RF Exposure Evaluation Declaration

Product Name: AC750 Wireless Dual Band

ADSL2+ Modem Router

Model No. : Archer D20

FCC ID : TE7D20V1

Applicant: TP-LINK TECHNOLOGIES CO., LTD.

Address: Building 24 (floors 1,3,4,5) and 28 (floors1-4)

Central Science and Technology Park, Shennan

Rd, Nanshan, Shenzhen, China

Date of Receipt: Aug. 20, 2015

Issued Date : Nov. 06, 2015

Report No. : 1580591R-RF-US-P20V01

Report Version: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Nov. 06, 2015

Report No.: 1580591R-RF-US-P20V01

Product Name AC750 Wireless Dual Band ADSL2+ Modem Router

Applicant TP-LINK TECHNOLOGIES CO., LTD.

Address Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central

Science and Technology Park, Shennan Rd, Nanshan,

Shenzhen, China

Manufacturer TP-LINK TECHNOLOGIES CO., LTD

Address Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central

Science and Technology Park, Shennan Rd, Nanshan,

Shenzhen, China

Model No. Archer D20 FCC ID TE7D20V1 AC 120V/60Hz **EUT Voltage**

TP-LINK Brand Name

KDB 447498D01V05V02 Applicable Standard

FCC Part1.1310(b)

RSS-102: Issue 5, March, 2015

Test Result Complied

Performed Location Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392; IC Lab Code: 4075B

Documented By

Reviewed By

Frankhe Harry shas Approved By

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://www.quietek.com/tw/ctg/cts/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1580591R-RF-US-P20V01	V1.0	Initial Issued Report	Nov. 06, 2015

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

	Electric	Magnetic	Power	Average	
Frequency	Field	Field		Time	
Range (MHz)	Strength	Strength	Density		
	(V/m)	(A/m)	(mW/cm2)	(Minutes)	
(A) Limits for ((A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			F/1500	6	
1500-100,000			1	30	

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product		AC750 Wireless Dual Band ADSL2+ Modem Router
Test Item	:	RF Exposure Evaluation
Test Site	:	AC-6

Antenna Gain:

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.0dBi for 2.4GHz and 3.0dBi for 5GHz in logarithm scale.

• Output Power into Antenna & RF Exposure Evaluation Distance:

The state of the s					
Frequency Band (MHz)	Maximum Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)			
2412 - 2462	115.88	0.0365			
5150 - 5250	160.69	0.0638			
5745 - 5825	119.67	0.0475			

Note:

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 1 mW/cm2.

———— The Fnd	