

RF Exposure Evaluation Declaration

Product Name: AC1200 Wireless Dual Band

Gigabit Access Point

Model No. : EAP225

FCC ID : TE7EAP225

Applicant: TP-LINK TECHNOLOGIES CO., LTD.

Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central

Science and Technology Park, Shennan Rd,

Nanshan, Shenzhen, China

Date of Receipt: May. 06, 2016

Issued Date : Jul. 11, 2016

Report No. : 1652013R-RF-US-P20V01

Report Version: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Jul. 11, 2016

Report No.: 1652013R-RF-US-P20V01

Product Name : AC1200 Wireless Dual Band Gigabit Access Point

Applicant : TP-LINK TECHNOLOGIES CO., LTD.

Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central

Science and Technology Park, Shennan Rd, Nanshan,

Shenzhen, China

Manufacturer : TP-LINK TECHNOLOGIES CO., LTD.

Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central

Science and Technology Park, Shennan Rd, Nanshan,

Shenzhen, China

Model No. : EAP225 FCC ID : TE7EAP225

Brand Name : TP-LINK

EUT Voltage : AC 100-240V, 50/60Hz

Applicable Standard : KDB 447498D01V06

FCC Part1.1310(b)

Test Result : Complied

Performed Location : Quietek Corporation - Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By : Kathy Feng

(Adm. Specialist: Kathy Feng)

Reviewed By :

(Senior Engineer: Frank He)

Approved By :

(Engineering Manager: Harry Zhao)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://www.quietek.com/english/about/certificates.aspx?bval=5
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/index_en.aspx

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1652013R-RF-US-P20V01	V1.0	Initial Issued Report	Jul.11, 2016

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)			
(A) Limits for ((A) Limits for Occupational/ Control Exposures						
300-1500			F/300	6			
1500-100,000			5	6			
(B) Limits for ((B) Limits for General Population/ Uncontrolled Exposures						
300-1500			F/1500	6			
1500-100,000			1	30			

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product		AC1200 Wireless Dual Band Gigabit Access Point
Test Item	:	RF Exposure Evaluation
Test Site	:	AC-6

• Antenna Gain:

For 2.4G

Model No.	N/A								
Antenna manufacturer	TP-LINK								
Antenna Delivery		1*TX+1*RX							
Antenna technology		SISO							
				Basic	;				
		NAINAO	\boxtimes	CDD					
		MIMO		Sectorized					
				Beam-forming					
Antenna Type	уре			Dipole					
		External		Sectorized					
		Internal	\boxtimes	PIFA					
				PCB					
				Ceramic Chip Antenna					
				Metal plate type F antenna					
	And Onlin				Directional Gain				
Antenna Technology	Ant Gain				(dBi)		Bi)		
		(dBi)				Fo	r Power	For PSD	
⊠CDD		Ant0: 4.05 Ant1: 4.25					4.15	7.16	

Antenna Model	PIFA Antenna									
Antenna Manufacturer	TPlink									
Antenna Delivery		1*TX+1*RX						3*	*TX+	3*RX
Antenna Technology		SISO								
		МІМО		Basic methodology with NANT transmit antennas						
				Sectorized antenna systems						
				Cross-polarized antennas						
				Unequal antenna gains, with equal transmit powers						
				Spatial Multiplexing						
			\boxtimes	Cyclic Delay Diversity (CDD)						
Antenna Type	PIFA Antenna									
Antenna Gain										
Antenna Technology						Directional Gain				
		Ant Gain					F	or Powe	er	For PSD
McDD	Ant0: 5.12						5.17		8.18	
CDD		Ant1: 5.22								

Output Power into Antenna & RF Exposure Evaluation Distance:

Standlone modes

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Directional Gain (dBi)	Power Density at R = 20 cm (mW/cm2)
802.11b/g/n(20MHz) with CDD	2412 ~ 2472 MHz	28.53	4.15	0.3687
802.11n(40MHz) with CDD	2422 ~ 2462 MHz	23.85	4.15	0.1255
802.11a/n/ac (20MHz) with CDD	5180-5240MHz 5745-5825 MHz	29.71	5.17	0.6120
802.11n/ac (40MHz) with CDD	5190-5230MHz 5755-5795 MHz	28.52	5.17	0.4653
802.11ac(80MHz) with CDD	5210MHz 5775MHz	24.79	5.17	0.1971

Simultaneous transmission:

Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Directional Gain (dBi)	Power Density at R = 20 cm (mW/cm2)
2412 ~ 2472	28.53	4.15	0.3687
5180-5240	29.71	5.17	0.6120
5745-5825 Simultaneo	0.9807		

So according to transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$ and the power density limit according to KDB 447498D01V06 and FCC Part1.1310(b), the limit is $1mW/cm^2$

Safety Distance Calculation Formula:

The power flux:

$$S = \frac{P^*G_{(\theta,\phi)}}{4^*\pi^*r^2}$$

So safety distance as following:

$$r = \sqrt{\frac{P * G}{4 * \pi * S}}$$

P = input power of the antenna

G = antenna gain relative to an isotropic antenna

 θ , Φ = elevation and azimuth angles.

r = distance from the antenna to the point of investigation

Frequency Range (MHz)	Maximum EIRP (dBm)	Limit of Power Density S(mW/cm2)	Safety Distance r(cm)	
2412 ~ 2472	32.68	1		
5180-5240	24.00	4	15.65	
5745-5825	34.88	I		

Note: The safety distance is 15.65cm for AC1200 Wireless Dual Band Gigabit Access Point without any other radio equipment.

_____ The End _____