FCC RF EXPOSURE REPORT

FCC ID: TE7CPE710

Project No.	$:$	$1912 C 049$
Equipment	$:$	$5 G H z$ 867Mbps 23dBi Outdoor CPE
Brand Name	$:$	tp-link
Test Model	$:$	CPE710
Series Model	$:$	N/A
Applicant	$:$	TP-Link Technologies Co., Ltd.
Address	$:$	Building 24(floors1,3,4,5) and 28(floors1-4) Central Scienceand
		Technology Park, Shennan Rd, Nanshan, Shenzhen, China
Manufacturer	$:$	TP-Link Technologies Co., Ltd.
Address	$:$	Building 24(floors1,3,4,5) and 28(floors1-4) Central Scienceand
		Technology Park, Shennan Rd, Nanshan, Shenzhen, China
Date of Receipt	$:$	Dec. 10, 2019
Date of Test	$:$	Dec. 11, 2019~ Jan. 13, 2020
Issued Date	$:$	Feb. 14, 2020
Report Version	$:$	R00
Test Sample	$:$	Engineering Sample No.: DG2019121142
Standard(s)	$:$	FCC Guidelines for Human Exposure IEEE C95.1 \& FCC Part 2.1091
		FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

vincent. Tan

Prepared by : Vincent Tan

Approved by : Ethan Ma

Certificate \#5123.02
Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town,Dongguan, Guangdong, China.
Tel: +86-769-8318-3000
Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue	Feb. 14, 2020

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:
$S=\frac{P G}{4 \pi^{2}}=\frac{E I R P}{4 \pi^{2}}$
where:
$\mathrm{S}=$ power density
$P=$ power input to the antenna
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$\mathrm{R}=$ distance to the center of radiation of the antenna
Table for Filed Antenna:
Group 1 Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	P-LNK	N/A	PCB	I-PEX	20.8
2	N-WNR	N/A	PCB	I-PEX	20.8

Note:
This EUT supports CDD, and antenna gains are equal, so Directional gain $=G_{A N T}+$ Array Gain, where Array Gain is as follows:
For power measurements, Array Gain $=0 \mathrm{~dB}\left(\mathrm{~N}_{\text {ANT }} \leq 4\right)$, so the Directional gain=20.8.
For power spectral density measurements, $N_{\text {ANT }}=2, N_{S S}=1$. So Directional gain $=G_{A N T}+$ Array Gain $=10 \log$ $\left(\mathrm{N}_{\mathrm{ANT}} / \mathrm{N}_{\mathrm{SS}}\right) \mathrm{dB}=20.8+10 \log (2 / 1) \mathrm{dBi}=23.81$.
For fixed point-to-point operation,

1) For UNII-1: The directional antenna gain greater than 23 dBi , a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi . So the power spectral density limit is $17-(23.81-23)=16.19$.
2) For UNII-3: The devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. So the power spectral density limit 30-(23.81-6)=12.19.

Group 2 Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	P-LNK	N/A	PCB	I-PEX	6.95
2	N-LNK	N/A	PCB	I-PEX	6.95

Note:
This EUT supports CDD, and antenna gains are equal, so Directional gain $=G_{A N T}+$ Array Gain, where Array Gain is as follows:
For power measurements, Array Gain $=0 \mathrm{~dB}\left(\mathrm{~N}_{\text {ANT }} \leq 4\right)$, so the Directional gain=6.95.
For power spectral density measurements, $\mathrm{N}_{\mathrm{ANT}}=2, \mathrm{~N}_{\mathrm{SS}}=1$. So Directional gain $=\mathrm{G}_{\mathrm{ANT}}+$ Array Gain $=10 \log$ $\left(N_{\text {ANT }} / N_{S S}\right) d B=6.95+10 \log (2 / 1) \mathrm{dBi}=9.96$.
For fixed point-to-point operation,

1) For UNII-1: The directional antenna gain greater than 23 dBi , a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi . So the output power and power spectral density limit are not reduced.
2) For UNII-3: The devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. So the power spectral density limit $30-(9.96-6)=26.04$.

2. TEST RESULTS

Group 1 Antenna

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
20.8	120.2264	28.42	695.0243	0.92082	1	Complies

Group 2 Antenna

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
6.95	4.9545	28.49	706.3176	0.03856	1	Complies

Note: The calculated distance is 85 cm .
Output power including tune up tolerance(tune up tolerance: 0.5 dBm).

End of Test Report

