 5	5500MHz					
120 (10 5515 5520	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1			5459.160	60.984	54.186	-13.016	74.000	6.798	PK	
2			5460.000	58.692	51.890	-15.308	74.000	6.802	PK	
3			5466.315	66.973	60.144	-1.227	68.200	6.829	PK	
4			5470.000	62.658	55.813	-5.542	68.200	6.845	PK	
5		*	5505.060	102.907	96.096	N/A	N/A	6.811	PK	

Site:	AC1				Time: 2018/11/17 - 11:10					
Limi	t: FC	C_Part15	5.209_RE(3m)		Engineer: Cloud Guo				
Prob	be: BE	3HA9120	D_1-18GHz			Polarity: Vertic	al			
EUT	EUT: AC1200 Wireless Dual Band PCI Express						0V/60Hz			
Ada	Adapter									
Test	Mode	e: Transn	nit by 802.11a	a at channel 5	500MHz					
	120									
								2		
Ĩ	80									
Mult I										
- India										
6	<u>60</u>								Marca I	
	50			1					and the second s	
	40									
	10									
	30									
	20									
	543	0 5435	5440 5445 545	0 5455 5460	5465 5470 Frequ	5475 5480 548 uency(MHz)	5 5490 5495	5500 5505 55	510 5515 5520	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1			5460.000	46.294	39.492	-7.706	54.000	6.802	AV	
2		*	5505.555	92.307	85.496	N/A	N/A	6.810	AV	

Site	: AC1				Т	Time: 2018/11/17 - 11:21				
Limi	it: FCC	_Part15	5.209_RE(3m)	E	Engineer: Cloud Guo				
Prol	be: BBI	HA9120	D_1-18GHz		F	Polarity: Horiz	ontal			
EUT	T: AC12	200 Wire	eless Dual Ba	nd PCI Expre	ess F	Power: AC 120	0V/60Hz			
Ada	pter									
Test Mode: Transmit by 802.11a at channel 5700MHz										
	120									
				1						
				1						
				and and a second second	N					
		1			N					
	E 80	Han build all all all all all all all all all a			Mapping all and					
5	70					A CONTRACT OF A	3	-		
	60					Hiller	with the barden sector sector	ال و الألب والمراجعة المراجع المراجع المراجع الم	and a star colliged words b	
									a and a first of the solution	
	50								_	
	40									
	30									
	20									
	5685	5690	5695 57	00 5705	5710 5715 Freque	5720 572 ency(MHz)	5 5730	5735 5740	5745 5750	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1		*	5707.067	95.706	88.485	N/A	N/A	7.221	PK	
2			5725.000	61.778	54.450	-12.222	74.000	7.328	PK	

74.000

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

65.117

5727.575

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

57.777

-8.883

3

ΡK

7.340

Site: AC1	Time: 2018/11/17 - 11:23
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	
Test Mode: Transmit by 802.11a at channel 5700MHz	
120 120 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 715 5720 5725 5730 5735 5740 5745 5750 equency(MHz)

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5693.190	85.122	78.003	N/A	N/A	7.120	AV
2			5725.000	48.306	40.978	-5.694	54.000	7.328	AV

Sito	AC1					Time: 2019/11	/17 11.16			
Sile	ACT					Time: 2018/11	/1/ - 11:10			
Limi	t: FCC	_Part15	5.209_RE(3m)		Engineer: Clo	ud Guo			
Prob	be: BBł	HA9120	D_1-18GHz			Polarity: Vertic	cal			
EUT	EUT: AC1200 Wireless Dual Band PCI Express						0V/60Hz			
Ada	Adapter									
Test	Mode:	Transn	nit by 802.11a	a at channel &	5700MHz					
Anna Anna Anna Anna Anna Anna Anna Anna	120 80 70 60 50 40 30 20 5685	5690	5695 57	700 5705	5710 5715 Frequ	5720 57. iency(MHz)	3 2 * * * * * * * * * * * * * * * * * *	5735 5740	5745	5750
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
	5		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
			((/	((/		

			(dBuV/m)	(dBuV)				
1	*	5695.140	99.741	92.608	N/A	N/A	7.133	PK
2		5725.000	62.791	55.463	-11.209	74.000	7.328	PK
3		5726.145	67.211	59.877	-6.789	74.000	7.334	PK

20 5685

Flag

No

1

2

5690

Mark

*

5695

Frequency

5693.190

5725.000

(MHz)

5700

Site: AC1	Time: 2018/11/17 - 11:20			
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo			
Probe: BBHA9120D_1-18GHz	Polarity: Vertical			
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz			
Adapter				
Test Mode: Transmit by 802.11a at channel 5700MHz				

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

5705

Measure

(dBuV/m)

89.160

49.919

Level

5710

Reading

Level

(dBuV)

82.041

42.591

5715

Frequency(MHz)

5720

(dB)

N/A

-4.081

Over Limit

5725

5730

(dBuV/m)

Limit

N/A

54.000

5735

Factor

(dB)

7.120

7.328

5740

5745

Туре

AV

AV

Site	: AC1					Time: 2018/11/17 - 11:24			
Lim	it: FCC	_Part15	5.407_RE(3m)_Bandedge		Engineer: Clo	ud Guo		
Pro	be: BBH	HA9120	D_1-18GHz			Polarity: Horiz	ontal		
EUT	EUT: AC1200 Wireless Dual Band PCI Express						0V/60Hz		
Ada	pter								
Test	Mode:	Transr	nit by 802.11a	a at channel §	5745MHz				
No	130 80 70 60 40 30 5600 Flag	5610 Mark	1 5620 5630 5 Frequency (MHz)	2 5640 5650 56 Measure Level (dBuV/m)	560 5670 5 Frequ Reading Level (dBuV)	680 5690 5700 Jency(MHz) Over Limit (dB)	2 5710 5720 Limit (dBuV/m)	5730 5740 Factor (dB)	6 5750 5765 Type
1		*	5625.575	59.832	52.820	-8.368	68.200	7.012	PK

1	*	5625.575	59.832	52.820	-8.368	68.200	7.012	PK
2		5650.000	56.850	49.845	-11.350	68.200	7.005	PK
3		5700.000	59.867	52.702	-45.333	105.200	7.165	PK
4		5720.000	61.587	54.288	-49.213	110.800	7.299	PK
5		5725.000	70.383	63.055	-51.817	122.200	7.328	PK
6		5750.810	96.723	89.314	N/A	N/A	7.409	PK

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Site	: AC1				Т	Time: 2018/11/17 - 11:26			
Limi	it: FCC	_Part15	.407_RE(3m)_Bandedge	E	Engineer: Cloud Guo			
Prot	Probe: BBHA9120D_1-18GHz					Polarity: Vertic	al		
EUT	: AC12	00 Wire	eless Dual Ba	nd PCI Expre	ess F	Power: AC 120	0V/60Hz		
Ada	pter								
Test	Mode:	Transn	nit by 802.11a	a at channel 5	5745MHz				
	130	1		1 1 1					
130 (U) 130 1 1 1 1 2 1 2 3 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5									
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5633.165	59.351	52.352	-8.849	68.200	6.999	РК
2			5650.000	58.296	51.291	-9.904	68.200	7.005	РК
3			5700.000	57.881	50.716	-47.319	105.200	7.165	РК
4			5720.000	65.116	57.817	-45.684	110.800	7.299	PK

6 5748.665 101.316 93.909 N/A

76.154

5725.000

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

68.826

-46.046

122.200

N/A

7.328

7.407

ΡK

ΡK

Site: AC1	Time: 2018/11/17 - 11:32
Limit: FCC_Part15.407_RE(3m)_Bandedge	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

Test Mode: Transmit by 802.11a at channel 5825MHz

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5830.155	94.755	87.070	N/A	N/A	7.684	PK
2			5850.000	59.323	51.550	-62.877	122.200	7.774	PK
3			5855.000	60.085	52.309	-50.715	110.800	7.775	PK
4			5875.000	57.962	50.144	-47.238	105.200	7.818	PK
5			5925.000	58.753	50.934	-9.447	68.200	7.819	PK
6		*	5947.740	60.950	53.105	-7.250	68.200	7.844	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Site: AC1	Time: 2018/11/17 - 11:28
Limit: FCC_Part15.407_RE(3m)_Bandedge	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	
Test Mode: Transmit by 802 11a at channel 5825MHz	

Test Mode: Transmit by 802.11a at channel 5825MHz

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5830.837	99.700	92.011	N/A	N/A	7.689	PK
2			5850.000	62.866	55.093	-59.334	122.200	7.774	PK
3			5855.000	63.792	56.016	-47.008	110.800	7.775	PK
4			5875.000	58.304	50.486	-46.896	105.200	7.818	PK
5			5925.000	58.962	51.143	-9.238	68.200	7.819	PK
6		*	5935.065	61.144	53.315	-7.056	68.200	7.830	PK

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Site: AC1	Time: 2018/11/17 - 12:56
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Site: AC1	Time: 2018/11/17 - 12:58
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

			(== == = = = = = =)	(== == =)				
1		5150.000	50.448	43.886	-3.552	54.000	6.562	AV
2	*	5186.635	97.936	91.535	N/A	N/A	6.401	AV

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Site	: AC1				Т	Time: 2018/11/17 - 11:34			
Limi	it: FCC	_Part15	5.209_RE(3m)	E	Engineer: Clou	ıd Guo		
Probe: BBHA9120D_1-18GHz						Polarity: Vertic	al		
EUT: AC1200 Wireless Dual Band PCI Express						Power: AC 120)V/60Hz		
Adapter									
Test	Mode:	Transr	nit by 802.11r	n-HT20 at cha	annel 5180M	Hz			
	130	1							
130 3 80 12 70 0 60 0									
Freque						ency(MHz)			
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5148.700	72.683	66.123	-1.317	74.000	6.560	PK
2			5150.000	71.119	64.557	-2.881	74.000	6.562	PK

110.381

5175.115

*

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

103.898

N/A

N/A

6.483

ΡK

Site: AC1	Time: 2018/11/17 - 12:55
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

52.397

100.169

5150.000

5174.215

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

45.835

93.679

-1.603

N/A

54.000

N/A

6.562

6.490

AV

AV

1

2

*

	-
Site: AC1	Time: 2018/11/17 - 13:01
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

65.560

5350.680

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

59.097

-8.440

74.000

6.463

ΡK

Site: AC1	Time: 2018/11/17 - 13:04
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
			(dBuV/m)	(dBuV)				
1	*	5326.400	96.321	89.991	N/A	N/A	6.330	AV
2		5350.000	46.991	40.531	-7.009	54.000	6.460	AV

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Site: AC1	Time: 2018/11/17 - 12:58
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

67.028

5352.800

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

60.555

-6.972

74.000

6.473

ΡK

Site: AC1	Time: 2018/11/17 - 13:01
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	

NO	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5325.680	98.223	91.897	N/A	N/A	6.325	AV
2			5350.000	47.642	41.182	-6.358	54.000	6.460	AV

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Site: AC1	Time: 2018/11/17 - 13:12				
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo				
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal				
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz				
Adapter					
Test Mode: Transmit by 802.11n-HT20 at channel 5500	MHz				
130	5				

59.313

103.823

5470.000

5494.170

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

52.468

96.994

-8.887

N/A

68.200

N/A

4

5

*

ΡK

ΡK

6.845

6.829

Site: AC1	Time: 2018/11/17 - 13:15
Limit: FCC_Part15.209_RE(3m)	Engineer: Cloud Guo
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wireless Dual Band PCI Express	Power: AC 120V/60Hz
Adapter	
Test Mode: Transmit by 802 11n HT20 at channel 5500	MHz

INO	гад	Wark	Frequency	weasure	Reading	OverLimit		Factor	туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5460.000	46.627	39.825	-7.373	54.000	6.802	AV
2		*	5504.970	92.935	86.124	N/A	N/A	6.811	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)